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Abstract. In this paper, we study unconditionally secure codes that 
provide authentication without secrecy. Our point of view is the uni- 
vcrsal hashing approach pioneered by Wegman and Carter in 1981. We 
first compare several recent universal-hashing based constructions for m- 
thenticatmion codes. Then we gencralize the theory of universal hashing in 
order t,o accommodate the situation where we would like to authenticate 
a sequence of messages with the Sam: key. Unlike previous methods for 
doing this, we do not rcquire that each message in the sequence have a 
“countcr” attached to it. 
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1 Introduction 

In this paper. we study tho application of universal hashing to the  construction 
of unconditionally secure authenticat,iori codes without secrecy. This idea is due  
tlo Wegmari arid Carter [16], who gave a construction in 1981 which is extremely 
useful when thc  number of authenticat,ors is small compared to the  number of 
possible source states (plaintext messages). In 1991, Stinson [13] gave formal def- 
initions of relevant classes of hash funct,ions, and obtained some improvements 
to the  Wegman-Carter construction. Since 1991, several authors have given im- 
proved constructions for authentication-withoubsecrecy tha t  use universal hash- 
ing cithcr implicitly or explicitly. Many of the results a re  in fact very similar, 
but, d o  riot appear so bccaiise they are presented using different nota.tions arid 
terminology. We give a brief comparison of the  known constxuctions arid their 
efficiency, as measured by t,he amount of sccrct, key that has to be shared in order 
t o  authenticate a givrri arriount, of information with a given level of security. 

The  other main contribiitioii of this paper is to generalize the  theory of 
universal hashing in order- to accommodate the  situation where we would like t o  
authenticate a sequence of messages with the  same key. Unlike previous methods 
for doing this, we d o  r io t  require tha t  each message in the  sequence have a 
“counter” attached to it.  We provide riecessary definit,ioris and theory, and then 
give a construction which acheives our goals. 

ion 2 is a brief review 
of’ the riecessasy backgrouritl of authentication (:odes. Section 3 gives relevarit, clef- 
initions frorri universal hashing. We also ciomparc known authentication codes in 

The  rerriairider of this paper is organized as follows. S 

N. Koblitz (Ed.): Advances in Cryptology - CRYPT0 ’96, LNCS 1109, pp. 16-30, 1996. 
0 Springer-Verlag Berlin Heidelberg 1996 



1 7  

this section. Section 4 reviews counter-bawd multiple authentication. In Section 
5 multiple authentication without counters is introduced. Section 6 provides 
composition constructions for the relevant hash families. Finally in Section 7 
we use our co~istructions to obtain some specific families of codes for multiple 
authentication. 

2 Authentication Codes 

Authentication (:odes were invented in 1974 by Gilbert, MacWilliams and Sloarie 
[5], and the general theory of unconditional authentication was developed by 
Simmons (see, c.g., [ll]) In this section we will give a brief review of standard 
terminology and basic results on authentication-without-secrecy. 

In the usual model for authentication, there are three participants: a trans- 
mi t ter ,  a receiver, and an opponent. Thc transmitter wants to communicate some 
information to  t,lie receiver using a public communications channel. The source 
state (i.e., plaintext) is concatenated with an authenticator to obtain a m.essaye 
which is sent through thc channel. An uuthentication rule (or key) e defines the 
authenticator e ( s )  to be appended to the source state s. We assume the traris- 
mitter has a key soi1rr.e from which h r  obt,ains a key. Prior to  any message being 
sent, this key is c:ommunicat,ed t,o the receiver by means of a secure channel. 

Wc will usc thc following notation. Let S be a set of k source states; let A be 
a set of ri authenticators; define M = S x A; and 1ct & be a set of authentication 
rules. Each authentication rille e. : S -+ A. 

Assume that the same key is used to authenticate up to w consecutive source 
states, where 711 is sonip fixed positive integer. Suppose an opponent observes 
i 5 w distinct messages which arc sent using t,lie same key. The opponent, has 
the ability to  iritroduce new messages into the channel and/or to  modify existing 
messages. Assume the opponent places a message m’ = (s‘, a‘) into the channel 
by either of these methods, where rn’ is distinct from the i messages already sent. 
That is, if e is the key being used, then the opponent is hoping that a‘ = e(s’). 
In [9], Massey calls this a spoofing attack of order 1;. 

The special cases ,i = 0 and i = 1 have received the most, attention. The case 
1: = 0 is called impersonation, and the case i = 1 is called substitution. 

The receiver and transmitter will choose a probability distribution for E ,  
called an authentication strategy. It is assumed that the opponent, kriows the 
authent>ication strategy being used. Then, for each i 0, it is possiblc to C ~ I I I -  

pute Pdi, which is the probability that the opponent can deceive the transmit- 
ter/receiver wit,h a spoofing attack of order i .  The following lower bound on Pdi 
is given in [9]. 

Theorem 1. Suppose we have a n  authentacatzon code (wathout serrecy) wzth n 
auiheniicnfors T h e n  Pd, 2 1/n f o r  a11 z 2 0 
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3 Universal Hashing 

In this paper, we are interested in authentication codes obtained from universal 
hash families. We recall soIrie definitions from [12] of various types of relevant 
hash families. 

Definition: 

- An ( N ;  711, n,) hash f a m i l y  is a set ;C of iV functions snch that f : A + B for 
each f E 3, where IAl = m, = r i .  There will be no loss in generality in 
assuming m 2 n. 

- An ( N ;  m, 71,)-hash family is t-universal provided t,hat for any two distinct 
elements x1, x2 E '4, there exist at, most F N  functions f E F such that 
f(z1) = f(z2). We will use the notation t-U as an abbreviation for c- 
?~niversol. 

- An ( N ;  m, 71) hash family is c-almo,st-stro~zgly-?lnivel-sal provided that, the 
following two conditions are satisfied: 
1. for any x E A and ariy IJ E B ,  there exist, exactly N / n  functions f E iT 

such that f ( ~ )  = y. 
2. for any t,u7o distinct elements z1 , z2 E A and for ariy two (not necessarily 

distinct) elements y1, y2 E I?, there exist at  most t N / n  functions f E F 
such that f (z,) = y2, i = 1 , 2 .  

We will use the not,ation 6-ASU a.s an abbreviation for e-almost-strongly- 
universal. 

~ An ( N ;  172, 72)-haSh faniily F of functions from A to  B is ,strongly-universd 
provided that, for any two distinct clenierits z1, x2 E A, and for any two (not 
necessarily distinct) elements yl, I J ~  E B ,  we have 

We will use the notation S U  as an abbreviation for strongly-universal 

It is not difficult t,o see that a hash family is SU if and only it is k-ASU. 
E-ASU hash families can be used in an obvious way for authentication, where 
each function in the family c,orresponds to a key. If we have such a class F 
of hash functions from A to B ,  then wc can t,hink of the elements of .4 as 
source states and the elerrients of B as authenticators. Each hash function gives 
rise to an authentication rule, and the authent,icatiori rules are used with equal 
probability. The proof of the following theorem is straightforward. 

Theorem 2. [I%] If there exists an t-ASCJ(N; m, n,) hash f a m i l y ,  F, then there 
exists an auth,entication code without secrecy for n z  source stutes, having n au- 
thenticators and N au.tlientication, rules, such that k-'& = l / n  and Pdl 5 E .  

We see from Theoretn 1 t,hat SU families achieve the minimum possible 
deception probability Pdl .  The observation of Wegman and Carter [16] is that  it, 
is possible to coristruct t-ASU hash families, having E a bit larger than l l n ,  that 



19 

are much smaller than SU hash families. In terms of the resulting authentication 
codes, this means that if we allow a slightly larger deception probability Pdl , 
then we can reduce the key lerigth very significantly. 

Many papers have used this approach, either implicitly or explicitly, for exam- 
ple Wegman and Carter [16], Stinson 1121, den Boer [4] , Taylor [15], Bierbraiier, 
Johansson, Kabatianskii and Srrieets [3], Krawczyk [7], Stinson [13], Krawczyk 
[S], Rogaway [lo] and Bierbra.uPr [l]. 

In fact, the construction of ASU hash fainilies t,ypically is accomplished by 
one of two means: 

- composition of a U family arid a (smaller) ASlJ family (this is the approach 

- composition of a A U  family [14] (also known as an A X U  family [lo]) with 
used by Wegnian and Carter [16]) 

a onc-time pad (t,his approach was first used by Krawczyk [7]) .  

Further disc:iissiori arid examples of thesc two techniques can be found in the 
expository paper by Stinson [ 141. 

3.1 Comparison of Authentication Codes 

In this section, we briefly compare authcnticator length arid key length of for 
several constructions of authentication codes. To be specific, we consider the 
problem of authcnticating an a-bit plaintext with a b-bit authentication tag. The 
number of key bits is denoted by l .  (In other words, we have an c - A S U ( ~ ~ ;  2", 2b) 
hash family.) In every code mcntioncd, P d o  = 1 / 2 b ,  but various values of Pdl  
are obt,ained, depending on t,he construction used. 

1. Wegman-Carter ([16, $31, 1981). 

2 .  Stinson (112, Theorem 6.21, CRYPTO '91). 

3. Taylor ([15, $21, EUROCRYPT '94). 

4. den BoeI ([4, 521, 1993). 

5 .  Bierbrauer, Johanson, Kabat,iariskii, arid Snieets4 ([3, p. 3361, CRYPT0 '93). 

6. Stinson (113, Theorem 6.31, 1994). 

7. Krawczyk ([7, Theorem 71 Theorern 7, CRYPT0 '94). 

8. Krawczyk (17, Theorem 81 Theorem 8, CRYPT0 '94). 

Here s = b + [log(log a ) ] ,  ! = 4s loy a arid Pdl = 1/2'-'. 

Here a = b2', P = ( i  + 2)b  arid Pdl = (,i 1 1)/2b. 

This is identical to  the previous c:onst,ructiori of Stinson. 

Here a = bi, B = 2b and Pdl = i /2 ' .  

Here a = ( b  + s)(2' + l), P = 3b + 2s and Pdl = 1/2"'. 

Here s = b+ [Zog(log a)1,  T = [lo,q(o/s)] ,  fl = (T  + 1)s + b arid Pdl = 1 /2"-'. 

Here I = 2b - log b and Pdl = (a + b ) / a b -  '. 
Here t! zz 3h - log  h a,rd Pdl = ~ / 2 ~ - ' ~  

In [6] (CRYPTO '96) ,  Helleseth and Joliansson give some constructions that achieve 
iderilical and/or slight.ly I)ct,t.cr rcsults. Their approach also has the advantage that 
the parameters are a bit inore flexible than this construction. 
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9. Rogaway ([lo,  Theorem 111, CRYY‘I’O ’95). 
Here a = wA, b = wB (where A _< B“/6),  1 M 3AlogB + wB and 
Pdl E 3348/(B6 - 6B3A) .  (Note: Since [lo, Theorem 111 produces a U 
family (actually a AU family), a, onetime pad is also needed to  obtain the 
authentication code. This accounts for the “extra” b = wB key bits.) 

Remarks: 

- Constructions 1--6 all use the Wegman-Carter approach. Constructions 7-9 
use the idea of composing a ArT family with a one-t,ime pad. 

- Constructions 1, 5 and 6 have Pdl = 1/2h-1, so the security level depends 
only on the length of the authenticxtion tag. In constructions 2, 3, 4, 7, 8 
and 9, the security level depends 011 the length of the authentication tag and 
on the length of the plaintext,. In these situations, one would start with a 
given plaintext length a and a given securit,y level, say 6 ,  and then determine 
the miriiIriuIri b such that P d l  5 t. 

- Constructmioris 7 9 were designed with the goal of efficient, software imple- 
mentation. Construct,io~is 7 and 8 achieve a short key length, but constmc- 
tion 9 is not competitive with the other coristI-uctions in terms of deception 
probabilities and key length. 

- Bierbrauer [ 11 gives some construct,ions using geometric codes that achieve 
extremely short key lengths. However, there are some paremetric restrictions 
on when they can be applied, and they would probably he more difficult to  
implement than the other construct,ioris mentioned above. 

In Table 1, we tabulate b a.nd P ,  for a = 2’, 216, 232, P4 and 212* and 6 = 2-20, 
obtained using the different, constructions. In Table 2, wc list, b and e for the same 
values of n when F = 2-40. (We have computed b and e for various combinations 
of o and t, arid the these tables are typical of the results obtained.) 

From Tables 1 and 2, we see that the const,riict,ion from [3] best combines a 
small key lcngth with a short, a,uthent,icat,or. 

4 Counter-based Multiple Authentication 

We will be generalizing t h e  t,heor.y of uriitrersal hashing so that it can be applied 
to authentication of a sequence of ‘111 messages using one key. First, however, we 
review the approach used by Wegman and Carter in [16], which is a method 
to authentica.tc multiple messages using any c- A S I J  class of hash functions. To 
apply t,liis technique, the it,h message in the sequence must, be labeled with a 
counter having the value i, 1 5 1; 5 w. 

Let F be an c - A S U ( N ; m , n )  hash family, where each function in F has 
domain A arid range R,  and suppos~  we want, to authenticate a sequence of at  
most w source states. We will also assume that B is an abelian group. A key e 
is specified by a function f E F, t,ogether with a (w - 1)-tuplc ( b l ,  . . . , b,-l) E 

. (This (w - l)-t,uple will act like a sequence of w - 1 onetime pads.) B 711 - 1 



21 

2 

4 

5 

I I 

1 Ib l  21 21 21 21  21  

P 768 1600 3328 6912 14336 
b 23 24 25 26 27 
f 138 336 750 1612 3402 
b 24 32 47 78 141 

156 282 P 48 64 94 
h 21 21 21 21 21 

B 71 85 117 179 305 

- 

I I !  I 

b 30 
P 56 103 166 293 
b 29 37 5 3  85 149 
P 83 106 154 249 440 
b 1248 1312 29792 48393888 1.28 x 

e 1375 34229 4 x 109 3.5 x 

9 

Table 1. Pararneters for aiit1imt~ic:ation codes W ~ P I I  E = 2T2' 

Let 5 ,  dmotc the zth source state in tho  sequence. Thc authenticator for 
( 7 ,  s ? )  is defined to bc 

Note that the authentication fiinctiori depends in an essential way upon the 
position of each source state within the sequence of 'ti1 source states. We also 
remark that this is csseritially thc method suggested by Wegnian and Carter in 
[16], except that we haw omitted a onetime pad for the first source state since 
it is not necessary. (This approach has also been used by othcr researchers, e.g., 

The following theorcin can be provcd in a IIiarinw similar to [16]. The proof 
[101.) 

is omitted from this Ext,ended Abstract. 

Theorem3. ,!?uppose there ezists an c-ASC!(iY; in,, 7 1 )  hush f r ~ m i l y ,  and let w 3 
1. T h e n  there ex is ts  a n  uuthenticatiori code without secrecy for in source states, 
which cun be used to  authenticate a s e q i m u x  of u p  to  w source states, having 
n authenticators and Nn"-' auth,enticntion rules, .such that Pdo = 1/n and 

Observe that this count,er-l)ased scheme is much more efficient than simply 

Pdi 5 t, 1 5 i 5 W .  
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Construction 264  212a a 2' 216 232 
2-40 2-40 2-40 2-40 2-40 

1 

2 

b 41 41 41 41 41 
I 1408 2880 5888 12032 24576 
b 42 44 45 46 47 
! 210 572 1305 2806 5875 

I 4 bl 43 51 66 98 161 
86 102 132 196 322 

I t C l  142 166 213 309 500 I 

5 

6 

b 41 41 41 41 41 
C 129 145 175 239 365 
6 41 41 41 41 41 
e 217 581 1329 2861 5993 

Table 2. Parameters for authentication codes when E = 2 *" 

7 

8 

using w independent keys, since we need only add logn new key bits for each 
extra message to be a.uthenticated 

Although this c:ount,er-based scheme provides it nice method for multiple au- 
thent,icat,iori, it, has some drawbacks. For exarriple, if a message is lost in trans- 
mission, then subsequent, (valid) messages will not authenticate properly. (This 
would also the case if w independent keys were used.) Hence, we belicve 
there is some interest in achicving multiple authentication withoiit counters. We 
pursue this t,heme in the remainder of the paper. 

b 50 58 74 106 170 
0 95 111 142 206 333 
b 49 57 73 105 169 

5 Multiple Authentication without Counters 

b 

! 

In this section, we give some IWW definitions of' hash families that we will use for 
multiplc authentication. 

12576 12576 29856 48393888 1.28 x 

12783 51075 4 x log 3.5  x 1.34 x 10" 

Definition: 

- An ( N ;  m ,  n)-hash family F of functions from A to  13 is c-unzversnl-u, (or 
f - U ( N ;  r r ~ ,  n, w ) )  provided that, for all distinct elements x~,xz,. . . , zw E A, 
we haw 
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- An (N;m,n)-hash family F of funct,ioris from A to  B is c-cilmost-strongly- 
universal-w (or eA4SU(N; rri, '71, 'w ) )  provided that, for all distinct elements 
XI, ~ 2 , .  . . ,z, E A, and for all (not necessarily distinct) y l ,y2 ,  
we have 

l{f E F : f ( 2 i )  = yi ,  15 i 5 .111}1 5 f x I { f  E F :  f(.i) = y7,  1 < - -  i < w - l}l. 

(see [17]) An ( N ;  m, .n)-hash family F of functions from A to  B is strongly- 
universal-11, (or SU(N;  rn, 'n, 'w))  provided that,, for all distinct I C ~ , X ~  . . . , z, E 
A, and for all (not ncccssarily distinct,) elements y1, yz, . . . , yw E B, we have 

N 
71"' 

[{f t F : f ( Z L )  = y,. 1 5 a I w}1 = -. 

We observe that, the definition of c - U ( N ;  T I L , ~ ,  2) given above is the same as 
thc definition of d J ( N ;  m, r i )  that we gave in Section 3. Similarly, the definition 
of c-SU(N; 772, n, 2) givcn above is the same as the definition of €-S I / (N;  7n1 n) 
from Section 3.  As well, a hash family that is both c-ASU(N; m, ri, 2 )  and (l/n)- 
ASU(N;  7 n ,  nl  1) (as defined above) is €-ASU(N;  rri, 71) (as defined in Section 3) .  

The following lemma. describes the relation betwccn ASU and SU families. 

Lemma4. Let w be a positive integer. A n  ( N ;  m, n)-hash family is S U ( N ;  m, n, w) 
i f  and only zf it is A - i Z S U ( N ; m , n , j )  for 1 5 j 5 iu .  

Proof. Suppose F is an S U ( N ; ~ n , n , w ) .  Pick anv j ,  where 1 5 j 5 w. Let 
X I ,  2 2 , .  . . , x j  be distinct clemcnts of A and let y l ,  ~ 2 , .  . . , y j  be not necessarily 
distinct elements of B .  Then wc havc 

Hence F is a A-ASU(N;  711, 71, j )  hash family, for j = 1,2, . . . , U I .  

Conversely, supposc F is an ~ - A S U ( N ; m n , , n , j )  for j = 1 , 2 , .  . . , w .  Let 
.XI, 5 2 ,  . . . x w  be distinct elements of A and let y l ,  y2, . . . , yw be not, necessarily 
distinct elements of B. Then we have 

1 

1 

l { f  : f(Xi) = y,, 1 5 2 5 ?.}I 5 - l { f  : f ( : K L )  = y L l  15 5 w - 1}1 
71 

5 ;?l{f : f ( X l )  = yz, 1 5 i 5 'UI - a } [  

Since this is t r w  for all y,, y2, . . . , E B, we haw 
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and, since each hash function is used at least omc, we have 

Hence 

We also have the following lerrirria which shows that 6-U hash families are 
also d-U-w farnilics for some t’ > t. 

Lemrna5. S u p p o s ~  F as an e - U ( N ; i n , n )  hash  famaly.  T h e n  F zs an f ( : ) -  
U ( N ; m , n , w )  hash  fo,miZy for a n y  zntegrr ’w surh that f(y) 5 1. 

Proof. Sirice 7 is aa d ( N ;  m, n) family, for any two distinct elements of A,  say 

i ( f  E .F:  f is not, 1-1 on xl,x2}1 5 FN. 

% 1 , ~ 2 ,  wc ha,ve 

Thereforc for any ‘ur distinct clement, of A,  say :rl , z2,  . . . , xu, we have 

f-AL%J(N, 7n. 72 ,  w) hash farnilies can bc u s ~ d  for authentication of a sequence 
of LU - 1 distinct soiirrt’ states, without the need for counters. The following result, 
is imniediate. 

Theorem 6. If there exists an, fIl,-.4SU(N; ni., n, 7 1 ) )  hash  fami l y ,  t h e n  there ex- 
ists a n  authent icat ion code with,out secrecy for in source states,  having n authen-  
t icators and N authent icat ion rules, such that  Pd,,,-1 5 E,. 
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6 Composition Constructions 

In this section, we present the cornposition constructions that we will use to 
achieve multiple authentication without counters. First,, we present a method 
which generalizes a construction from Stinson [13] of combining hash families. 

Theorem7. Suppose Fl i s  an, €1 ( j ) -U(Arl ;  7 I l [ , n l , j )  hash  fami l y  from A ,  t o  
B1, and  suppose F2 is a n  62(j)-ASU(N2;n.1.722,j) hash fo.mily from B1 t o  Bx, 
for a11 j ,  1 5 j 5 %u. Then there exists a n  €(j)-ASU(N;rri l ,rbz,j)  hash  f a m i l y  F 
of hash, f unc t ions  from Al t o  Bx> where 

€(1) 5 € 2 ( 1 ) ,  und  
N = NIN2. 

Proof. Let 1 5 j 5 w. We need an upper bound 0 1 1  

l{f . f ( . I ? )  = ?/t. I < 1 5 311 

and a lower bound on 

!{f : f ( ~ )  = y l .  1 i i 5 j -- I}! 

We procccd as follows: 

Upper bound 
Let ~ 1 ~ x 2 , .  . . , x J  t A ,  (all distinct,) a.nd y l l  yx, . . , ,yJ E B2. Let p denote 
the probabilit,y that for soIric3 i ,  k ,  (1 5 i < k 5 j ) ,  xi, xk collide under a 
hash function from Fl. If fl E Fl arid f l  is one-t,o-orie ori x1 , z2, . . . , x,j,  the 
riurriber of hash functions f E .F such that !(xi) = y i  for i = 1 , 2 , .  . . , j is 

(1  - p)NlN2t2(1)€2(2). . . ~ % ( j ) .  

If fl E F1 and f l  is not one-to-one on X I ,  x2,. . . , x 3 ,  then the number of 
hash functions f E F such that f(z,) = for z = 1 , 2 , .  . . , j is at  most 

pN1 AT.?<:: (1). 

Therefore, thc number of hash fiiric.t,ioris f E F siich t,hal S(z,) = yi  for 
i = 1 , 2 , .  . . , j is at most 

NlN2[1)F2(1) + (1 ~ p)Q(  I ) f 2 ( 2 ) .  . . f Z ( j ) ] .  

Hcnce, we h a w  
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Lower bound 
Let, z1,x2,. . . ,.E,!-I E A 1  (all dist,inc:t) and lct y l r y 2 , .  . . ,y j -1 E B2. Let p' 
denote the probability that for some i , k ,  (1  5 i < k 5 j - l), zi,xk: collide 
under a hash function from 7 1 .  Since we only need a lower bound, we will 
look tlic case where f l  E F1 is one-to-one on x1,x2,. . . , "cj-1. Hence we have 

l { f  : f(.i) = 7J,? 1 5 i 5 j - 1}1 2 NIIV2(1 -JI ' )E2(1 )€2(2 ) .  . . E Z ( j  - 1) .  

We ~iow combine the upper and lower bounds. We obtain the following: 

since p 5 61 ( j )  and p' 61 (j  - 1) .  0 

Corollary 8. Suppose .F1 i s  an t l  ( j )  -Cr(NI ; m l ,  7L1, j )  hash family from A1 t o  
BI , and suppose F2 i s  an, SU( N2 , n1, n2, 1 1 , )  hash family from B1 t o  B2, 1 5 j 5 
w. Then there exists (in t ( ~ ) - ~ 4 S ~ r ( N ; r r i 1 , r i ~ , ~ )  hash family F from A, to  B2, 

where N = N1 Nz und 

f o r j  - 1,2, . . . ,  (1) 

Proof. Apply Leninia 4 and Theoreni 7 .  Notr that, ~ ( 1 )  = & by this formula. 
II 

7 Multiple Authentication without Counters 

We now use the tools of the previous section to obtain our multiple authentica- 
tion codes. We could generalize many of the constructions that were mentioned 
in Section 3.1. The method we have chosen t,o use is inspired by the construction 
from [3] (i.e., construction 5 in Section 3.1).  We need two ingredients to  accom- 
plish this. First, Bierbrauer gave a construct,ion for orthogonal arrays that gives 
11s SU-w hash families. 

Lemma9. [2] Let q be a p i 7 n e  power and let S ,  T be integers such, that S 2 T .  
The71 there exists an  SU(q("'-l)s' 'r. , q s , q T ,  w) hash family, where 1 1 )  5 q". 

The second ingredient, is the U hash fa,milies that are obtained from Reed- 
Solomon codes [3]. 

Lemma 10. I?] Let Q be (1 prime po'uier~, a n d  let t; 5 Q .  Then there is a v- 
U ( Q ;  Qk, Q )  hash fami l y .  
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Applying Lemma 5 ,  the following is obt,ained 

Lemmall. Let  Q br a p r i m e  power, let k 5 Q, and suppose (i) 
there is a (;) F - U ( Q ;  Qk, Q , j )  hash family. 

5 1. T h e n  

Now, let a ,  b and U J  be given, as usual. Let s be an integer such that 

0, 5 ( ( w  - l ) b  + s ) ( a s  + 1) .  

Then take 

and 

Q ~ 2(111--1)6+s 

k = 2 ' + 1  

in Lerrima 11, and rcstrict the resulting hash functions to a domain of size 2a.  
In this way, we obtain a 

hash family, fox all j such tha t  1 5 J 5 111 

Next,, ube Coiollaiy 8 to cornpose this family with an 

s~,rp(~'-1)((~-1)6t s ) + h  2(I!'-l)bttS 26 
5 > 1) 

hash family obt#airied from Lemma 9 with S = (rw - l ) b  + s and T = b. The result, 
is an 

(:; )-ASU (2( W' ~~ w -i 1 1 b f  (11 s . , 2 "  I 2 , j ) 
hash family (I 5 j 5 , w ) ,  whcre 

j ( j  ~ ~ ) ~ ~ - ~ i ( ~ i ~ - ~ I ) ( ~ b ( ~ - l )  ~ 1 ) + 2  
[2 ~ ( j  - 1 ) ( j  - '))2-b(ILs-I) 

' lah f ( B )  2 ' 

1 5 j 5 21). 

following result,. 
Phrasing our const,ruc.t,ion in terms of  authentication codes, we obtain the 

Theorem12. Lel u,  b ,  U I L ~  'w be integer-s, and let s be a n  integer sirch that  
((w - 1)b  + s)(l + 2') 2 (2. Then there  exist.^ or1 authentication code for an a-hit 
source, heuiny u b-bit uculhenticator and r e p i r i n g  P = (w2 - 'w + 1)b  + 111s bits of 
key, in which 

j ( j  - 1 ) 2 - b ( U J - ~ l )  (2"j " - 1) + 2 
[a  - ( j  - l)(.j ~ 2)2-"("-')]2" ' Pd, 1 I 

f o r j  = 1 , 2 ,  . . . ,  U J  
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h 
e 

We rernitrk that iri the casc TU = 2, Theorem 12 is identical to construction 5 
in Section 3.1, due to [ 3 ] .  

In Theorem 1 2  the security level depends on the length of the authentication 
tag, on the lerigtli of the plaint,cxt and niiIrlber of' mcssages that are being sent. 
Hence, one would start with it given plaintext length a and a given security 
level, say E ,  and t,hen determine the minimum b such that <_ t. Once b is 
determincd, wc can proceed to compute s, and then apply Theorem 12. 

In Tables 3, 4 and 5, wc tabillate the length of authentication tag and the 
length of the key for given a ,  UI: and 6 values of the authentication codes that 
are constructed in this wa,y from Theorem 12. 

22 22 22 22 22 I 42 42 42 42 42 
163 187 232 328 5171300 324 372 46 657 

h 
P 

Table 3. Ailthentication codes for w = 3 

23 23 23 23 23 1 43 43 43 43 43 
307 339 403 531 783 I563 595 659 787 1043 - 

Table 4. Authentication codes for ti' = 4 

lbl 26 26 26 26 26 1 46 46 46 46 46 ] 
\PI2376 2456 2606 2926 - 3 5 4 4 1 8 6  -- 4266 44426 4746 53761 

Table 5. Authciitication codes for 2u = 10 



8 Summary 

We have generalized the theory of universal hashing to construct authentication 
codes that allow the  a.utheritication of a scqiienc:e of (distinct) source states with- 
out the use of counters. It can be  seen tha t  the  construction we have given (The- 
orem 12) requires considerably more key bits than  the  counter-bascd method 
describcd in Scction 4. More efficient cunstruc:t,ions (without count,ers) wollld 
t,herefore be of considcrable int.erest,. 
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