
New Generation of Secure and Practical
RSA-Based Signatures

Ronald Cramer*
Ivan Damg&rd**

Abstract. For most digital signature schemes uscd in practice, such as
IS09796/RSA or DSA, it has only been shown that certain plausible
cryptographic assumptions, such as the difficulty of factoring integers,
computing discrete logarithms or the collision-intractability of certain
hash-functions are necessary for the security of the scheme, while their
sufficiency is, strictly speaking, an open question.
A clear advantage of such schemes over many signature schemes with
security proven relative to such common cryptographic assumptions, is
their efficiency: as a result of their relatively weak rcquirements regarding
computation, bandwidth and storage, these schemes have so far beaten
proven secure schemes in practice.
Our aim is to contribute to the bridging of the gap that seems to exist
between the theory and practice of digital signature schemes. We present
a digital signature that offers both proven security and practical value.
More precisely, under an appropriate assumption about RSA, the scheme
is proven to be not existentially forgeable under adaptively chosen mes-
sage attacks. We also identify some applications where our scheme can be
conveniently implemented using dedicated smartcards that are available
today.

1 Introduction

Consider, very generally, electronic transaction systems tha t require message
authentication mechanisms such as digital signature schemes. Although we do
not mean to limit ourselves to this case in this paper, assume that the individual
players have dedicated (i.e., capable of performing public key cryptography)
smartcards as available today or in the ncar future, as their user-devices. We will
simply say that a digital signature scheme has practical value in this context, if
it can be conveniently used, given the available infrastructure and hardware.

Our objective is to design a digital signa.ture scheme that offers both high
security and practical value. Informally, we require the following of our target
scheme. First, rehtive to some plausible cryptographic assumption, a proof must
be given that t he scheme is not existentially forgeable under adaptively chosen

* CWI, Kruislaan 413, 1098 SJ Amsterdam, The Nctherlands. Email: crarner@cwi.nl.
** Aarhus University & BRICS, Ny Munkegade, Aarhus, Denmark. Email:

ivanOdaimi.aau.dk.

N. Koblitz (Ed.): Advances in Cryptology - CRYPT0 '96, LNCS 1109, pp. 173-185, 1996.
0 Springer-Verlag Berlin Heidelberg 1996

message attacks [13]. Without attempting to quantify the efficiency needed, we
require, secondly, that the amount of computation and the size of the signatures
are small, and, finally, that the amount of storage needed is reasonably limited.

In a sequence of results [17], [I], [18] and finally [23], it was established that
the existence of one-way functions is necessary and sufficient for the existence se-
cure signatures. This result, however theoretically very important, does not give
rise t o a practical signature scheme. The construction, which is based on a gen-
eral one-way function, uses a costly “bit-by-bit” signing technique in conjunction
with tree authentication [17]. As a result, the size of signatures is O(k2 . logi),
where lc stands for a security parameter and i indicates the number of signatures
made.

Benefitting from the special properties of claw-free trapdoor permutations, the
secure scheme presented in [13] achieves signatures of size O(k . logi) instead.
Their scheme also uses a tree structure. Intractability of factoring is a sufficient
assumption for the existence of the family of functions required for their scheme
(for an extension of their result, see [7]). Though yielding shorter signatures
asymptotically, the size grows rapidly in practice as the number of signatures
made increases.

Starting with the seminal paper [22], which proposed the RSA-functions as
the first implementation of public-key cryptography as envisaged by Diffie and
Hellman [9] , many practical digital signature schemes have been proposed, for
instance] [ll], [12], [24], [14], [20], [16] and [19].

Although many of them are actually used in practice today, these schemes
seem to have the property that their security is hard to analyze. We certainly do
not mean t o suggest here that their security is dubious. On the contrary, these
schemes rely on common cryptographic assumptions, such as the difficulty of
factoring or inverting RSA-functions, the difficulty of computing discrete loga-
rithms or the collision intractability of certain hash functions, and have so far
resisted many years of cryptanalytic efforts.

However, none of these practical schemes has been shown to be secure in the
sense of 1131 provided that any of these mentioned cryptographic assumptions
holds. This implies that , independently of their validity, these necessary and
common cryptographic assumptions may still turn out to be insufficient for the
security of these signature schemes. Thus, based on the above, it is still an open
problem to design a secure and truly practical digital signature scheme, that
may be used in today’s or tomorrow’s information systems.

Recently, progress has been made in this area. Starting with [lo], it can be
concluded that the first two requirements, namely proven security, moderate
amount of computation and provision of any rcasonable number of small-sized
signatures, can be satisfied. The cryptographic assumptions needed there, are
an RSA-assumption and the factoring assumption (or more precisely, the exis-
tence of a particular family of claw-free trapdoor permutations), respectively.
For efficient fail-stop signatures, see [21]. These schemes yield practically much
smaller signatures compared to, for instance, [13]. The reason is that , instead
of binary authentication trees, these schemes allow the use of trees with much
larger branching degree.

175

Briefly, the efficiency of this scheme is as follows. Let integers 1, d and a
security parameter k be given (in [lo] it must be required that 1 2 k) . In [lo],
a signer can make at least I d signatures. The size of a signature in [lo] amounts
to dk bits. ', The idea is then to choose 1 large, such that for any reasonable
number of signatures the resulting size of the signatures is reasonably small.

Theoretically, this scheme offers a trade-off, via the flexibility of choosing
1 , between the size of signatures and the storage required: the size is O(m .
logi) bits, with 0(1 . k) bits storage for the system constant and O(& . logi)
bits dynamic storage for the signer. The corresponding figures for [13] and [7],
are O (k . logi) bits for the size of signatures and O (k . logi) bits storage '. A
disadvantage that in [lo] may be that all signers and receivers of signatures must
have access to a large list of random numbers. This lists consists of 1 random
k-bit strings and 1 primes.

In [lo], authentication of computer faxes is identified as an application where
their proposed scheme is certainly useful. However, in any practical system that
uses smartcards as the main players, this assumption about shared access to the
list of random numbers may be too demanding, simply because of its storage
requirements (in case a user has a wallet with observer ([5] , [S]) as user device,
there are solutions, though not as efficient as the scheme presented in this paper,
that preserve the off-line property). One can envision a system where the players
gain access to the list through a server. If this server and the communication link
are trusted, this solution has only the on-line character as the main disadvantage.
Otherwise, one also has to employ mechanisms for ensuring the integrity of the
supplied data (one-way accumulators [2] seem to a.llow for an efficient approach).

Our contribution is the design of a secure signature scheme where the size of
the signatures is (d + l) k bits, while I d signatures can be made. The integers 1
and d can be chosen independently from t,he security parameter k . The security
is derived from an appropriate RSA-assumption. Technically, our scheme builds
on [lo]. Our improvement over [lo] resides in the fact that our scheme does not
require the players to share a list of 1 random strings of size k bits; they only
need to share a list consisting of 1 + 1 primes.

As an example, take a 1000-bit RSA-modulus. and set 1 = 1000 and d =
3. In this case, a signer can make over a billion signnturcs, the size of each
not exceeding 4000 bits. The secret key has size 1000 bits, while the public
key is 3000 bits. Now, let the shared list consist of the first 1001 consecutive
odd primes. By storing the differences between consecutive primes, this requires
hardly any storage. In [lo], this particular choice for the list of primes has also
been proposed. But there, the players would additionally have to share 1 million
random bits. The required assumption about RSA is the same in both cases.

This example indicates that our secure scheme may very well be implemented

k

The actual sizes stated in [la] are larger. However, these can be reduced by roughly
a factor of two if one observes that the signatures are redundant, Le., part of the
signature can be recalculated from another part. See also Section 3.
The dynamic storage can be reduced by applying a suggestion from [3].

176

in a system that uses today’s dedicated smartcards.
More generally, our scheme works with any list of primes shared between

the players, but t o limit the storage, it is convenient t o take consecutive primes.
By choosing a random sequence of 1 + 1 consecutive primes, the security of our
scheme is equivalent to the general RSA-assumption.

Our exposition is organized as follows. In Section 2, we outline the technical
ideas behind our design. The formal presentation of the scheme can be found
in Section 3. The latter section left open the choice of some parameters. This
is resolved in Section 4, which is followed by a discussion of the performance of
our scheme in Section 5 . The proof of security is given in Section 6 . In Section 7,
we give optimizations of the proposed scheme that cut the storage requirements
even further.

2 Basic Ideas

Conceptually, our signature scheme may be viewed as a cross between [13] and
[lo], together with modifications enabling their synthesis. Let 1 and d be integers.
In [lo], all players in the signature scheme must have access to two lists. The
first list contains 1 primes. Depending on the particular RSA-assumption one
wishes to make, these could be, for instancc, the first 1 odd primes, or 1 random
primes. The second list consists of 1 random k-bit strings. Here, k is a security
parameter and 1 is an integer with 1 2 k . Our first objective is to remove the
necessity of the list of random numbers.

In [lo], the syst,em constants are as follows. Let L denotc the list of primes
{PO,. . . , p i - l } , L‘ the list of 1 random I-bit strings {Q, . , . , ~ 1 - 1) and let a denotc
a random I-bit string, to be used as the root of all authentication trees. Let a
signer be given an RSA-modulus n together with its factorization. The public
key consists of n and yroot. The latter is to be the root of an I-ary authentication
tree of depth d. The factorization of n is private input for the signer.

The “basic authentication step” in [lo] is
1-1

y + - (a . n z >) ~ y mocin
i = O

where a is an already authenticated value, = poll ’ . . 11/3-1 is an 1-bit string
to be authenticated, and p j is a prime from the list L that has not been used
before in connection with a. Instead, our basic authentication step is

where h is a member of Z:, and part of the signer’s public key. Furthermore,
e3 is the smallest integer such that v, p;’ > n. Here the values that can
be authenticated are elements of ZL. This removes the list L’ and the condition
that 1 2 k . However, implementing this idea only results in a scheme that we can
prove secure against random message attacks. Such a scheme can be efficiently
transformed to a scheme that is secure against active attacks, as is desired here,

177

by means of a technique described in [8] . The loss of efficiency is a factor of two
(twice as much computation, signature size twice as large). But we can do better
in this case, if we add one prime q with a special purpose to the list: it is only
used when a message m, agreed upon between the signer and a receiver, is to be
authenticated, as follows

z t (a . h m) k mod ri,

where a is a "freshly" generated leaf in the authentication tree and e is the
smallest integer such that w qe > n. This relates to the idea [I31 of ap-
plying sufficiently independent functions to the actual signing process and the
construction of an authentication tree, respectively.

To minimize the storage needed for the list of primes, we can take L to consist
of 1 consecutive primes. Then, only the first prime and all consecutive differences
are stored. In Section 7, two other techniques are given for further improvements
of the effciency of the scheme.

3 Description of the Scheme

In a preprocessing-phase, a security parameter k is determined, as well as inte-
gers 1 and d . Next, a list L consisting of 1 + 1 distinct primes is generated by
invoking an algorithm H (l k , I)) , say L = { y , y o , . . . , p) - I } . Ways of choosing H
are discussed in the next section.

Furthermore, we assume that we are given a probabilistic polynomial time
generator G that , on input l k > outputs a triple (n , r , s), where T and s are primes
and n = r . s is a lc bits integer. It is assumed that G is defined such that it is
infeasible to factor n, when only n as generated by G is given as input. Finally,
we must have that q and the pi are co-prime to $(n). Given n and L, define e
as the smallest integer such that q' > n and ei as the smallest integer such that
p4' > n for i = 0 . . . 1 - 1. In the following, w denotes qe and u; denotes p:' , for
i = 0 . . . 1 - 1.

We start with an informal overview of the scheme. The signer has as public
key an RSA-modulus n, h E Z: and xo E Z:. Herr., n is generated by G (l k) and
h and 20 are chosen a t random from Z: by the signer. In a possible variation of
the scheme, 50 and h are chosen mutually a t random and are the same for all
signers. In any case, h and xo must be chosen a t random to avoid weak keys.

As always, his knowledge of the factorization (r , s) of n enables the signer
to compute X b mod n for any X E 12: and any integer u such that gcd(u, (r -
l)(s - 1)) = 1. The public key consists of the triple (n, h ! "0). The factorization
of n is private input to the signer.

The algorithm DFS(i), which is used in the formal description of our scheme,
gradually develops a full 1-ary tree of depth d by selecting the nodes a t random
from Z:. The tree is constructed in depth-first fashion. Although not explicitly
given as input to DFS(i), it is assumed that it has access to 1 , d , 20 and n. The
value 20 serves as the root of the tree. Each time DFS(i) is invoked (i = 1 . . . I d) ,
it creates a path to a new leaf z d and outputs this path, say, zl,. . . , z d (the root

178

xo being understood). This sequence is ordered such that xj-1 is the parent of

Furthermore, for each node xj in this sequence, DFS(i) also outputs an in-
dicator i j (j = 1. . . d) in such a. way that i j is assigned to x j if and only if xi is
the i j- th child of xj-1. The amount of storage needed for this procedure (apart
from 1 , d , xo and n) does not exceed the amount of storage needed for d - 1 pairs
consisting of a node and an indicator.

By invoking DFS, the signer gradually constructs, in a depth first fashion, an
I-ary authentication tree with depth d: each time a new signature is required he
constructs a path to a new leaf. All nodes x are members of if!:, given by their
smallest non-negative representative modulo n. The message space is equal to
the set (0, l}’, which we will also identify with the set of non-negative integers
smaller than 2k.

In Figure 1, the signer is making his i-th signature, on a message m E z:.
So, in particular Xd is the i-th leaf he reaches. The part of the tree on the right
side of the path 20, . . . ~ xd- 1 , xd is not yet, constructed. Since 2 1 happens to be
the i l-st child of 5 0 , the signer authenticates x 1 with respect to the prime p ; , by

comput,ing y1 6 (xn-hZ1)”.1 mod n. Similar rules apply to the authentication of
the remaining nodes in this path. In particular, it so happens to be in our example
that x d is the id-th child of xd-1 . Thus x d is authenticated by computing yd +-

(~ d - 1 . h z d) Y ’ d mod ‘IL. Finally, the message rn is signed by computing z +- (z d .
hm)+ mod n. Notice that the prime q is only used when the “actual signature”
is computed, while the other primes in the list L are used exclusively in the
process of constructing the authentication tree. The signature on m consists of
the yj and indicators i j , (j = 1 . . . d) and z .

Concerning the storage needed for the signer, notice that the part of the tree
left from the path (20,. , . ,xd-l,xd) can be deleted. Actually, 2 d itself can be
removed. In order to carry on with the depth-first construction of the tree, it is
sufficient to store 20,. . . , xd-1 and the indicators to their parents. This storage
amounts to at most (d - l) (k + log I) bits (the root zo is part of the public key).

A receiver of this signature gets only the message m, authentication values
yj, the indicators i j (j = 1 . . . d) and z . So, what about the nodes? These are
re-computed as follows. On input of the public key, the list L, m and z he
recomputes xd as Z d t 2” . h-” mod n. Recursively, the receiver re-computes
xj-1 from xj, yj and i j in a similar fashion (j = d . . . 1). The last node xo he thus
computes should be equal to the actual 50, which is part of the public key. If so,
the signature is accepted. We point out that in many tree-structured signature
schemes, it is sufficient to send the authentication values and have the verifier
re-compute the nodes, instead of defining these as part of the signature. It is
easily seen why this does not affect the security a t all: briefly, if the verifications
in the “reduced” scheme hold, one gets a signature in the original scheme (on
the same message, of course) by simply incorporating the re-computed nodes.
The remark in a footnote in Section 1 is based on this observation.

More formally, the description of the ncw signature scheme is as follows.

xj (j = 1 . . . d) .

1

1

179

. . . , , . . . , , , . . ::. Id

Fig. 1. The i-th Signature

Preprocessing:
A security parameter k , integers 1 and d are determined. Next, the system
constant L = {qlpo,. . . , ~ 1 - 1) consisting of 1 + 1 distinct primes is generated
by invoking H (l k , 1'). Define e as the smallest integer such that w 3 qe > n,
and e; as the smallest integer such that w; E pYk > nl for i = 0 . . . I - 1. For
possible choices of H , see Sections 4 and 7.

The signer runs G (l k) and obtains a triple (n , ~ , s) such that q and the pi
are co-prime to qh(n). Next, he chooses h and 2 0 a t random in Z:. His public
key p k is now the pair (n, h, zo), while his secret key sk consists of the pair

Initialization:

(TI 3).
Signing:

Let a k bit message m be given. Then the i-th signature, where 1 5 i 5 I d ,
is computed as follows. First, the signcr puts (21, i l l . . . , xd, i d) + DFS(i).

Next, he computes (for j = 1 . . . d) yJ + (z ~ . . ~ . ~ " J) " ' J mod n. Finally, he
computes z + (zd.hrn)k mod n. The signature (T on m consists of the values

Verification: Verification is done as follows. The receiver of a signature puts
g = (Z , Y I ~ ~ ~ . . . , Y ~ , ~ ~) ~ and, on input of plc = (n ,h ,zo) , m and u, he
computes Xd + 2" . h,-" mod n. Finally, he computes Xj-1 + Y."' 3

hPxj mod n (j = d . . .1). If Xu f zo mod n, the signature is accepted.

1 -

z , ! / l , i l , . . . r Y d , i d -

Remark 1 For convenient exposition of th,e scheme, we have chosen to let the
signer only use the leaves for signing. However, the scheme is easily adapted SO

180

as t o allow f o r a more extensive use of the authentication tree. In this modified
scheme, each freshly constructed node can immediately be used f o r making a
signature. Th.e proof of security is easily adapted t o fit with this modification.

4 Generating the List of Primes L

In order to minimize the storage needed for the system constants, i.e., the list
L, k , 1 and d, it is convenient to set L to any I i- 1 consecutive primes greater
than 2. In this case, only the first prime, the differences between conseciitive
primes and the exponents e and ci are stored. As an example, one could take L
to consist of the first 1 + 1 (odd) primes.

It must be stressed, however, that the correctness of the scheme is indepen-
dent of the particular ways of generating L. Also, the proof of security is not
affected by such choices. What is dependent on the choice of L , is the particdar
assumption we have to make about RSA-inversion. See Section 6.

5 Performance of the Scheme

A signer can make a t least I d signatures (see also Remark 1) such that thc: size
of each signature does not exceed (d+ 1)k bits (neglecting the dlogl bits needed
to indicate the path). A public key has size 31; bits.

Concerning the amount of computation needed, signing requires two full
RSA-exponentiations and one modular multiplication on-line. A path to the
current leaf can be authenticated by pre-processing, using 2d full-RSA exponen-
tiations and d modular multiplications. A receiver of a signature will have to
perform 2(d + 1) full RSA-exponentiations and d + 1 modii1a.r multiplications.

For the gradual depth-first construction of the authentication tree, the signer
stores a t most (d - l) (k +log I) bits a t any time. Secure storage in the strongest
sense (i.e., storage not accessible or alterable by “the outside world”) is only
needed for the secret key (k bits) a.nd the relevant nodes of the latest path in
the tree, which is a t most (d - 1)k bits. The public list L only has to be securely
stored in a weaker sense: the signer must have certainty that L is authentic.

6 Proof of Security

The proof of security works for any choice of the list L. However, the particular
assumption we make about thc difficulty of RSA-inversion depends on this very
choice in the following way. We require the following of the algorithm H .

Assumption 1 Let k be a security parameter and let 1 be of polynomial size in
k . Let L be generated by H (l k , 1‘) und let n be an, RSA-modulus as generated by
G (l k) and let x be a random member of ZE. T h e n there is n o probabilistic poly-
nomial t i m e algorithm that has non-neyligible probability of computing mod 12

with cy E L , on input L , n and x.

181

Under this assumption, we can prove that the signature scheme is not exis-
tentially forgeable under adaptively chosen message attacks.

Theorem 1 under Assumption 1, the signature scheme presented in Section 5'
is not existentially forgeable under adaptively chosen message attacks.

Proof: We are given integers 1 and d. a list L = { q , p o , , p l -1} consisting of
1 + 1 distinct primes and an RSA-modulus n. Let, 711 v; be defined as in
Section 3, for i = 0 1 - 1. We assume tha.t n is generated according to G(l')),
but we are not given the factorization. Also, we assume that q and the pi are
co-prime to 4(n) and that L is generated according to H(lk , 1'). The proof is
by contradiction. We show that existence of a successful attacker implies that
we can compute X - mod n, given a random N E L , and a random X E Z:.
Which contradicts Assumption 1.
Let a E L. First, we show that we can set up a 'kirnulatedl1 signer, who
as input h E Z: and h~ mod n for all p in L different from a , but is yet
indistinguishable from a signer who proceeds as in Section 3 after he is given
h, n and its factorization. To this end, we consider two cases separately and
focus mainly on the differences with Section 3. Finally, we run the attacker
against this simulated signer and obtain the desired contradiction.
Technically, the simulation runs as follows. In case cy = w, the root xo is
computed as zo t a~o" 'u l - l mod n,, for randomly chosen uo from Z:. The
value a0 is stored. All nodes 5 , excluding the leaves, arc computed as 2 t
uvO".vl-l mod n, where u is chosen a t random from Z:. The value a is stored.
If any z is the f - th child of his parent 2, = u ~ ~ " ' ' ' ~ - - ~ niod 71, the authentication
value is coInputed as ~ + ,:o"'vf-l"'"f bl"''(-I . (/ L *) ~ mod n. After the i-th
signature on a message m, the i-th leaf .7: is computed as 2 t uw . h,-" mod n
where a is chosen a t random from Z:. Next, the simulatcd signer reveals the
path to the i-th leaf, t>ogether with all authentication values, and the authen-
tication value z = a of the message m.
In case a # w, say, N = u j , the autheriticatiun tree has to be constructed
from the bottom up. We first show how this is done for d = 1. We select the
j - th child a t z a t random from Z:L. The parent z* is then computed as x* +

h-" mod n, where b is chosen a t random from ZL. The value b is stored. b U O ' . ' Y L - - I

The authentication value y of x is computed as y t b " O ' ~ ' " ~ - ~ w j + ~ " ' " ~ - 1 mod n.
Finally, the remaining I - 1 children of T* are selected at random from Z:.
Let z' be the f - th child (f # j) . Then it,s a.uthentication value y' is computed

as y/ + ~~O"'"'f-1~f+l"'~'I-l , (h*)"'-" mod n. When we have constructed 1 - 1
other such trees with d = 1, the same procedure can be used to combine them
into a tree with d = 2, by letting the roots play the role of the leaves as above.
By induction, we can build an I-ary tree with any depth d.
One choice has been left open in the present case. The leaves .T of the target
tree of depth d must be choscn as 2 + b" mod 71, for random b in Z:. With
the i-th signature request, the simulated signer can reveal the path to the a-
th leaf, together with all authentication values, and the authentication value
z + b . (hh)" mod n.

1

1

182

It is clear that in both cases each node in the tree has the uniform distribution
and is independent of anything else. All other values follow deterministically.
Thus this simulation cannot be distinguished from the real signer.
In the next step in our proof, we run the attacker against the simulated signer
and show that we can compute Xk mod n, for random CY E L , and a random
X E ZA. Here, we have essentially the same success-probability as the attacker.
Recall that n and L were generated by G and H respectively.
We proceed as follows. We choose a random a E L , a random X E HL and a.

random p from Z:. Put h +- X n p c r , / { a) ’ . p n a t ~ mod n. Next we feed L , n,
h , and hP mod n for all /3 in L different from a to the simulated signer and run
the simulation (note that h is also distributed as in “real life”) Next, we run
the attacker against this simulator. Assume that after I d calls to the simulated
signer, the attacker outputs a forgery

1.

~ ~ ~ ~ ~ O ~ ~ l ~ ~ l ~ ~ l ~ ~ ~ ~ , ~ d ~ ~ d ~ ~ d ~

i.e., a signature on a. message rTz that has not been signed by the simulator
in the course of the attack. Now, let T denote the full-tree of depth d and
branching 1 that the simulated signer has output in the course of the attack.
Define j t o be the largest integer such that 20, Zl i l l . . . Z j , i j is a path in T .
If J’ = d, then Z d is a leaf. So, there exists a signature

7n, z , x l , il, y1,. . . , x d i i d , Y d ,

output by the simulated signer, such that 5 d = xd. By the assumption on ~ , ,
we have GI # m. So, we have

(yd . 5 i 1) q G hfn-* mod n.

But since m - & # 0 mod w (recall that we have 0 5 m, lii < n, while w and
the wi are greater than n) , we can easily extract hh mod n from this a.s follows.
P u t m-& mod w = qj.el with gcd(q,e) = 1 and 0 5 j 5 e-1. Let the integers
f and i be such that e . f = 1 + i . q e - j . Then h t = (y,f . Ydf . hi)qc-’-’.
If, on the other hand, j < d , then Zj is a node in T at depth j and 5j+1 is not
a child of 2j in T . Let x j + l denote the i,+l-th child of 2.j in T . Then clearly,
by assumption on j , xj+l # 2 j+ , . Thus,

I

with xJ+l - 2,+1 # 0 mod w , , + ~ . From this value, hP‘1+1 mod n is extracted as
above in the case j = d. We conclude that the forgery allows us to compute
h? mod n for some a E L. By the construction of h, it follows, by the same
calculations as above, that we can efficiently derive Xi mod n from this value.

In the verification, the receiver of the signature checks if the signature consists of
d nodes. We can remove this L‘length-check”-coilditicm at the expense of a slightly
more technical proof than presented here.

183

From the perfectness of the simulation the probability that cy = p is &. Thus,
if the attacker has non-negligible siiccess- probability, then we can extract

0 random a- th roots also with non-negligible probability, for (Y E L.

Note that if a signer deviating from the signer’s algorithm, should deliber-
ately compute two messages that have the same signature, a receiver can easily
compute a multiple of the order of h, which may allow that receiver to forge or
even factor the signer’s modulus.

In the Section 4 we have suggested to make a particular choice that mini-
mizes the storage of L , namely of having L consist of 1 + 1 consecutive primes.
Furthermore, for reasons of simplicity, we have suggested that these are the first
1 + 1 primes of size k + 1 bits.

7 Optimizations

In this section, we describe a number of provably secure methods for decreasing
the required size of the exponents in the list 1; (See also Section 2).

Using Multiple Values of h

In this variation, the signer generates two values ii as described in Section 3, hi
and hz. Let p be somc k bits string that has to be authenticated. The signer splits
p into two blocks and 0 2 of size 5 bits each and computes the authentication
value for /3 as follows.

y t (a . hfl h t 2) mod n,

for some appropriate exponent p and node a. This cuts the required size of the
exponents by a factor of two. The expenses are an increase of the size of the
public key by k bits. As noted before, the value of h may be chosen mutually
at random between the signers. This also holds for this method, and as such it
would mean an increase of k bits of the system constant. This method preserves
the security properties of the scheme, and can be used in conjunction with thc
other methods presented.

Using a Hash-Function

Let 7-l be a collision-resistant hash-function that maps arbitrary sized input
strings to strings of size k, << k . All values to be authenticated in the signature
scheme, i.e., the nodes in the tree and the messages, are to be hashed down to
k , bits first. Also, the root of the authentication tree as part of the public key,
can be replaced by a hash of that root.

The effect is that the required size of the exponents is now k , bits instead of k
bits. The security statement now also requires that 7t is collision-resistant, This
method can be used in conjunction with any of the other methods presented in
this paper.

184

References

1. M. Bellarc, S. Micali: How to Sign Given any Trapdoor Function, Proceedings
of Crypto '88, Springer Vcrlag LNCS series, pp. 200-215.

2. 3 . Benaloh, M. de Mare: One- W a y Accumulators: A Decentralized Alternative to
Digital Signatures, Proceedings of Eurocrypt '93, Springer Verlag LNCS series,

3. 0. Goldreich: Two Remarks Concernzog the G M R Signature Scheme, Proceed-
ings of Crypto '86, Springer Verlag LNCS series, pp. 104-110.

4. J. Bos, D. Chaum: Provably Unforgeable Signatures, Proceedings of Crypto '92,
Springer Verlag LNCS series, pp. 1--14.

5. D. Chaum, T. P. Pedersen: Wallet Databases with Observers, Proceedings of
Crypto '92, Springer Verlag LNCS series, pp. 89-105.

6. R. Cramer, T. Pedersen: Improved PTivacy in Wallets with Observers, Proceed-
ings of Eurocrypt '93, Springer Verlag LNCS series, pp. 329-343.

7. R. Cramer, I. Damgird: Secure Signature Schemes based on Interactive Proto-
cols, Proceedings of Crypto '95, Springer Verlag LNCS series, pp. 297-310.

8. R. Cramer, I . Damgkd, T. Pedersen: Ef ic i en t and Provable Security Ampli-
fications, Proceedings of 4th Cambridge Security Protocols Workshop, April
1996.

9. W. Diffie, M. Hellman: New Directzons in Cryptography, IEEE Transactions on
Information Theory IT-22 (6): 644-654, 1976.

10. C. Dwork, M. Naor: An Ef i c i en t Existentially Unforgeable Signature Scheme
and its Applications, Proceedings of Crypto'94, Springer Verlag LNCS series,

11. T. ElGamal, A Public-Key Cryptosystem und a Szgnature Scheme based on
Discrete Logarithms, IEEE Transactions on Information Theory, IT-31 (4): 469-
472, 1985.

12. A . Fiat, .4. Shamir: How to Prove Yourself: Practicul Solutions to Identification
and Signature Problems, Proceedings of Crypto '86, pp. 186-194

13. S. Goldwasser, S. Micali and R. Rivest: A Digital Signature Scheme Secure
Against Chosen Message Attacks, SIAM Journal on Computing, 17(2): 281 ~~

308, 1988.
14. L. Guillou, J.J. Quisquater: A Practical Zero-Knowledge Protocol fitted to Se-

curity Microprocessor Minimizang both Transmission and Memory, Proceedings
of Eurocrypt '88, Springer Verlag LNCS series, pp. 123-128.

15. G. H. Hardy, E. M. Wright: A n Introduction to the Theory of Numbers, fifth
cdition, 1979, Oxford Science Publications.

16. Informatiori Technology - Security Technaques - Digital Signature Scheme Gav-
ing Message Recovery, ISO/IEC Standard 9796, first edition, International
Standards Organization, Geneva.

17. R. C. Merkle: A Certified Digital Signature, Proceedings of Crypto '89, Springer
Verlag LNCS series, pp. 234-246.

18. M. Naor, M. Yung: Universal One- W a y Hash Functions and Their Crypto-
graphic Applications, Proceedings of 21st STOC, 1989, pp. 33-43.

19. National Institute of Technology and Standards: Specifications for the Digital
Signature Standard (DSS), Federal Information Processing Standards Publica-
tion, US. Department of Commerce, 1993.

pp. 274-285.

pp. 218-238.

185

20. T. Okamoto: Provably Secure and Practical Identification Schemes and Corre-
sponding Signature Schemes, Proceedings of Crypto '92, Springer Verlag LNCS
series, pp. 31-53.

21. B. Pfitzmann: Fail-Stop Signatures Without Trees, Hildeshcinler Informatik-
Berichte 16/94, Universitat Hildesheim, Juni 1994.

22. R. Rivest, A . Shamir, L. Adleman: A Method for Obtaining Digital Signatures
and Public Key Cryptmystenis, Cornmunica.tions of ACM, 21 (1978), pp. 120
126.

23. J . Rompel: One- W a y Functions are Necessary and Suficient for Secure Sagna.-
tures, Proceedings of 22nd STOC, 1990, pp. 387-394.

24. C . Schnorr: Eficient Signature Generution b y Smart Curds, Journal of C r y p
tology, 4 (3): 161-174, 1991.

	1 Introduction
	2 Basic Ideas
	3 Description of the Scheme
	4 Generating the List of Primes L
	5 Performance of the Scheme
	6 Proof of Security
	7 Optimizations
	References

