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Abstract 

Iri  [l] T. Matsumot,o and €1. Iniai have  present,rd a very efficirrrt, “candidate” algorithm, 
called C’, for asymmetric cryptography. This algorithm was broken in [ 2 ] .  Then in [3] ,  
I have suggested two algorit,hms, HFE and IF‘, t.o repair C’. However the scc:ret. key 
computatio~is of WFF and IP are not as efficient as i r i  (,lie original algorithm C*. IS it. 
possible t o  repair Cv with t,ha same kind of vcry easy secret. key computations? This 
question is the subject, of this paper. LJnfort,iin;itt.ly, we will see t8hat for all the  ‘‘easy’’ 
transformations of C* t,hc ariswcr is no. However one ol the new ideas of this paper 
will enable us to suggest a candidate atgori~hrn for arjsyrnet,ric signatures of length orily 
ti4 bits. An extended vrrsiori of this paper can be obt.ainc:d from the author. 

1 Introduction 
Tn [l] ‘1. Ma.tsurriot,o arid H.  1ma.i 11nve presenkd a w r y  efficient, algorithm c“ 
for asymmetric cryptography (authent,iuations, signatures or encryptions) with 
public multivaria.t,e quadratic polynomials. This algorithm was based on the idea. 
of ‘chiding” a mnnnmia l  equat,inri b = f ( n )  = a’+’’ by two affine permutations s 
and t .  Iri [ a ] ,  I have shown t#liat this original algoritlini was insecure. Then in [:<I, 
I have suggested t,wo new :tlgorit,l-iiiisIIFE arid J P  in order t,o repair C’. HFE use 
more complex hidden fiincdions f (funct,ions f wit,ti more than one moIioiiiia,l arid 
somctiines also more t h m  one variable [ I )  h i t )  t,he computation of f-’ with thc 
secret key is (of course stmill feasable hut is) more dillicult, than in C’. IP is a very 
different algorit,hiii. I t  looks like thc famous Graph lsomorphisrris algorithm. 

Is is possible t,o repair C’ and keeping the same k i d  of casy secrd key 
comput,at,ions? For esample will1 niult,ivariat,c polynomials of total degree 3 or 
4 in  llie public form (instead of two) if necessary? This cluestion is t h c  subject, 
of this paper. 

N. Koblitz (Ed.): Advances in Cryptology - CRYPT0 ’96, LNCS 1109, pp. 45-60, 1996. 
0 Springer-Verlag Berlin Heidelberg 1996 
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First we will describe t,wo new a.syriiiiiet,ric “candidate” algorithms: Dragon 
and MIIP-3. These algorithms are very efficient. Then we will see that some 
easier algorit,hms are insecure. Then we will extend our attacks to see that 
Dragon with one hidderi monomial and M l I P - 3  are also insecure. 

So it seems that  there is not an easy way t,o “hide” a monomial in order 
to avoid polynomial attacks . . . Nevertheless a t  the end of this paper, we will 
show t h a t  t,he idea of “Dragon” Algorit,hms (however with more than one mono- 
mial) gives us a candidate algorit#hni for ext.rcmely short asymmetric signatures. 
Moreover another family of algorit,hms (not, described here) is still under inves- 
tigation. 

PART 1 : Description of the 1iicldr.n monomial schemes 

2 “Dragon”: a new family of algorithms for asym- 
metric cryptography 

The public polynomials of the “Dragon” family 

The first farnily of algorit81ims that, we will describe is called “Dragon”. Before 
going into details, let, us start. by showing tshe differences between the public 
polynomials of a sclieriie like Matsiimoto-1ma.i C:” scheme of [I] and thc Dragon 
schemes. 

In h4at~siimot,o-Iniai C” scheme (or in  my HFE scheme of‘ [3]), the public 
equations are n inultivariat,e polynomials P I , .  . . , P, over a firiite field K ,  
( n  integer), and these polynomials give y1, . . . , y71 as fuunctions of 21, . . . , x,, 
like this: 

fJ1 = PI(X1, . . . ,  x n )  
Y’J = Pz(R:,, . . . )xn) I !  ?/n T c, ( X I ,  ’ . . ,2;7L) 

I ~ A ( J ~ l , ’ ~ ’ , ~ n , . Y l , ’ ~ ~  ) ? - / ? T I )  = 0 

where in encrypt,iori ( T I ,  , x,,) is t,he cleart,ext, and (yl l . .  . , yn) the ci- 
phertext (in signature ( X I , .  . . , x , ~ )  is Ihe sigmture and (yl,. . . ,yn) the 
message t30 sign or a public t.rarisformat,ion of the message to sign). More- 
over in  C* Algorithm the polynomials PI , .  , . , P, have total degree 2.  

In the Dragon algorit,lims t . l d  we will describe t,he public equations arc X 
multivariate polynomials ovcr a field I< (or a. ring) like t,his: 

P1(m,..- > x 7 , , ! / 1 > . . .  ,!h) = 0 
P 2 ( X I , .  . . , X , ? \ ? / l , .  . . ,y ,71)  = 0 

where PI, P2, . . . , PA are polynomials of 
degree (for exa.inple 2,  3 or 4) .  

x lim + Ii’ of small total 



As before in encryption ( x l ,  . . . , 2,) is the cleartext aiid (yl, . . . ~ ym) the ci- 
phertext (in signature (3'1 . . . , r,) is the signature arid (yl, . . . , ym) the message 
to sign or a public trarisforrnatiori of the message to sign). 

So the big difference in the public equations between the Dragon algorithms 
and Matsumoto-Tmai algorithms is that we have "mixed" the variables z, and 
Ya ' 

First example of Dragon in encryption 

Here X = rn = n and K is a small finite field. Let q = 11\11 be the number of' 
element,s of K. For example 1\1 = F2 = G F ( 2 )  the finite field with two elements. 

(21,. . . , E , )  E I<'" is the cleartext. ( ~ 1 , .  . . , y I L )  E K" is the ciphertext. If we 
have the secrets then we can obtain (y1,. . . ,?/I~) frorn (zl,. . . , x , )  like this (we 
will see below another way to compute ( y l , .  , . , yn) from ( 2 ,  ~. . . , z,) without 
any secrets): 

1. ;G = ( X I ,  I . . x , ~ )  is first, t,rmsformed wit,h an affine secret permutation S ,  

so we obtain S ( E )  = a = ( a l , .  . . , u n ) .  

2. Then Q is transformed in h siich that 

Q'le+clv  . M ( h )  = oPS+qE . N ( b )  (1) 

where 0,  p, C, [ are secret or public integers such that h = q' +q+' - qc - yE  
is coprime with q'& - 1, q = IKI, where the exponentiations are doiie 
in a reprcscnt,ation of t,he field IFqn, and where M and N are two a f ine  
functions( we will comrrierit the choice of M and N below). 

How do we compute 6 from a ?  (We will now give a general way to compute 
6 from n but, we will see below Lhat there arc somet,imes some easier ways). 
If we write the equation (1) in the components (a1  I . . , a,) and ( h 1 :  . . . ) b , )  
of a. and h (i.e. i n  a basis of bTqn), we will obtain n equations like this: 

where yij a.nd pi,; are some coefficients of I<. 

The reason for t,his is t,liat t c-t x'f and E ++ xqv are linear functions of 
F q F L ,  so .1: + T ' ~ ~ + ' ~ ~  in a basis aiid z ct d + q E  are  given by quadratic 
polynomials. 

Now when ( a , ,  . . . , a,L) is given h n equations (2) give n equations of 
degree 1 in the values 6;. So by Gaussian recluction it, i s  t,lien easy (on a 
computer) to find all the solulioris of these equations. We will assume t,hat 
a.t least one solution b is found such t,hat M ( 6 )  # 0 or N ( 6 )  # 0. (we will 
commeiit, this point, a.t t,he end of this paragraph). If more than one such 
b is found, we randomly chose o~ ie  of the solutions for h.  

3.  Finally h = (61, . . . , b,&) is transformed with another affine secret permii- 
Latiori 1 ,  so WP obtain t ( b )  = :y = (y,, . . . , yn).  
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Remark All these operations are irivertihles, so it, is possible to  compute 
( x i , .  . . ,z,) from (yl, . . . , Y,~) if the secrets s.  t ,  0 ,  ’pI <,( a id  the  represcuta- 
tion of t,hc field Fqn are known. For example if M ( b )  # 0 then (I will be fourid 
from b by: 

a = ( N ( b ) / M ( b ) ) h ’  wherc h’ is thc inverse of h. = qo + q9 - q( - qt modulo 
q n  - 1. 

Public computation of (:y,, . . . . y n )  from (.cl,. . . ,x,) 
The n equations (2) will be t,ransforrried in  a system of R equations like this: 

i.e. n equations i ~ ~ ( x l ,  . . . , x , ~ .  y1 ~ . . . , y72) z ‘3, i = 1, , . . R ,  where Pi is a 
polynomial ot t I<, of t,otal degree three. ‘These rr equations ( 3 )  will be 
public. They are the public key. 

The  coinpiitat,ion of the 77 equations ( 3 )  from the ri equations (2) is done in 
two steps: first we replace t.he bj by their affine expression in y j  arid the ai by 
their affine expression i n  x i  ( S k p  1 ) .  ’I‘hen a linear and bijective transforrriation 
u is done 011 t,liese equations ( S k p  2 ) .  

Note 1. This St,ep 2 t8ransforniet,ion ?L i s  secret, or is done in a way to  have 
equations ( 3 )  with a coriventional presentation (for example t,he equatiori number 
k, (1 5 k 5 R )  will have a term in xle2yk and iio terms in  212274, j # k :  lliis 
gives a conventional presentat,ion obtained by Gaussian reductions). 

Note 2. We will see i n  paragraph 4 t,hat the public key lerigtlt can be moderate 
despite the fact t1ia.t t8he public polynomials are of t o h l  degree three. With these 
public equations (3)  anybody will he nblc t o  encrypt a message, i.e. to compute 
(y1, . . . , yn) from ( X I ,  . . . , z7?) without aiiy secret (this is always feasable if t8here 
i s  a valne h such that, ( I )  is sat,isfied). 

The  reason for this is that  wlieri ( x ~ , .  . . are given, the 72 equations ( 3 )  
give n equations of degree 1 in tlhc values ;yi. So by Gaussian reduction it is trhen 
easy t,o find all the solutions of these quatioiis. 

Remark. Wha(. is uriusual with ibis Dragon Mgorithrns is that although any- 
body can cori1put.e ( ~ 1 , .  . . , y 7 1 )  from ( x i , .  . . , t,) nobody can express the  2; 
variables as an effect,ivr polynomial i n  t,he y j  variables (this polynomial exist 
bu t  is too large to be explicit i f  the pa.rarriet.ers are well chosen). Wha l  is also 
unusual is t,he fact tha t  t,hese “Dragon Algorit3hins” use in (I the  way the crypt- 
analysis algorithms of [2] (i.e. w i th  Caussiaii reclurt,ion) in order to design a new 
cryptosystems. 



49 

The first example of Dragon in signature 
It is easy to  use this little Dragon Algorithms for asymmetric signatures. For 
example if ( ~ 1 % .  . . , yn) is t,he message to sign (or a public transformation of 
the message to sign), then ( T I ,  . . ~ rr,) will be the signature ('l'he value x 
corresponding to CL = 0 may be public i r i  order to avoid this value to be a valid 
signature of any message). 

About the choice of M and N 
There are different ways to choose M and N .  

Example 1 In this example, iM and N arc kwo sccrct random a-fJine fimctzons. 
I n  signature this Dragon Alyor.rthrn zs very e'Jfczenll but zri encryption we may 
have no solution in b for equation (1). 

However, the probability is high to Jind u solutzon b ( i f  y is not too small). 
(See the extended version for  more details). Moreouer in the design of the scheme 
iue can decide that a f e w  bytes of the rnessuge IC h a w  no irtformation, and in  the 
case we find rio y for a specific x, we can chan.ge these bytes and try again. 

Example 2 Zn this ~n:nmplc M ( b )  = b and N ( b )  = pbqo + vb where a is un 
integer such that qa - 1 2 s  coprime with q" - I und where 11 and Y arc two 
elements o f  Fqn with p f 0 (but v = 0 is possible). So llae equation (1) i s :  

Now for each a - 0 there 1 5  exactly only one b # 0 suc-la that (4) zs satisfied. 
So thzs example 2 15 an example of candzdate trapdoor one way permutatzon' 

Moreover here the computatzon of h from n r a n  he done by square and multzplzczty 
(instead OJ Gaussaan rtductzons) 

Example 3 In th is  example M ( b )  = b and N ( b )  = cyb + 1, where cy ZJ a secret 
demen t  of Fqn, cy # 0 So the cyzintzon ( 2 )  p u t  5 

So here aga in  wc hnuc a candrdate lrapdoor one way permutatnon! 

3 The algorithm MIIP-3 
We will now see a second family of algorithnis 

Description of the algorithm 
As usual, lct Ii bt. d firiite field 
T and y be two elements of L ,  
and y by (y, , 
and t be two secret nffine functions of I<" + 
y can be obtdined by these steps ( i f  thc sccrcts arc known) 

I,et I,,, be <in extension of degree n of Ii Let 
hi h xrz) 

1,et s 
The transformatioil from z to 

e i b  represented by ( X I ,  x2,  

, y n )  whew Vz? 1 5 2 5 n,  e, and yz are elements of Ii 
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Step 1 Compute a = s(z).  

Step 2 Compute (in 15"): b = ul+ 'JR+qY,  where y = IKI and 0 and p are two 
integers, 1 5 0 _< y, such that h = 1 + q8 + qv is coprime with q" - 1. 

Step 3 Finally coinput,e y = t ( b )  

In a basis each component yi of y can bc writ,ten as a polynomial Pi of total 
degree three in the zj values, 1 5 j 5 n .  

These n polynomials Pi, 1 5 i 5 1 1 ,  are made public. So, from these public 
polynomials, anybody can compiit,e y from z (in encryptmion y i s  the encryption 
of z, and in signature t i s  the signature of y). Now if the secrets are known it 
is also easy to compute 2 from y: each step is easily invertible. But it "seems" 
lhat if the secrets are not known then J: can not be computed for y (we will 
study this point in paragraph 9). 

We call this algorithm MIIP-3: Mat,siiniolo-Iinai with Improved Parameters 
of degree 3. Compared with the original Matsuinot,o-lmai C* Algorithm [l] we 
have made three important, chmges: 

1. There is only one branch (i.e. aft,t=r Step 1, the value u i s  not split in 
several branches as in  [I]). Thc  rcason for this will be givcn in paragraph 
5. 

2.  The transformation b = f ( a )  gives polyrioniials of degree three (and not 
tjwo as in [ I ] ) .  'I'he reason for this is  that t,he cryptanalysis of t,ransforma- 
tioris b = nl+qe was givcn in [ a ] .  

3 .  The  field I< is not necessary of characterist,ic 2.  (In [l] the field K was of 
characteristic 2 in order t20 find some B such that 1 + ,I' be coprime with 
qn - 1. If q is odd this is not possible). 

Remark 
q = 2, 0 = 1 ,  and 'p = 2 ,  then 

It is very easy t,o find some bad values for U and 'p. For example if 

b = u 7 ,  so (7 a. = o8 ( 5 )  
and from this eqiiat,ion (5) i t  is easy to see t81iat the sclerrie can be attacked 
exactly as the original G' scheme in [a]. However for almost all the choices of 0 
and y the attack of' [a] does not, work against MIIP-3. 

Equations (Gl ) ,  (G2),  (G3) 

Since b = u l+ye+qw,  these three general rquatioiis ( G I ) ?  ( G 2 ) ,  (G3) are always 
satisfied: 
(GI)  ( { 1 + Y Y  = b f l P B ( ' i R + 4 y )  
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Note. In a basis ( G l ) ,  ( G 2 ) ,  (G3)  give 371 cquations. Generally these 371 equa- 
tions are "formally" independent,, i.e. thcy gciierak a vector space of dimension 
371. However if we givc some explicit values for b ,  b # 0, then we will now prove 
tha t  ( G l ) ,  (G2),  (G3)  will give only 2n independent equations. 

R Y  (C3) Aq . h9 (,YH R"' 

and let us  assume t.hal h is known,  and t,liat, A ,  D and C are unknown. Then 
from (Gl ) ,  (G2) and (G3) will we be able t,o find -4,  R ,  and C? No, bccause ((3) 
is just a consequence of (G1) and (G2): frorn (G1) we have A = 6 l - q '  . Cq', and 

So from ( G l ) ,  (CT'2), (G3) we will have only 2 i i  indcpendenl equations in the 3 7 1  

component,s (of degree 2 i n  t>hc x,) of A ,  B ,  and C .  (Moreover this proves that 
if b # 0, we will always have exactly 27, indrpcndant, equations in the (2: 3 n )  
components of A ,  B and C). 

from (G2) wc have A h l - q 9  .(:!q', So ilQ* .bq' = bq"9s+v+~/Y .Cq'" - - b r l s . B 4 ' P ,  

4 Implementations and public key lengt 11s 
The  algorithms Dragon arid MIIP-3 t,liat we have sccn are very efficient. These 
algorithms are fa.st, and can easilly be iniplcrnented i n  sriiartcards with low power 
(without arithmetic coproccssor). Moreover we will see now tha t  the public key 
length can be very riioderat,e for t,wo reasons: 

1. We can have a v i i l u ~  n which is not t,oo la rgc (for example n = 32) if we 
have a valiic y which is not, t,oo small. 

2.  Moreovcr, t8he public kpy can be wr i l , k i i  with polynoniials of total degree 
two (inst,ead of t,lircc) as we will s w  now! (l7nfortunately this idea will 
help us to  a t h c k  t,hc schrmes as we will see i n  Part, 2).  

Dragon 
In t,he Dragon algorit,liiiis of paragrapli 2 ,  1,he hiddcn equa.tiori is: 

aq' t+g"  . A,f(b) = (lfl'+q' . N ( b ) .  ( 6 )  

For simp1irit.y of the equations Ict us  assiiiiie (.hat s a n d  f are linear (if s and f ,  

are affine the same rcsiilt#s will also hold). r I ' l i ~  public key, compuled frorn t,liis 
equation ( 6 )  is a set, of  n eqiiat,ions likc t,liis. 
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Let = x y j j k [ z j x & .  We have 0(n2) such values Pij, But how many indepen- 

dant  such Pil will we have? In fact, at, most 2n because in  tlie hidden equalions 
(6) we have n components from a9*+qW and 71 components from aqc tq‘ .  So all 
the P,, can be written as a linear expression in only X variables, X 5 2n, tha t  
we will call p 1 ,  . . . , p ~ .  So we see tha t  the public key can always be written 
(without changing the security since this new piiblic key can be computed from 
the original in polynomial complexitmy) as two sets of equations.: 

j , k  

j = l  k=I 

In these new piiblic eqiiations we will have oiily O ( T L ~ )  terms instead of O ( n 4 )  
terms in the original present,ation. 

< E  Notc. then X = 271 with a 
very high probability. I t  is not c-lcar if X t’aii be # n,  Y 2n arid < 212 and what 
cryptanalysis caii be doiie if this occui 

I f  a9’+qV is not a linear traiisforrriatiori of ( iq +q 

MIIP-3 
Similarly, frorrl thc. public key of a M11I’-3 a.lgorit,Iim it, is always fca.sable to 
compute all the cquatmions C y i , i kx i t j yk  + .  . . = 0 tha t  are always true when z is 
the encryption of y, and to see that the t,errns in  the ?lk va.ria.bles are generated 
by only about o ( n )  polynomials of dcgrec t,wo. The fact. tha t  we always have 
such polynomials come from the ( G I ) ,  ( C i a ) :  (G3) equa.tions. Tf we denote by 
P I , .  . . ,PA t.hese polynomials ( A  = O ( n )  and X = 371 very often), then instead of 
the public key we c m  write (without changing the security) ahout p equat>ions 
like t,his, { L  2: 3 n :  

I, x 

k=l j = l  

(Most of thcsc. cqiiatioiii come from i(; I ) >  ( ( ;2 ) ,  ((id) IIowever sometimes we 
will have p ? 4n  or p ? 5n when we nil! hdve more equations than  (GI) ,  (G2) ,  
(G3) But p is always such t h d t  / L  % h i ,  mith k smnll and k 2 3 )  

y~ are the new public kcy and 
we have &out O ( 7 t 3 )  terriis I I I  tIir i i w  piit)Iic kcy instead of 0(n4) terms 111 the 
original public kcy 

These equations plus the definitions of p l ,  

Note. ‘ lhe  designer of the schcrnt~ caii clioow to m a k e  public only a part ol‘ 
these equatioiis, for csainplc t hwe coming from (GI)  This may make the attack 
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easier (as we will see in Part  2) since hc has isolate (‘21) from (G2) arid (G3).  
However since anybody can coinpnte the sct of a11 the equations as above i t  does 
not, change de  security, from the polynomial corr~plcxit,y point of view, to  present 
this set of 0 ( n 3 )  equation as tIic new public key. 

PART 2: Cryptanalysis results 

5 Cryptanalysis of extended Matsumoto-Iniai Al- 
gorit hms with small branches 

In the description of the original Mat~sumot,o-lriiai C* algorithm given in [l], after 
the  first affine tmnsformation s ,  t,he inputs are divided in d branches. We have 
not made such a separation in our description of Dragon and MIIP-3, because 
we have found t,hrce very general at,t,acks a.gainst, srnall branches. We describc 
these three attacks in  the cxknded version ofthis paper. These t h e e  attacks are 
very inst>ruct,ive and they arc lmsed on lliree completely different, ideas. The  first) 
one uses some algebraic eqiiatiotis, and the second one is based on diflerential 
crypt analysis. 

6 Cryptanalysis of two compositions of C* algo- 
rit hms 

A very natural idea, in order to keep a bijective cryptosystern with easy secret 
computations is to do the composition of t,wo C* Mat,sumoto-Irnai Algorithms. 
Of course one problem is Ihat, the public polynomials will be of total degree four 
(instead of two) but if n, is not too big, so if I\: = F, is riot so srnall ( q  = 2 p ,  

with p # l ) ,  talien t,he length of t*he public key may still be acceptable. However 
we slmw in t,he extended version of this paper a bigger problerri: such a scheme 
remains insure. 

We will just  give here thr idea of the attack. I t ,  is l o  comput,e a11 thc equation 
of this form: 

i j k  i j  i i 

Then we will introduce some “transition” variables pi such tha t  these equa- 
tionscan be writt,en like this: 

C J  2 I 

when the  y2 variables are given, then from thesc equations we will be able to 
find the p j  variables (by Gaussian reduction) Then we will find 2 from the pJ  
variables as in the attack of [a] 
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7 

Introduction 
In this paragraph we will study the cryptanalysis of the “little Dragon” algo- 
rithm. What we call “little Dragon algorithm” is the algorithm where instead 
of equation (1) (of paragraph 2.2) the hidden equation is: 

Cryptanalysis of the little Dragon Algorithm 

a . 6 = a 4 8 + q q ,  ( 7 )  

where B and ‘p are secret integers such t,hat, h = qe  + q p  - 1 is coprime with q” - 1. 
Since there are not a lot of possible valiips for 6 and p we can also assume that 
B and ‘p are public. 

This algorithm looks very interesting because the public equations computed 
from (7) are only of total degree t,wo. However this algorithm is insecure, as we 
will see now. 

Cryptanalysis of the scheme 

We will assume here that t,he sccrct functions s and t are linear (not only affine). 
This probably does not change a lot of things (moreover there the value a = 0 
can very easily be detected so we can clearly assume that s is linear). So the 
public equations comming from (7) is a set of 71 equations like this: 

x r i j k . ~ : j l y k  + ~ ~ ~ i j ~ x j z ~  = 0 ,  I 5 i 5 n. ( 8 )  
.I I k j,k 

Let 6j = x - f i j k z j y k ,  1 5 i 5 7 i .  The values 6i are public and they represent 

The cryptanalysis is in four steps. 
the “hidden” components of o 6 .  We denote by b = (61, . . . , &). 

Step 1 We compute the vector space of all the linear trarisforrriatioris C and D 
such that: 

Y i ,  1 5 i 5 n ,  (C(S) ) ,  = ~ ; i j k x j ( D ( y ) ) k .  (9) 
J > k .  

This set will by found by Gaussian reductions on t8he values of the G and 1) 
matrices. 

We are sure to find a vpct,or space of solutions of dimension at  least n since 
we have : 

VX E Fqn,  X ( U .  b )  = (I . ( X b ) .  

So each transforniat,ion 0 e A 6  gives a coiiple (C,”, D )  of matrices solution. 

exactly TI for the set of solutions. 
exactly such a dimension n of solut,ions. 

ca.11 these variables A 1 , A a l . .  . ,A,,  and we can dcnotc A = (A1, 

Moreover I did a small simula.tion and in this simulation I found a dimension 
For simplicity, let us assume that we have 

Since the set of solutions found for D depeiids on n free variables, we can 
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DA the solution with the parameter A .  We will also denote by D*(y) the vector 
Of components ( D h ( Y l ) ,  . . . , DA(Wn)). 

Step 2 We compute the vector space of all the linear transformations E such 
that : 

D E ( A ) ( Y )  = D E ( T ~ ) ( A ) .  
Here again we expect t o  find a vector spacc of dirnrnsion 
what I found in my small simulation). Let Eo be such a 
the operation such that, by definition: 

A * Y = y * A =  D E o ( A ) ( ! / ) .  

R (imd indeed this is 
solution and let * be 

Remark 
there will be an element p E F q n ,  IL # 0,  such that:  

If we denote by t thc sccrct affinc transformation from 6 to  y,  then 

A * y = t(,u . t - l ( A ) .  t- '(y)). 

So t and p are not known, but such an operation * has been found. 

Step 3 Let h = 1 + q' + qv, so b = u h ,  and let h' be the inverse of h mod 
2" - 1, so a = bh'. We can a.ssume that h' is public because there are not a lot 
of possible values for 19 and p (so the cryptanalyst can try one by one all the 
solutions). 

Let f be t,he function : f ( y )  = y", where y'" denotes y * y . . I * y, h' times. 
(This function f i s  cornpi~t~cd by squa.re and multiply from the operation *).  Then 
we have: f ( y )  = t (pLh'- 'bh'  ) = t ( j ih ' - 'a )  (where h denotes t - l (y)  as usual). So 
f ( y )  = W(z),  where z is the cleartext and W an affine function! So from f it is 
easy to  find W by Gaussian reductions on a few cleart,ext/ciphcrtext couples. 

Step 4 Now that f n9id W arc found i t  1s ecrsy to decrypt any messuge since: 
2 = w-l(f(W))- 

8 Cryptanalysis of the Dragons of paragraph 2 
Now we will give an algorit,hm for the cryptanalysis of the Dragon scheme given 
in paragraph 2.  

For simplicity we will assume that, M (or N )  is bijective and that s and t 
are linear. (This probably does not change miich). So we can assume that  the 
hidden equat,ion is: 

aqe+4" . 6 = arlc+Qs . N ( 6 ) .  

Since s arid t are linear we know from para.graph 4 that blie public key can be 

given as a set of about 271, equations like t,his: pi  = v i j k z j z k ,  1 5 i 5 2r1, 
T L  IL 

j = l  k = l  
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2n 7 1  

plus a set of ri equat,ioiis like this: 

key it  is always feasable to find t81iese two sets of equations). 

E l i j k p j Y k ,  1 5 i 5 7%. (From the public 
;=1 k = l  

2n n 

Lct di = [ i j k p j  yk. The values hi, 1 5 i 5 n are public. We denote by 
;=1 k = l  

6 = ( b i ,  . . . , &,), and by 1) = (yl, . . . ,pan) .  Thc cryptanalysis is in four steps. 

Step 1 We compute (by Gaussian reductions) t,he vect,or space of all the linear 
transformat,ions C and D such that,: 

j z k  k = l  

C is a n x 11 riialrix arid I3 is a 2 n  x 27) matrix. 

we have : 
We are sure to find r? vector space of solutions of dimension at least since 

VA E Fqn,  X((f?+q9 . - .P'+V' . N ( h ) )  ( X 0 Y B + ( l Y )  . h - ( X a d + q E )  . N ( b )  

So each transformation ( n ' J H + q W ,  a4'+9 ' )  ++ (Aaqe++yy, X n g l + q F )  gives a couple 
(C, D )  of niatrices sohit,ion. 

Step 2 Let Do be such a solution, wit,h Do # 0.  Then we will find an invertible 
matrix S such t,hat Do = S-lllbS where 

where D1 and D2 ar r  t,wo 11 x 'rt mat,ric.es. (This is feasable from t,he matrices 
reductmion theory, however I did no simulation. SFC for example [4]). D1 will 
come from aqB+gv ++ X ~ 4 * + 9 ~  and / I 2  will COIIIC from aql+qt Xaq'+q.'. 

Step 3 T h e  iuabrix S gives a change of variables on the pi  variables: let p ; ,  . . . , pk 
be t,hc terms changed by D I  and q ; ,  . . . , q; be the terms changed by 1 ) ~ .  Then 
the ec1uat)ioiis di can he rewritt,en in 77, equations like this: 

I1 11 

j = l  k = l  ,j=l k = l  

Step 4 Let 6 ; ,  . . , ~ S i  be tjhr t>crrris of t,he left side of this equation: 
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These terms come from uQH+Q‘ . b.  From t,lrese terms we will find a n  operation 
A * y exactly as we did for t,he little Dragon algorithm. So if a = bh (as in 
paragraph 2 example 2 with L/ = 0 or as in the ( G I )  equation of MIIP-3) then 
we will just compute y’” with this ~r operation. What about, more general cases, 
i.e. when t8he tmnsformation from b to n is more complex than b = ah‘? Duc 
t,o the lack of space please see t.he extended version of this paper. (The idea is 
to find the analogy of b H ( N ( b ) / b ) h ’  in with the * operation as the basic 
operation on  y j .  

9 Cryptanalysis of MIIP-3 
Now we will give an algorithm for t,he cryptanalysis of the MIIP-3 algorithm. 
For simplicity we will assume that s arid 1 arc linear (t,his probably docs not 
change a lot of t,hings). Since s and t are linear we know from paragraph 4 that, 
the public key can be given as a set of about, 3 7 1  equations like this (sometimes 

more): pi = U i j k . x J Z k ,  1 5 i 5 3 7 1 ,  plus a set of a.bout 3n equations like 
n n  

j = 1  k = l  
3 7 1  n 

this: c < i . j k p . j z / k  = 0 ,  1 5 i 5 3 n .  Thcse qua t ions  come from 
j = l  k = 1  

(C:l) : R . hQH = h .  [7qy. ((:‘2) : A .  bQ‘ = b . c?’, (G.1) : .4qb . bq’ = bq’ . Bq’ 

where A = al+qH, B = u l+q‘ ,  and C :  = d e + ‘ l Y .  (Sorrietirries wc have more than 
these 371 equations, but for simplicity we will assume t,hat, there are only these 
3n equations and that. t,hry give a vector space of dimension 372). 

TAet, 6; = 

S = (61, . . . , hs,,) and by 1’ = (1’1.. . . 3 y 3 , 1 ) .  IIic cryptanaIysis i s  in three steps. 

Step 1 We compute (by Gaussian rediict,ions) the vector space of all the lincar 
transformations L, and L such that: 

311 n 

< ; j k p j  y k .  ‘ lhe va.lues 6, I 1 5 i 5 372, are public. We denote by 
j=1 k = l  

E iS a 3 7 1  X 371 mat,rix and L> is also R 311 x : 3 7 1  matrix. 

we have : VA E p q r L ,  if H is ctianged i n  XY’ B .  ( - 1  in  xc a.nci A in 
is changed in Xqe(G1), ( G 2 )  in  ATw ( ( ;a)  and (Gi) i n  Xqb+qy (G3). 

Step 2 Let Eo be such a s o l u h n  for E ,  with Eo # 0.  ‘I’hen we will find an 
invertible matrix 5’ such t,hat Ll” = S-’ E(,S where 

We are sure to find a vector space of solutions of climcrision at least 71. since 
A ,  then ( G I )  
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(This is feasable from Ihe matrices rcduction theory. See for example [4]). 

comes from (G3) + Xq8+q” (G3) .  

Step 3 From S we can isolate the equation (Gl)  from the other equations, and 
SO attack the scheme as a Dragon scheme as we did in paragraph 8. 

El comes from (Gl )  + X@(Gl), E2 comcs from (G2) -+ X‘J”(G2) and Ez 

Remark. 
same kind of polynoniial attack exists. 

For MIIP-4 ( i x .  with the hidden equation b = a1+qe1+qe2+qs3) the 

10 Unclear cases 

In all the sc.hemes. 
s and t are affine (instead of linear)? (Probably not, but I did not check). 

Is the cryptanalysis more difficult if the transformations 

For MIIP-3 and C’. In MITT‘-3, with the original public form, or in C’, 
what do we do if 2 or 3 of the pi] blic polyornials are not given? The scheme will 
still work in signature, and also in encryption if we had redundancy, but may be 
more dillicult to attack. (However if only one equation is not given with n = G4 
and Ii‘ = F2 then from the Birthday paradox we will easilly be able to find this 
equation). 

PART 3: A candidate for 64 bits signatures and 
c o II c 1 1 1 s i o n 

11 A candidate Dragon algorithm for extremely 
short signat iires 

VU E Fqn, Vb E (Fq)” ,  let 

2=1 2 x 1  

where for all the indices 1 we have a , ,  f i g ,  7%) ,!?:, k and k’ are 
integers, AT, and N,‘ are affine furictions of (F7)”! + Fqn (as usual affine means 

60 E 
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affine over F q ) ,  and where the degree d in the a variable is not too large (for 
example d 5 $000). 

Then let u = s(z) arid b = t ( y )  where s and 1 are two secret afine permu- 
tations. In a basis f ( a , b )  = 0 gives n equations of total degree three (degree 
two in a; and one in b; variables). These n equations will be writen in zi  and 
yj variables (Step 1) and then a linear and bijective transformation is done on 
these equatioris (Step 2). We obtain like this a set (G) of R equations of total 
degree three (degree two in z; and one in yi variables). (G) is public. f is secret 
(this function is “hidden” by s and t ) .  

all the monomials a2” with 2@1 + 271 < 8000 and 271 < 8000, and C Y ~  and a: are 
randomly chosen in Fqn , and N ,  and Nh are also randomly chosen. 

Let M be a message to sign. The signature of M is (zlln) where R is any 
small integer with no pattern 1000 in its expression in base 2 (for example R = 0).  
z is any 64 bits value such that if we denote y = Hash (RlllOOOllM), then (z, y) 
satisfies all the n eqnat,ions of (G). Here Hash is a collision free Hash function 
with 128 bits outputs (for example Hash = M D 5 ) ,  and 1 1  is the concatenation 
function. So anybody can verify a signature ( T ,  R) withont any secret. In order 
to compute the signature we will compute b = l - l (y ) ,  then we will solve in a 
the equation f ( a , b )  = 0 (this is always feasable with a complexity polynomial 
in d ) .  If there is no solution, we try wit,h another value R (for example R = 1 
instmead of R = 0) until we find a solution a .  Then 2 = s-’(u) is computed. On 
average the lengtli of the signat,ure ( R ,  z) will orily be about, 64 bits. (Moreover 
we can also give only z as the signature and ail the small values of R will be tried 
one by one to check the signature). We avoid the “birthday paradox” since we 
can not publicly compute y from z but just check if z and y match together or 
riot. However the time to conipiit8e a signature is long so this scheme is not very 
efficient. Its interest lies in the fact that it is the first candidate algorithm with 
64 bits asymmetric sigriaturcs (I do not know any previous candidate). The best 
attack that 1 know against this scheme needs more thari 2’’ computations. With 
80 bits signature this at,tack needs more thari 264 computations. Moreover after 
these computations, orily one signat,iire is found: t.o compute another signature 
the same huge computations are needed. 

This algorithm is still a Dragon algorit,hm (since z and y are mixed) but with 
a hidden function instead of a hidden moiiomial. 

28*+2yI  and For example q = 2,  R = 64, and in f we have all the monomials u 

Note 1 These att,acks are based on the idea to do cxhaustive search on n - k 
variables z i ,  k small, arid to find the k ot,lier varia.bles from the public equations. 
I was no able t,o see somebody who knows  if a better attack is known to solve a 
randomly set on 71 quadratic equat,ions over G F ( 2 )  when R N 64. J will try to  
have the efficiency of the known algorithms for the conference in August. Maybe 
n = 64 is easy even for random quadrat,ic eqiiations? 

Note 2 For any signature schcnic with signatures of length 64 t i ts  that can sign 
messages of arbitrary lerigi,h, a k r  about 232 signatures two messages signed have 
the same signature. However here t,he collision is obtained between two messages 
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signed by t.he owner of the secrets, and moreover only after 232 signatures, made 
by himself. So this may not be a prohlem. 

Note 3 The funct,ion f (as i n  a variation of HFE) can also be more general, 
its long as in a basis f ( a l  b )  is of small degree in a; and b; variables and the 
computation of a such t8hatm f(., b )  = 0 is feasable. For example a rnultivariat,e 
resolution algorithm with a few variables (8 equations with 8 variables for ex- 
ample with each variable on 8 bit,s) will be hidden as an int,ractable system of 
64 equations with 64 variables ui arid 64 variables bi by s and t .  

12 Conclusion 
In t,his paper, we have st.udied sorrie algorithms based on the idea of a “hidden” 
monomial. The motivation was t,Iia.t! these algorit,hms are very efficient and that 
some of these algorithms were carididate trapdoor one way permutations. 1711- 

fortunately we have seen that all the easy transformations of C’ can be attacked 
in polynomial complexity. (Some simulations would be require to test the va- 
lidity of the attacks). We have also described a candidat,e algorithm for 64 bits 
sigriatiires that has so far resist8ed all attacks. However this algorithm is not very 
efficient and also has no proof of security. So at, present, the two algorithms of 
[3] seem to remain t,he best candidates to try to repair the C’ algorithm of [ I ] .  
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