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Abstract. For most digital signature schemes uscd in practice, such as 
IS09796/RSA or DSA, it has only been shown that certain plausible 
cryptographic assumptions, such as the difficulty of factoring integers, 
computing discrete logarithms or the collision-intractability of certain 
hash-functions are necessary for the security of the scheme, while their 
sufficiency is, strictly speaking, an open question. 
A clear advantage of such schemes over many signature schemes with 
security proven relative to such common cryptographic assumptions, is 
their efficiency: as a result of their relatively weak rcquirements regarding 
computation, bandwidth and storage, these schemes have so far beaten 
proven secure schemes in practice. 
Our aim is to contribute to the bridging of the gap that seems to exist 
between the theory and practice of digital signature schemes. We present 
a digital signature that offers both proven security and practical value. 
More precisely, under an appropriate assumption about RSA, the scheme 
is proven to be not existentially forgeable under adaptively chosen mes- 
sage attacks. We also identify some applications where our scheme can be 
conveniently implemented using dedicated smartcards that are available 
today. 

1 Introduction 

Consider, very generally, electronic transaction systems tha t  require message 
authentication mechanisms such as digital signature schemes. Although we do 
not mean to limit ourselves to  this case in this paper, assume that the individual 
players have dedicated (i.e.,  capable of performing public key cryptography) 
smartcards as available today or in the ncar future, as their user-devices. We will 
simply say that a digital signature scheme has practical value in this context, if 
it  can be conveniently used, given the available infrastructure and hardware. 

Our objective is to design a digital signa.ture scheme that offers both high 
security and  practical value. Informally, we require the  following of our target 
scheme. First, rehtive to some plausible cryptographic assumption, a proof must 
be given that t he  scheme is not existentially forgeable under adaptively chosen 
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message attacks [13]. Without attempting to  quantify the efficiency needed, we 
require, secondly, that the amount of computation and the size of the signatures 
are small, and, finally, that  the amount of storage needed is reasonably limited. 

In a sequence of results [17], [I], [18] and finally [23], it was established that  
the existence of one-way functions is necessary and sufficient for the existence se- 
cure signatures. This result, however theoretically very important, does not give 
rise t o  a practical signature scheme. The construction, which is based on a gen- 
eral one-way function, uses a costly “bit-by-bit” signing technique in conjunction 
with tree authentication [17]. As a result, the size of signatures is O(k2 . logi), 
where lc stands for a security parameter and i indicates the number of signatures 
made. 

Benefitting from the special properties of claw-free trapdoor permutations, the 
secure scheme presented in [13] achieves signatures of size O(k . logi)  instead. 
Their scheme also uses a tree structure. Intractability of factoring is a sufficient 
assumption for the existence of the family of functions required for their scheme 
(for an extension of their result, see [7]). Though yielding shorter signatures 
asymptotically, the size grows rapidly in practice as the number of signatures 
made increases. 

Starting with the seminal paper [22], which proposed the RSA-functions as 
the first implementation of public-key cryptography as envisaged by Diffie and 
Hellman [9] , many practical digital signature schemes have been proposed, for 
instance] [ll], [12], [24], [14], [20], [16] and [19]. 

Although many of them are actually used in practice today, these schemes 
seem to have the property that their security is hard to  analyze. We certainly do 
not mean t o  suggest here that their security is dubious. On the contrary, these 
schemes rely on common cryptographic assumptions, such as the difficulty of 
factoring or inverting RSA-functions, the difficulty of computing discrete loga- 
rithms or the collision intractability of certain hash functions, and have so far 
resisted many years of cryptanalytic efforts. 

However, none of these practical schemes has been shown to be secure in the 
sense of 1131 provided that any of these mentioned cryptographic assumptions 
holds. This implies that ,  independently of their validity, these necessary and 
common cryptographic assumptions may still turn out to be insufficient for the 
security of these signature schemes. Thus, based on the above, it is still an open 
problem to design a secure and truly practical digital signature scheme, that  
may be used in today’s or tomorrow’s information systems. 

Recently, progress has been made in this area. Starting with [lo], it can be 
concluded that  the first two requirements, namely proven security, moderate 
amount of computation and provision of any rcasonable number of small-sized 
signatures, can be satisfied. The cryptographic assumptions needed there, are 
an RSA-assumption and the factoring assumption (or more precisely, the exis- 
tence of a particular family of claw-free trapdoor permutations), respectively. 
For efficient fail-stop signatures, see [21]. These schemes yield practically much 
smaller signatures compared to, for instance, [13]. The reason is that ,  instead 
of binary authentication trees, these schemes allow the use of trees with much 
larger branching degree. 
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Briefly, the efficiency of this scheme is as follows. Let integers 1, d and a 
security parameter k be given (in [lo] it must be required that 1 2 k ) .  In [lo], 
a signer can make at least I d  signatures. The size of a signature in [lo] amounts 
to dk bits. ', The idea is then to  choose 1 large, such that for any reasonable 
number of signatures the resulting size of the signatures is reasonably small. 

Theoretically, this scheme offers a trade-off, via the flexibility of choosing 
1 ,  between the size of signatures and the storage required: the size is O(m . 
logi) bits, with 0(1 . k )  bits storage for the system constant and O(& . logi)  
bits dynamic storage for the signer. The corresponding figures for [13] and [7], 
are O ( k  . logi) bits for the size of signatures and O ( k  . logi) bits storage '. A 
disadvantage that in [lo] may be that all signers and receivers of signatures must 
have access to  a large list of random numbers. This lists consists of 1 random 
k-bit strings and 1 primes. 

In [lo], authentication of computer faxes is identified as an application where 
their proposed scheme is certainly useful. However, in any practical system that 
uses smartcards as the main players, this assumption about shared access to  the 
list of random numbers may be too demanding, simply because of its storage 
requirements (in case a user has a wallet with observer ( [ 5 ] ,  [S]) as user device, 
there are solutions, though not as efficient as the scheme presented in this paper, 
that  preserve the off-line property). One can envision a system where the players 
gain access to the list through a server. If this server and the communication link 
are trusted, this solution has only the on-line character as the main disadvantage. 
Otherwise, one also has to employ mechanisms for ensuring the integrity of the 
supplied data (one-way accumulators [2] seem to a.llow for an efficient approach). 

Our contribution is the design of a secure signature scheme where the size of 
the signatures is (d  + l ) k  bits, while I d  signatures can be made. The integers 1 
and d can be chosen independently from t,he security parameter k .  The security 
is derived from an appropriate RSA-assumption. Technically, our scheme builds 
on [lo]. Our improvement over [lo] resides in the fact that  our scheme does not 
require the players to share a list of 1 random strings of size k bits; they only 
need to  share a list consisting of 1 + 1 primes. 

As an example, take a 1000-bit RSA-modulus. and set 1 = 1000 and d = 
3. In this case, a signer can make over a billion signnturcs, the size of each 
not exceeding 4000 bits. The secret key has size 1000 bits, while the public 
key is 3000 bits. Now, let the shared list consist of the first 1001 consecutive 
odd primes. By storing the differences between consecutive primes, this requires 
hardly any storage. In [lo], this particular choice for the list of primes has also 
been proposed. But there, the players would additionally have to  share 1 million 
random bits. The required assumption about RSA is the same in both cases. 

This example indicates that our secure scheme may very well be implemented 

k 

The actual sizes stated in [la] are larger. However, these can be reduced by roughly 
a factor of two if one observes that the signatures are redundant, Le., part of the 
signature can be recalculated from another part. See also Section 3. 
The dynamic storage can be reduced by applying a suggestion from [3]. 
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in a system that uses today’s dedicated smartcards. 
More generally, our scheme works with any list of primes shared between 

the players, but t o  limit the storage, it is convenient t o  take consecutive primes. 
By choosing a random sequence of 1 + 1 consecutive primes, the security of our 
scheme is equivalent to  the general RSA-assumption. 

Our exposition is organized as follows. In Section 2, we outline the technical 
ideas behind our design. The formal presentation of the scheme can be found 
in Section 3. The latter section left open the choice of some parameters. This 
is resolved in Section 4, which is followed by a discussion of the performance of 
our scheme in Section 5 .  The proof of security is given in Section 6 .  In Section 7, 
we give optimizations of the proposed scheme that cut the storage requirements 
even further. 

2 Basic Ideas 

Conceptually, our signature scheme may be viewed as a cross between [13] and 
[lo], together with modifications enabling their synthesis. Let 1 and d be integers. 
In [lo], all players in the signature scheme must have access to  two lists. The 
first list contains 1 primes. Depending on the particular RSA-assumption one 
wishes to  make, these could be, for instancc, the first 1 odd primes, or 1 random 
primes. The second list consists of 1 random k-bit strings. Here, k is a security 
parameter and 1 is an integer with 1 2 k .  Our first objective is to remove the 
necessity of the list of random numbers. 

In [lo], the syst,em constants are as follows. Let L denotc the list of primes 
{PO,. . . , p i - l } ,  L‘ the list of 1 random I-bit strings {Q, . , . , ~ 1 - 1 )  and let a denotc 
a random I-bit string, to be used as the root of all authentication trees. Let a 
signer be given an RSA-modulus n together with its factorization. The public 
key consists of n and yroot. The latter is to  be the root of an I-ary authentication 
tree of depth d. The factorization of n is private input for the signer. 

The “basic authentication step” in [lo] is 
1-1 

y + - ( a . n z > ) ~ y  mocin 
i = O  

where a is an already authenticated value, = poll ’ . .  11/3-1 is an 1-bit string 
to  be authenticated, and p j  is a prime from the list L that  has not been used 
before in connection with a.  Instead, our basic authentication step is 

where h is a member of Z:, and part of the signer’s public key. Furthermore, 
e3 is the smallest integer such that v, p;’ > n. Here the values that can 
be authenticated are elements of ZL. This removes the list L’ and the condition 
that 1 2 k .  However, implementing this idea only results in a scheme that  we can 
prove secure against random message attacks. Such a scheme can be efficiently 
transformed to a scheme that is secure against active attacks, as is desired here, 
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by means of a technique described in [8] .  The loss of efficiency is a factor of two 
(twice as much computation, signature size twice as large). But we can do better 
in this case, if we add one prime q with a special purpose to the list: it is only 
used when a message m, agreed upon between the signer and a receiver, is to be 
authenticated, as follows 

z t ( a .  h m ) k  mod ri, 

where a is a "freshly" generated leaf in the authentication tree and e is the 
smallest integer such that w qe > n. This relates to  the idea [I31 of ap- 
plying sufficiently independent functions to the actual signing process and the 
construction of an authentication tree, respectively. 

To minimize the storage needed for the list of primes, we can take L to consist 
of 1 consecutive primes. Then, only the first prime and all consecutive differences 
are stored. In Section 7, two other techniques are given for further improvements 
of the effciency of the scheme. 

3 Description of the Scheme 

In a preprocessing-phase, a security parameter k is determined, as well as inte- 
gers 1 and d .  Next, a list L consisting of 1 + 1 distinct primes is generated by 
invoking an algorithm H ( l k ,  I)) ,  say L = { y , y o , .  . . , p ) - I } .  Ways of choosing H 
are discussed in the next section. 

Furthermore, we assume that we are given a probabilistic polynomial time 
generator G that ,  on input l k >  outputs a triple (n ,  r ,  s), where T and s are primes 
and n = r . s is a lc bits integer. It is assumed that G is defined such that it is 
infeasible to  factor n, when only n as generated by G is given as input. Finally, 
we must have that q and the pi are co-prime to $(n). Given n and L,  define e 
as the smallest integer such that q' > n and ei as the smallest integer such that 
p4' > n for i = 0 .  . . 1  - 1. In the following, w denotes qe and u; denotes p:' , for 
i = 0 .  . . 1 -  1. 

We start with an informal overview of the scheme. The signer has as public 
key an RSA-modulus n, h E Z: and xo E Z:. Herr., n is generated by G ( l k )  and 
h and 20 are chosen a t  random from Z: by the signer. In a possible variation of 
the scheme, 50 and h are chosen mutually a t  random and are the same for all 
signers. In any case, h and xo must be chosen a t  random to avoid weak keys. 

As always, his knowledge of the factorization ( r ,  s) of n enables the signer 
to compute X b  mod n for any X E 12: and any integer u such that gcd(u, ( r  - 
l)(s - 1)) = 1. The public key consists of the triple (n,  h !  "0). The factorization 
of n is private input to  the signer. 

The algorithm DFS(i), which is used in the formal description of our scheme, 
gradually develops a full 1-ary tree of depth d by selecting the nodes a t  random 
from Z:. The tree is constructed in depth-first fashion. Although not explicitly 
given as input to  DFS(i), it is assumed that it has access to 1 ,  d ,  20 and n. The 
value 20 serves as the root of the tree. Each time DFS(i) is invoked (i = 1 . . . I d ) ,  
it creates a path to a new leaf z d  and outputs this path, say, zl,. . . , z d  (the root 
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xo being understood). This sequence is ordered such that xj-1 is the parent of 

Furthermore, for each node xj in this sequence, DFS(i) also outputs an in- 
dicator i j  (j  = 1. .  . d )  in such a. way that i j  is assigned to x j  if and only if xi is 
the i j- th child of xj-1. The amount of storage needed for this procedure (apart 
from 1 ,  d ,  xo and n)  does not exceed the amount of storage needed for d - 1 pairs 
consisting of a node and an indicator. 

By invoking DFS, the signer gradually constructs, in a depth first fashion, an 
I-ary authentication tree with depth d: each time a new signature is required he 
constructs a path to a new leaf. All nodes x are members of if!:, given by their 
smallest non-negative representative modulo n. The message space is equal to  
the set (0, l}’, which we will also identify with the set of non-negative integers 
smaller than 2k. 

In Figure 1, the signer is making his i-th signature, on a message m E z:. 
So, in particular Xd is the i-th leaf he reaches. The part of the tree on the right 
side of the path 20, . . . ~ xd- 1 ,  xd is not yet, constructed. Since 2 1  happens to be 
the i l-st  child of 5 0 ,  the signer authenticates x 1  with respect to the prime p ; ,  by 

comput,ing y1 6 (xn-hZ1)”.1 mod n. Similar rules apply to  the authentication of 
the remaining nodes in this path. In particular, it so happens to be in our example 
that x d  is the id-th child of xd-1 .  Thus x d  is authenticated by computing yd +- 

( ~ d - 1  . h z d ) Y ’ d  mod ‘IL. Finally, the message rn is signed by computing z +- ( z d  . 
hm)+ mod n. Notice that the prime q is only used when the “actual signature” 
is computed, while the other primes in the list L are used exclusively in the 
process of constructing the authentication tree. The signature on m consists of 
the yj and indicators i j ,  ( j  = 1 . .  . d )  and z .  

Concerning the storage needed for the signer, notice that the part of the tree 
left from the path (20,. , . ,xd-l,xd) can be deleted. Actually, 2 d  itself can be 
removed. In order to carry on with the depth-first construction of the tree, it is 
sufficient to store 20,. . . , xd-1 and the indicators to their parents. This storage 
amounts to at most (d  - l ) ( k  + log I) bits (the root zo is part of the public key). 

A receiver of this signature gets only the message m, authentication values 
yj, the indicators i j  ( j  = 1 . .  . d )  and z .  So, what about the nodes? These are 
re-computed as follows. On input of the public key, the list L,  m and z he 
recomputes xd as Z d  t 2” . h-” mod n. Recursively, the receiver re-computes 
xj-1 from xj, yj and i j  in a similar fashion ( j  = d .  . . 1). The last node xo he thus 
computes should be equal to  the actual 50, which is part of the public key. If so, 
the signature is accepted. We point out that  in many tree-structured signature 
schemes, it is sufficient to send the authentication values and have the verifier 
re-compute the nodes, instead of defining these as part of the signature. It is 
easily seen why this does not affect the security a t  all: briefly, if the verifications 
in the “reduced” scheme hold, one gets a signature in the original scheme (on 
the same message, of course) by simply incorporating the re-computed nodes. 
The remark in a footnote in Section 1 is based on this observation. 

More formally, the description of the ncw signature scheme is as follows. 

xj ( j  = 1 . .  . d ) .  

1 

1 
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. . . , , . . . , . . . . , , . . ::. Id 

Fig. 1. The i-th Signature 

Preprocessing: 
A security parameter k ,  integers 1 and d are determined. Next, the system 
constant L = {qlpo,. . . , ~ 1 - 1 )  consisting of 1 + 1 distinct primes is generated 
by invoking H ( l k ,  1'). Define e as the smallest integer such that w 3 qe > n, 
and e; as the smallest integer such that w; E pYk > nl  for i = 0 .  . . I - 1. For 
possible choices of H ,  see Sections 4 and 7. 

The signer runs G ( l k )  and obtains a triple ( n , ~ , s )  such that q and the pi 
are co-prime to qh(n). Next, he chooses h and 2 0  a t  random in Z:. His public 
key p k  is now the pair (n, h, zo), while his secret key sk consists of the pair 

Initialization: 

(TI 3). 
Signing: 

Let a k bit message m be given. Then the i-th signature, where 1 5 i 5 I d ,  
is computed as follows. First, the signcr puts (21, i l l . .  . , xd, i d )  + DFS(i). 

Next, he computes (for j = 1 . .  . d )  yJ + ( z ~ . . ~  . ~ " J ) " ' J  mod n. Finally, he 
computes z + (zd.hrn)k mod n. The signature (T on m consists of the values 

Verification: Verification is done as follows. The receiver of a signature puts 
g = ( Z , Y I ~ ~ ~ . . . , Y ~ , ~ ~ ) ~  and, on input of plc = (n ,h ,zo ) ,  m and u, he 
computes Xd + 2" . h,-" mod n. Finally, he computes Xj-1 + Y."' 3 

hPxj mod n ( j  = d . .  .1). If Xu f zo mod n, the signature is accepted. 

1 - 

z , ! / l , i l , . . .  r Y d , i d -  

Remark 1 For convenient exposition of th,e scheme, we have chosen to let the 
signer only use the leaves for signing. However, the scheme is easily adapted SO 
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as t o  allow f o r  a more extensive use of the authentication tree. In this modified 
scheme,  each freshly constructed node can immediately  be used f o r  making a 
signature. Th.e proof of security is easily adapted t o  fit with this modification. 

4 Generating the List of Primes L 

In order to minimize the storage needed for the system constants, i.e., the list 
L,  k ,  1 and d,  it is convenient to set L to any I i- 1 consecutive primes greater 
than 2. In this case, only the first prime, the differences between conseciitive 
primes and the exponents e and ci are stored. As an example, one could take L 
to consist of the first 1 + 1 (odd) primes. 

It must be stressed, however, that  the correctness of the scheme is indepen- 
dent of the particular ways of generating L.  Also, the proof of security is not 
affected by such choices. What is dependent on the choice of L ,  is the particdar 
assumption we have to make about RSA-inversion. See Section 6. 

5 Performance of the Scheme 

A signer can make a t  least I d  signatures (see also Remark 1) such that thc: size 
of each signature does not exceed (d+ 1)k  bits (neglecting the dlogl  bits needed 
to indicate the path). A public key has size 31; bits. 

Concerning the amount of computation needed, signing requires two full 
RSA-exponentiations and one modular multiplication on-line. A path to the 
current leaf can be authenticated by pre-processing, using 2d full-RSA exponen- 
tiations and d modular multiplications. A receiver of a signature will have to 
perform 2(d + 1) full RSA-exponentiations and d + 1 modii1a.r multiplications. 

For the gradual depth-first construction of the authentication tree, the signer 
stores a t  most (d  - l ) ( k  +log I )  bits a t  any time. Secure storage in the strongest 
sense (i.e., storage not accessible or alterable by “the outside world”) is only 
needed for the secret key ( k  bits) a.nd the relevant nodes of the latest path in 
the tree, which is a t  most ( d -  1)k  bits. The public list L only has to be securely 
stored in a weaker sense: the signer must have certainty that L is authentic. 

6 Proof of Security 

The proof of security works for any choice of the list L.  However, the particular 
assumption we make about thc difficulty of RSA-inversion depends on this very 
choice in the following way. We require the following of the algorithm H .  

Assumption 1 Let  k be a security parameter  and let 1 be of polynomial size in 
k .  Let  L be generated by H ( l k ,  1‘) und let n be an, RSA-modulus  as generated by 
G ( l k )  and let x be a random member of ZE. T h e n  there is  n o  probabilistic poly- 
nomial  t i m e  algorithm that has non-neyligible probability of computing mod 12 

with cy E L ,  on  input L ,  n and x. 
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Under this assumption, we can prove that the signature scheme is not exis- 
tentially forgeable under adaptively chosen message attacks. 

Theorem 1 under  Assumption 1, the signature scheme presented in Section 5' 
is not  existentially forgeable under adaptively chosen message attacks. 

Proof: We are given integers 1 and d. a list L = { q , p o ,  , p l -1}  consisting of 
1 + 1 distinct primes and an RSA-modulus n. Let, 711 v; be defined as in 
Section 3, for i = 0 1 - 1. We assume tha.t n is generated according to G(l')), 
but we are not given the factorization. Also, we assume that q and the pi are 
co-prime to  4(n) and that L is generated according to H(lk ,  1'). The proof is 
by contradiction. We show that existence of a successful attacker implies that  
we can compute X -  mod n, given a random N E L ,  and a random X E Z:. 
Which contradicts Assumption 1. 
Let a E L. First, we show that we can set up a 'kirnulatedl1 signer, who 
as input h E Z: and h~ mod n for all p in L different from a ,  but is yet 
indistinguishable from a signer who proceeds as in Section 3 after he is given 
h, n and its factorization. To this end, we consider two cases separately and 
focus mainly on the differences with Section 3. Finally, we run the attacker 
against this simulated signer and obtain the desired contradiction. 
Technically, the simulation runs as follows. In case cy = w, the root xo  is 
computed as zo t a~o" 'u l - l  mod n,, for randomly chosen uo from Z:. The 
value a0 is stored. All nodes 5 ,  excluding the leaves, arc computed as 2 t 
uvO".vl-l mod n,  where u is chosen a t  random from Z:. The value a is stored. 
If any z is the f - th  child of his parent 2, = u ~ ~ " ' ' ' ~ - - ~  niod 71, the authentication 
value is coInputed as ~ + ,:o"'vf-l"'"f bl"''(-I . ( / L * ) ~  mod n. After the i-th 
signature on a message m, the i-th leaf .7: is computed as 2 t uw . h,-" mod n 
where a is chosen a t  random from Z:. Next, the simulatcd signer reveals the 
path to  the i-th leaf, t>ogether with all authentication values, and the authen- 
tication value z = a of the message m. 
In case a # w, say, N = u j ,  the autheriticatiun tree has to be constructed 
from the bottom up. We first show how this is done for d = 1. We select the 
j - th  child a t  z a t  random from Z:L. The parent z* is then computed as x* + 

h-" mod n, where b is chosen a t  random from ZL. The value b is stored. b U O ' . ' Y L - - I  

The authentication value y of x is computed as y t b " O ' ~ ' " ~ - ~ w j + ~ " ' " ~ -  1 mod n. 
Finally, the remaining I - 1 children of T* are selected at random from Z:. 
Let z' be the f - th  child (f # j ) .  Then it,s a.uthentication value y' is computed 

as y/ + ~~O"'"'f-1~f+l"'~'I-l , (h*)"'-" mod n. When we have constructed 1 - 1 
other such trees with d = 1, the same procedure can be used to combine them 
into a tree with d = 2, by letting the roots play the role of the leaves as above. 
By induction, we can build an I-ary tree with any depth d. 
One choice has been left open in the present case. The leaves .T of the target 
tree of depth d must be choscn as 2 + b" mod 71, for random b in Z:. With 
the i-th signature request, the simulated signer can reveal the path to  the a- 
th leaf, together with all authentication values, and the authentication value 
z + b . (hh)" mod n. 

1 

1 
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It is clear that  in both cases each node in the tree has the uniform distribution 
and is independent of anything else. All other values follow deterministically. 
Thus this simulation cannot be distinguished from the real signer. 
In the next step in our proof, we run the attacker against the simulated signer 
and show that we can compute Xk mod n, for random CY E L ,  and a random 
X E ZA. Here, we have essentially the same success-probability as the attacker. 
Recall that  n and L were generated by G and H respectively. 
We proceed as follows. We choose a random a E L ,  a random X E HL and a. 

random p from Z:. Put  h +- X n p c r , / { a ) ’ .  p n a t ~  mod n. Next we feed L ,  n, 
h ,  and hP mod n for all /3 in L different from a to  the simulated signer and run 
the simulation (note that h is also distributed as in “real life”) Next, we run 
the attacker against this simulator. Assume that after I d  calls to the simulated 
signer, the attacker outputs a forgery 

1. 

~ ~ ~ ~ ~ O ~ ~ l ~ ~ l ~ ~ l ~ ~ ~ ~ , ~ d ~ ~ d ~ ~ d ~  

i.e., a signature on a. message rTz that  has not been signed by the simulator 
in the course of the attack. Now, let T denote the full-tree of depth d and 
branching 1 that  the simulated signer has output in the course of the attack. 
Define j t o  be the largest integer such that 20, Zl i l l .  . . Z j ,  i j  is a path in T .  
If J’ = d,  then Z d  is a leaf. So, there exists a signature 

7n, z , x l ,  il, y1,. . . , x d i  i d ,  Y d ,  

output by the simulated signer, such that 5 d  = xd. By the assumption on ~ , ,  
we have GI # m. So, we have 

(yd . 5 i 1 ) q  G hfn-* mod n. 

But since m - & # 0 mod w (recall that  we have 0 5 m, lii < n, while w and 
the wi are greater than n) ,  we can easily extract hh mod n from this a.s follows. 
P u t  m-& mod w = qj.el with gcd(q,e) = 1 and 0 5 j 5 e-1. Let the integers 
f and i be such that e .  f = 1 + i . q e - j .  Then h t  = (y,f . Ydf . hi)qc-’-’. 
If, on the other hand, j < d ,  then Zj is a node in T at depth j and 5j+1 is not 
a child of 2j in T .  Let x j + l  denote the i,+l-th child of 2.j in T .  Then clearly, 
by assumption on j ,  xj+l # 2 j+ ,  . Thus, 

I 

with xJ+l - 2,+1 # 0 mod w , , + ~ .  From this value, hP‘1+1 mod n is extracted as 
above in the case j = d. We conclude that the forgery allows us to  compute 
h? mod n for some a E L. By the construction of h, it follows, by the same 
calculations as above, that  we can efficiently derive Xi mod n from this value. 

In the verification, the receiver of the signature checks if the signature consists of 
d nodes. We can remove this L‘length-check”-coilditicm at the expense of a slightly 
more technical proof than presented here. 
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From the perfectness of the simulation the probability that cy = p is &. Thus, 
if the attacker has non-negligible siiccess- probability, then we can extract 

0 random a- th  roots also with non-negligible probability, for (Y E L. 

Note that if a signer deviating from the signer’s algorithm, should deliber- 
ately compute two messages that have the same signature, a receiver can easily 
compute a multiple of the order of h,  which may allow that receiver to  forge or 
even factor the signer’s modulus. 

In the Section 4 we have suggested to make a particular choice that mini- 
mizes the storage of L ,  namely of having L consist of 1 + 1 consecutive primes. 
Furthermore, for reasons of simplicity, we have suggested that these are the first 
1 + 1 primes of size k + 1 bits. 

7 Optimizations 

In this section, we describe a number of provably secure methods for decreasing 
the required size of the exponents in the list 1; (See also Section 2). 

Using Multiple Values of h 

In this variation, the signer generates two values ii as described in Section 3,  hi 
and hz. Let p be somc k bits string that has to be authenticated. The signer splits 
p into two blocks and 0 2  of size 5 bits each and computes the authentication 
value for /3 as follows. 

y t (a  . hfl h t 2 )  mod n, 

for some appropriate exponent p and node a.  This cuts the required size of the 
exponents by a factor of two. The expenses are an increase of the size of the 
public key by k bits. As noted before, the value of h may be chosen mutually 
at random between the signers. This also holds for this method, and as such it 
would mean an increase of k bits of the system constant. This method preserves 
the security properties of the scheme, and can be used in conjunction with thc 
other methods presented. 

Using a Hash-Function 

Let 7-l be a collision-resistant hash-function that maps arbitrary sized input 
strings to strings of size k, << k .  All values to be authenticated in the signature 
scheme, i.e., the nodes in the tree and the messages, are to be hashed down to 
k ,  bits first. Also, the root of the authentication tree as part of the public key, 
can be replaced by a hash of that  root. 

The effect is that the required size of the exponents is now k ,  bits instead of k 
bits. The security statement now also requires that 7t is collision-resistant, This 
method can be used in conjunction with any of the other methods presented in 
this paper. 
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