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Abstract

In {1] T. Matsumoto and H. Imai have presented a very efficient “candidate” algorithm,
called C*, for asymmetric cryptography. This algorithin was broken in {2]. Then in [3],
I have suggested two algorithms, HFE and IP, to repair C*. However the secret key
computations of HFE and IP are not as efficient as in the original algorithin C*. Is it
possible to repair C* with the same kind of very easy secret key computations? This
question is the subject of this paper. Unfortunately, we will see that for all the “easy”
transformations of C* the answer is no. However one ol the new ideas of this paper
will enable us to suggest a candidate algorithm for assymetric signatures of length only

G4 bits. An extended version of this paper can be obtained from the author.

1 Introduction

In [1] T'. Matsumoto and H. Imail have presented a very cfficient algorithm ™
for asymmetric cryptography (authentications, signatures or encryptions) with
public multivariate quadratic polynomials. This algorithm was based on the idca
of “hiding” a monomial equation b = f(a) = al+?’ by two affine permutations s
and t. In {2], [ have shown that this original algorithm was insecure. Then in [3],
I have suggested two new algorithms IIFE and I in order to repair C*. HFE use
more complex hidden functions f (functions f with more than one monomial and
sometimes also more than one variable a) but the computation of f~1 with the
secret, key is (of course still feasable but is) more diflicult than in C*. IP is a very
different algorithm. It looks like the famous Graph Isomorphisms algorithm.

Is is possible to repair €™ and keeping the same kind of casy secret key
computations? For example with multivariate polynomials of total degree 3 or
4 in the public form (instead of two) if necessary? This question is the subject
of this paper.
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First we will describe two new asynmunetric “candidate” algorithms: Dragon
and MIIP-3. These algorithms are very efficient. Then we will see that some
easier algorithms are insecure. Then we will extend our attacks to see that
Dragon with one hidden monomial and M1 P-3 are also insecure.

So it seems that there is not an easy way to “hide” a monomial in order
to avoid polynomial attacks ... Nevertheless at the end of this paper, we will
show that the idea of “Dragon” Algorithms (however with more than one mono-
mial) gives us a candidate algorithm for extremely short asymmetric signatures.
Moreover another family of algorithms (not described here) is still under inves-
tigation.

PART 1: Description of the hidden monomial schemes

2 “Dragon”: a new family of algorithms for asym-
metric cryptography

The public polynomials of the “Dragon” family

The first family of algorithms that we will describe is called “Dragon”. Before
going into details, let us start by showing the differences between the public
polynomials of a scheme like Matsumoto-Imai C* scheme of [1] and the Dragon
schemes.

o In Matsumoto-Imai C'* scheme (or in my HFE scheme of [3]), the public

equations are n multivariate polynomials Py, ..., P, over a finite field K|
(n integer), and these polynomials give y;, . .. , ¥, as functions of z1,...,Z,
like this:

vioo= Pz, @)

ya = Po(zr,...,2n)

Yn = [)n(-vly---amn)
where in encryption (a1,...,2,) is the cleartext and (y;,...,¥n) the ci-
phertext (in signature (z1,...,z,) is the signature and (y1,...,yn) the
message to sign or a public transformation of the message to sign). More-
over 1n C™ Algorithm the polynomials Py, ..., P, have total degree 2.

e In the Dragon algorithms that we will describe the public equations arc A
multivariate polynomials over a field K (or a ring) like this:

P1(1171,---,4L‘n,y17~-~Jlm) = 0
P2(17l:-~- y T Y1, vym.) = 0
P)\(Il,---a«vnayl:-‘-»ym) = 0

where P, Py, ..., Py are polynomials of K x K™ — K of small total

degree {for example 2, 3 or 4).



As before in encryption (zq,...,,) is the cleartext and (y1, ... , ¥m) the ci-
phertext (in signature (24,. .., z,) is the signature and (yi, . .. , ¥ ) the message
to sign or a public transformation of the message to sign).

So the big difference in the public equations between the Dragon algorithms
and Matsumoto-Imai algorithms is that we have “mixed” the variables z; and

Yi

First example of Dragon in encryption

Here A = m = n and K is a small finite field. Let ¢ = |K| be the number of
elements of K. For example K = F, = GF(2) the finite field with two elements.

(21,...,x) € K™ is the cleartext. (y1,...,yn) € K™ is the ciphertext. If we
have the secrets then we can obtain (y1,...,%.) from {z1,...,z,) like this (we
will see below another way to compute (y;....,yn) from (x1,...,z,) without

any secretsj:

1. & = (z,... .zn) is first transformed with an affine secret permutation s,
so we obtain s(z) = a = (a1,...,a,).

2. Then a 1s transformed in b such that
@+ M(b) = a2 F N (b) (1)

where 6, @, ¢, € are secret or public integers such that h = ¢% +¢% —¢¢ — ¢¢
is coprime with ¢" — 1, ¢ = |K|, where the exponentiations are done
in a represcntation of the field Fyn, and where M and N are two affine
functions( we will comment the choice of M and N helow).

How do we compute & from «? (We will now give a general way to compute
b from a but we will see below that there arc sometimes some easicr ways).
If we write the equation (1) in the components (ai, ... ,a,) and (b1,. .., by)
of a and b (i.e. in a basis of Fy»), we will obtain n equations like this:

Z’)’ijkaiajbk + thi_;'fliflj =0 (2)

where «;; and p;; are some coefficients of K.

The reason for this is that z v« 27" and 2 — 29 are linear functions of
Fon, 50 1 — 2+ in a basis and 2 — 2949 are given by quadratic
polynormials.

Now when (ai,...,a,) is given the n equations (2) give n equations of
degree 1 in the values b;. So by Gaussian reduction it is then easy (on a
computer) to find all the solutions of these equations. We will assume that
at least one solution b is found such that M () # 0 or N(b) # 0. (we will
comment this point at the end of this paragraph). If more than one such
b is found, we randomly chose one of the solutions for b.

3. Finally 6 = (by,...,b,) is transformed with another affine secret permu-
tation {, so we obtain t(b) =y = (y1, ... ,¥n).
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Remark All these operations are invertibles, so it is possible to compute
(21,...,2n) from (y1,...,u,) if the secrets s.t 0,p,(,& and the representa-
tion of the field Fy» are known. For example if M (b) # 0 then a will be found
from b by:

a= (N(b)/M(b))* where ' is the inverse of h = ¢f + ¢¥ — ¢ — ¢¢ modulo
q" — 1.

Public computation of (y;,... ,y,) from (z,... ., z,)

The n equations (2) will be transformed in a system of n equations like this:

Z iR TiT Yk + Zﬂi_;'l’imj + Z V&Y + Ziil’i + ZCz’yi +d =0

(3)

ie. n equations Pi(z1,....%..41....,42) = 0,1 = 1,...,n, where F; is a
polynomial of K" — K of total degree three. These n equations (3) will be
public. They are the public key.

The computation of the n equations (3) from the n equations (2) is done in
two steps: first we replace the b; by their affine expression in y; and the a; by
their affine expression in z; (Step 1). "Then a linear and bijective transformation
u is done on these equations (Step 2).

Note 1. This Step 2 transformation u is secret, or is done in a way to have
equations (3) with a conventional presentation (for cxample the equation number
k, (1 <k < n) will have a term in 229y, and no terms in z120y;, j # k@ this
gives a conventional presentation obtained by Gaussian reductions).

Note 2. We will see in paragraph 4 that the public key length can be moderate
despite the fact that the public polynomials are of total degree three. With these
public equations (3) anybody will be able to encrypt a message, i.e. to compute

(y1,-..,yn) from (21,...,2,) withoul any secret (this is always feasable if there
is a value b such that (1) is satisfied).
The reason for this is that when {(xy,...,z,) are given, the n equations (3)

give n equations of degree 1 in the values y;. So by Gaussian reduction it is then
easy to find all the solutions of these equations.

Remark. What is unusual with this Dragon Algorithms is that although any-
body can compute (y:,...,y,) from (z,,...,2,) nobody can express the z;
variables as an effective polynomial in the y; variables (this polynomial exist
but is too large to be explicit il the parameters are well chosen). What is also
unusual is the fact that these “Dragon Algorithms” use in a the way the crypt-
analysis algorithms of [2] (i.e. with Gaussian reduction) in order to design a new
cryptosystems.
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The first example of Dragon in signature

It is easy to use this little Dragon Algorithms for asymmetric signatures. For
example if (y1,...,yn) is the message to sign (or a public transformation of
the message to sign), then (z;,...,x,) will be the signature. (The value z
corresponding to @ = 0 may be public in order o avoid this value to be a valid
signature of any message).

About the choice of M and N
There are different ways to choose M and V.

Example 1 In this ezample, M and N arc two secret random affine functions.
In signature this Dragon Algorithm s very efficient, but in encryption we may
have no solution in b for equation (1).

However, the probability is high lo find a solution b (if q is not too small).
(See the extended version for more details). Moreover in the design of the scheme
we can decide that a few bytes of the message x have no information, and in the
case we find no y for a specific &, we can change these bytes and try again.

Example 2 In this ezample M(b) = b and N(b) = ub?" + vb where o is an

integer such that ¢ — 1 is coprime with ¢" — 1 and where p and v are fwo

elements of Fyn with p # 0 (but v = 0 15 possible). So the equation (1) is:
a®F = T (b 4 ), (4)

Now for each a = 0 there is exactly only one b # 0 such that ({) is satisfied.

So this ezample 2 is an erample of candidate trapdoor one way permutation!
Moreover here the computation of b from a can be done by square and multiplicity
(instead of Gaussian reductions).

Example 3 In this example M(b) = b and N(b) = ab+ 1, where o 15 a secret
element of Fon, o # 0. So the equation (2) gives

b= 1/(cz‘18+(’v”’<“(’5 - a).

So here again we have a candidate trapdoor one way permutation!

3 The algorithm MIIP-3

We will now see a second family of algorithms.

Description of the algorithm

As usual, let K be a finite field. Let L, be an extension of degree n of K. Let
z and y be two clements of L,. In a basis x is represented by {(zy,z2,...,25)
and y by (¥1,...,¥n) where Vi, 1 < i < n, ; and y; are elements of K. Let s
and t be two secret affine functions of K™ — K”. The transformation from z to
y can be obtained by these steps (if the secrets are known):
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Step 1 Compute a = s(x).

Step 2 Compute (in Ly): b = a'+9°+7° where ¢ = |K| and # and ¢ are two
integers, 1 < @ < ¢, such that k = 1 4 ¢° + ¢¥ is coprime with g™ — 1.

Step 3 Finally compute y = #(b).

In a basis each component y; of y can be written as a polynomial P; of total
degree three in the r; values, | < j < n.

These n polynomials P;, 1 < i < n, are made public. So, from these public
polynomials, anybody can compute y from z (in encryption y is the encryption
of z, and iIn signature x is the signature of y). Now if the secrets are known it
is also easy to compute 2 from y: each step is easily invertible. But it “seems”
that if the secrets are not known then a can not be computed for y (we will
study this point in paragraph 9).

We call this algorithm MIIP-3. Matsumoto-Tinai with Improved Parameters
of degree 3. Compared with the original Matsumoto-Imai C* Algorithm [1] we
have made three important changes:

1. There is only one branch (i.e. after Step 1, the valuc @ i1s not split in
several branches as in [1]}). The reason for this will be given in paragraph

5.

2. The transformation b = f(a) gives polynomials of degree three (and not
two as in [1]). The reason for this is that the cryptanalysis of transforma-

tions b = a*9’ was given in [2).
3. The field K is not necessary of characteristic 2. (In [1] the field K was of

characteristic 2 in order to find some @ such that 1 4 ¢® be coprime with
¢" — 1. If ¢ is odd this is not possible).

Remark It i1s very easy to find some bad values for § and . For example if
g=2,0=1,and ¢ = 2, then

* (5)
and from this equation (5) it is easy to see that the scheme can be attacked

exactly as the original C* scheme in [2]. However for almost all the choices of #
and ¢ the attack of [2] does not work against MIIP-3.

b=ua",s0b-a=a

Equations (G1), (G2), (G3)

Since b = a't¢"+9°  these three general equations (1), (G2), ((73) are always
satisfied:

(G1) AT =g g )
(G2) 't e = 07 (07 ")
© @ 26

) v 29
-a? +q7 — bt a4 +q

(G3). b



5

Note. Ina basis (G1), (G2), (G3) give 3n cquations. Generally these 3n equa-
tions are “formally” independent, i.e. thcy generate a vector space of dimension
3n. However if we give some explicit values for o, b # 0, then we will now prove
that (G1), (G2), (G3) will give only 2n independent equations.

] 4
Proof Tet A=a't" B =a'*" and ¢ = «? t9°. Then :

(G1) B¢ =bp.0f
(G2) A6 = 9"
(G3) AT 9 = pd g

and let us assume thal & is known, and that A, B and C are unknown. Then
from (G1), (G2) and (G3) will we be able to find A, B, and C? No, because (G3)
is just a consequence of (G'1) and (G2): from ((G1) we have A = 617" . C7 | and
from (G2) we have A = b1=97.C9" . So A9" 477 = 3" =" 7407 . 0a"F = pa’ . pL’e,
So from (1), ((:2), (G3) we will have only 2n indcpendent equations in the 3n
components (of degree 2 in the ;) of A, B, and €. (Moreover this proves that
if b # 0, we will always have exactly 2n independant equations in the (~ 3n)
components of A, B and ().

4 Implementations and public key lengths

The algorithms Dragon and MIIP-3 that we have scen are very efficient. These
algorithms are fast and can easilly be implemented in smartcards with low power
(without arithmetic coprocessor). Moreover we will see now that the public key
length can be very moderate for two reasons:

1. We can have a value n which is not too large (for example n = 32) if we
have a value ¢ which is not too small.

2. Moreover, the public key can be written with polynomials of total degree
two (instead of three) as we will see now! (Unfortunately this idea will
help us to attack the schemes as we will see in Part 2).
Dragon
In the Dragon algorithms of paragraph 2, the hidden equation is:
a?’+9” M (b) = a1 N (b). (6)

For simplicity of the equations let us assume that s and £ are linear (if s and ¢
are affine the same results will also hold). The public key, computed {rom this
equation (6) is a set of n equations like this:

"Vijklllfj-'lr'ky[ = 0. 1=1.... ,



Let Py = Z Yijki®T. We have O(n?) such values P;;. But how many indepen-
i k

dant such JP,-; will we have? In fact at most 2n because in the hidden equations
(6) we have n components from a?”*% and n components from a?* 9" So all
the P; can be written as a linear expression in only X variables, A < 2n, that
we will call py,...  pr. So we see that the public key can always be written
{without changing the security since this new public key can be computed [rom
the original in polynomial complexity) as two sets of equations.:

D= leijkll?j.’lfk (l =1to /\, A S 2?’!)
7.k

A n
ZZfijk:Pjyk =0 (i =1ton).

Jj=1k=1

In these new public equations we will have only 0(n®) terms instead of 0(n?)
terms in the original presentation.

Note. If a”*+9° is not a linear transformation of a?°+4° then A = 2n with a
very high probability. It is not clear if A can be # n, ~ 2n and < 2n and what
cryptanalysis can be done if this occur.

MIIP-3
Similarly, from the public key of a MIIP-3 algorithm it is always feasable to
compute all the equations Y vijeziz;ye + - - - = 0 that are always true when  is

the encryption of y, and to see that the terms in the ¥, variables are generated
by ouly about 0(n) polynomials of degree two. The fact that we always have
such polynomials come from the (G1), (G2), (G3) equations. If we denote by
Py, ..., Py these polynomials (A = 0(n) and A = 3n very often), then instead of
the public key we can write (without changing the security) about u equations

like this, p =~ 3n:

7 A
ZZfijkl‘)jyk + Zl“ijpj + Z vy +0 =0, 1<i<pu.

k=1j=1

{Most of these equations come from (1), (G2), (G3). However sometimes we
will have p ~ 4n or yu ~ 5n when we will have more equations than {(G1}), (G2),
(G3). But g is always such that g =~ &n, with & small and k > 3).

These equations plus the definitions of pq, ..., px are the new public key and
we have about 0(n®) terms in the new public key instead of 0{n*) terms in the
original public key.

Note. 'The designer of the scheme can chioose to make public only a part of
these equations, for example these coming from (G1). This may make the attack
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easier (as we will see in Part 2} since he has isolate (G1) from (G2) and (G3).
However since anybody can compute the set of all the equations as above it does
not change de security, from the polynomial comnplexity point of view, to present
this set of 0(n3) equation as the new public key.

PART 2: Cryptanalysis results

5 Cryptanalysis of extended Matsumoto-Imai Al-
gorithms with small branches

In the description of the original Matsumoto-Imai C* algorithm given in [1], after
the first affine transformation s, the inputs are divided in d branches. We have
not made such a separation in our description of Dragon and MIIP-3, because
we have found three very general attacks against small branches. We describe
these three attacks in the extended version of this paper. These threc attacks are
very Instructive and they arc based on three completely different ideas. The first
one uses some algebraic equations, and the second one is hased on differential
cryptanalysis.

6 Cryptanalysis of two compositions of C* algo-
rithms

A very natural idea, in order to keep a bijective cryptosystem with easy secret
computations is to do the composition of two " Matsumoto-Imai Algorithms.
Of course one problew is that the public polynomials will be of total degree four
(instead of two) but if n is not too hig, so if K = F, is not so small (¢ = 2*,
with g # 1), then the length of the public key may still be acceptable. However
we show in the extended version of this paper a bigger problem: such a scheme
remains insure.

We will just give here the idea of the attack. It is to compute all the equation
of this form:

Z Z Z ﬂijkyi$j1k+z Z V;jxirj+z Z Uiz +Z wﬂ:H—Z Biyi+mo = 0.
[ J k H J 1 J H H

Then we will introduce some “transition” variables p; such that these equa-
tionscan be written like this:

DO Apey + Zagl)i +> By +8=0
b J H i

when the y; variables are given, then from these equations we will be able to
find the p; variables (by Gaussian reduction). Then we will find z from the p;
variables as in the attack of [2].
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7 Cryptanalysis of the little Dragon Algorithm

Introduction

In this paragraph we will study the cryptanalysis of the “little Dragon” algo-
rithm. What we call “little Dragon algorithm” is the algorithm where instead
of equation (1) (of paragraph 2.2) the hidden equation is:

a-b=a? ¥ (7)

where 6 and @ are secret, integers such that h = ¢° 4¢%¥ —1 is coprime with ¢" —1.
Since there are not a lot of possible values for 8 and ¢ we can also assume that
# and ¢ are public.

This algorithm looks very interesting because the public equations computed
from (7) are only of total degree two. However this algorithm is insecure, as we
will see now.

Cryptanalysis of the scheme

We will assume here that the sccret functions s and ¢ are linear (not only affine).
This probably does not change a lot of things (moreover there the value a = 0
can very easily be detecled so we can clearly assume that s is linear). So the
public equations comming from (7) is a set of n equations like this:

Z‘Yz‘jkd?]‘yk + Zuijkl‘jl'k =0, 1<i<n. (8)
j.k J.k

Let ; = 3" vijrxjyx, 1 < i < n. The values §; are public and they represent
the “hidden” components of a - b. We denote by d = (d1,...,d,).
The cryptanalysis is in four steps.

Step 1 We compute the vector space of all the linear transformations C' and D
such that:

Vi, 1<i<a, (CO)) =Y wmei (D). (9)

gk

This set will by found by Gaussian reductions on the values of the C' and D
matrices.

We are sure to find a vector space of solutions of dimension at least n since
we have :

YAE Fypo, Aa-b) =a-(Ab).

So each transformation b — Ab gives a couple (C, D} of matrices solution.
Moreover I did a small simulation and in this simulation I found a dimension
exactly n for the set of solutions. For simplicity, let us assume that we have
exactly such a dimension n of solutions.
Since the set of solutions found for D depends on n free variables, we can
call these variables Aq,As,...,A,, and we can denote A = (Ay,...,A,), and
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Dy the solution with the parameter A. We will also denote by D (y) the vector
of components (Da(y1), ..., Da(yn))-

Step 2 We compute the vector space of all the linear transformations F such
that :

Diay(y) = De@)(A).

Here again we expect to find a vector space of dimension n (and indeed this is
what I found in my small simulation). Let Eq¢ be such a solution and let % be
the operation such that by definition:

Axy=y*xA=Dg aly).

Remark [f we denote by ¢ the sccret affine transformation from b to y, then
there will be an element y € Fyn, pu # 0, such that:

Axy=t(u-t71A) - 17H(y)).
So t and p are not known, but such an operation * has been found.

Step 3 Let h = 1 4+ ¢% +¢®, so b = a*, and let A’ be the inverse of h mod
2" — 1,50 a = b"'. We can assume that A’ is public because there are not a lot
of possible values for # and ¢ (so the cryptanalyst can try one by one all the
solutions).

Let f be the function : f(y) = y"' where y" denotes yxy---*y, b’ times.
(This function f is compnted by square and multiply from the operation *). Then
we have: f(y) = t(p" ~18%") = t(u" ~1a) (where b denotes t~1(y) as usual). So
f(y) = W (=), where z is the cleartext and W an affine function! So from f it is
easy to find W by Gaussian reductions on a few cleartext/ciphcrtext couples.

Step 4 Now that f and W are found it is easy to decrypt any message since:
=W {(f(y)).

8 Cryptanalysis of the Dragons of paragraph 2

Now we will give an algorithm for the cryptanalysis of the Dragon scheme given
in paragraph 2.

For simplicity we will assume that M (or N) is bijective and that s and ¢
are linear. (This probably does not change much)}. So we can assume that the
hidden equation is:

a?" T b= 1"+ N ().

Since s and ¢ are linear we know from paragraph 4 that the public key can be

given as a sct of about 2n equations like this: p; = Z Z vijrejer, 1 <1< 2n,
j=1lk=1
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2n n
plus a set of n equations like this: Z Zﬁz‘jkpjyk; L <i < n. {From the public
j=1k=1
key it is always feasable to find these two sets of equations).
2n n

Let §; = Z Zfijkpj yi. The values d;, 1 < i < n are public. We denote by
j=1lk=1
6= (61,...,d,), and by p= (p1,...,p2n). The cryptanalysis is in four steps.

Step 1 We compute (by Gaussian reductions) the vector space of all the linear
transformations C and D such that:

2n n

Vi, T<i<n, (C(0)i=Y_> &r(D(p)iw-

j=k k=1

C is an x n matrix and D is a 2n x 2n matrix.
We are sure to find a vector space of solutions of dimension al least n since
we have -

YAE Fpn, AMa® 49 b —a® 41 N(B)) = (Ma? 77 b~ (AaTH) L N (b).

: o gt 5 Cygfy
So each transformation (a? t9° a9 +9") — (Aa? 79" Aa9 +9") gives a couple
(C, D) of matrices solution.

Step 2 Let Dy be such a solution, with Dy # 0. Then we will find an invertible
matrix S such that Dy = S71I)S where

D0
Dy =
0 Dy
where Dy and Dy are two n x n matrices. (‘This is feasable from the matrices

reduction theory, however I did no simulation. See for example [1]). Dy will
(] 3 . ¢ £ < &
come [rom a? +¢° 5 Xa? T9° and 1)y will come from a?" 9" — Aa? H9°.

Step 3 The matrix S gives a change of variables on the p; variables: let p}, ..., p},
be the terms changed by Dy and ¢/, ... ¢}, be the terms changed by D, Then
the n equations d; can be rewritten in » equations like this:

n T n T

DD mkuith = DY wwuith,  1<i<n

J=1lk=1 i=lk=1

Step 4 Let d7,... .4, be the terms of the left side of this equation:

n n

3= ZZ/L,‘jky_,'p;;. I <1< n.

g=1 k=1
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These terms come from a9 19 . b. From these terms we will find an operation
A x y exactly as we did for the little Dragon algorithm. So if ¢ = v (as in
paragraph 2 example 2 with v = 0 or as in the (G1) equation of MIIP-3) then
we will just compute yhl with this * operation. What about more general cases,
i.e. when the transformation from b to @ is more complex than b = a"'? Duc
to the lack of space please see the extended version of this paper. (The idea is
to find the analogy of b — (N(b)/6)*" in y with the * operation as the basic
operation on y).

9 Cryptanalysis of MIIP-3

Now we will give an algorithm for the cryptanalysis of the MIIP-3 algorithm.
For simplicity we will assume that s and ¢ are lincar (this probably docs not
change a lot of things). Since s and t are linear we know from paragraph 4 that
the public key LdIl be given as a sct of about 3n equations like this (sometimes

more): p ZZ VijeZ; 2k, 1 <1 < 3n, plus a set of about 3n equations like
j=lk=1
3n n
this: Z Zfijkpjyk = 0, 1 <1 < 3n. These equations come from
Jj=1lk=1

@

. ) ‘ o ,
(G B b =b. 07 (G2): A = b (3): AT 77 = b . BT
where A = a'+9" B = a!*+9’ and ¢ = o’ +¢°. (Somnetimes we have more than
these 3n equations, but for simplicity we will assume that there are only these
3n equations and that they give a vector space of dimension 3n).

3In n

Let §; = Zzéijkpjyk‘ The values &;, 1 < i < 3n, are public. We denote by
J=1lk=1

§=(d1,...,d3,) and by p = (p1,... ,psn). The cryptanalysis is in three steps.

Step 1 We compute (by Gaussian reductions) the vector space of all the lincar
transformations D) and £ such that:

3n on

Vi, 1<i<n, (E@)) = > sl D(p))iue.

j=k k=1

E is a 3n x 3n matrix and D is also a 3n x 3n matrix.

We are sure to find a vector space of solutions of dimension at least n since
we have : VA € Fo., if B is changed in A’ B, ('in AC and A in A9 A4, then (G1)
is changed in A7’ (G1), (G2) in A7°((72) and (G3) in PUASM (G3).

Step 2 Let Ey be such a solution for F, with Fy # 0. Then we will find an
invertible matrix S such that £y = S7!E}S where
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E; 0 0
Ey=1| o fol 0
0 . 0 I

(This is feasable from the matrices reduction theory. See for example [4]).
E| comes from (G1l) — A7 (G1), E3 comes from (G2) — A¢°(G2) and Ej
comes from (G3) — A7 +4°(G3).

Step 3 From S we can isolate the equation {G1) from the other equations, and
so attack the scheme as a Dragon scheme as we did in paragraph 8.

Remark. For MIIP-4 (i.c. with the hidden equation b = a1+qal+q82+q83) the
same kind of polynomial attack exists.

10 Unclear cases

In all the schemes. Is the cryptanalysis more difficult if the transformations
s and ¢ are affine (instead of linear)? (Probably not, but I did not check).

For MIIP-3 and C*. In MITP-3, with the original public form, or in C™,
what do we do if 2 or 3 of the public polyomials are not given? The scheme will
still work in signature, and also in encryption if we had redundancy, but may be
more difficult to attack. (However if only one equation is not given with n = 64
and K = I then from the Birthday paradox we will easilly be able to find this
equation).

PART 3: A candidate for 64 bits signatures and
conclusion

11 A candidate Dragon algorithm for extremely
short signatures

Va € Fyn, Vb € (F,)?", let

k k'
f(a,b) = Z aiaqﬂ'ﬂﬂ' Ni(6) + Z a:aqﬂ' NI(b) + 8o,
i=1 i=1
wherc for all the indices ¢ we have: a;, af, 8g € Fyn, Bi, v, B!, k and k' are

integers, N; and N/ are affine functions of (F,;)*" — Fy« (as usual affine means
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affine over Fy), and where the degree d in the a variable is not too large (for
example d < 8000).

Then let a = s(z) and b = #(y) where s and { are two secret affine permu-
tations. In a basis f(a,b) = 0 gives n cquations of total degree three (degrec
two in a; and one in b; variables). These n equations will be writen in z; and
y; variables (Step 1) and then a linear and bijective transformation is done on
these equations (Step 2). We obtain like this a set () of n equations of total
degree three (degree two in z; and one in y; variables). (G) is public. f is secret
(this function is “hidden” by s and t).

For example ¢ = 2{, n = 64, and in f we have all the monomials a?” 2" and

all the monomials aQB' with 28+ + 27 < 8000 and 2" < 8000, and «; and al are
randomly chosen in Fyn, and N; and N/ are also randomly chosen.

Let M be a message to sign. The signature of M is (z||R) where R is any
small integer with no pattern 1000 in its expression in base 2 (for example R = 0).
 is any 64 bits value such that if we denote y = Hash (R||1000||M), then (z,y)
satisfies all the n equations of (7). Here Hash is a collision free Hash function
with 128 bits outputs (for example Hash = M D5), and || is the concatenation
function. So anybody can verify a signature (x, R) without any secret. In order
to compute the signature we will compute b = (~!(y), then we will solve in a
the equation f(a,b) = 0 (this is always feasable with a complexity polynomial
in d). If there is no solution, we try with another value R (for example R =1
instead of R = 0) until we find a solution a. Then z = s~!(a) is computed. On
average the length of the signature (R, z) will only be about 64 bits. (Moreover
we can also give only z as the signature and all the small values of R will be tried
one by one to check the signature). We avoid the “birthday paradox” since we
can not publicly compute y from ¢ but just check if z and y match together or
not. However the time to compute a signature is long so this schemc 1s not very
efficient. Its interest lies in the fact that it is the first candidate algorithm with
64 bits asymmetric signatures (I do not know any previous candidate). The best
attack that 1 know against this scheme nceds more than 25¢ computations. With
80 bits signature this attack needs more than 2% computations. Moreover after
these computations, only one signature is found: to compute another signature
the same huge computations are needed.

This algorithm is still a Dragon algorithm (since & and y are mixed) but with
a hidden function instead of a hidden monomaial.

Note 1 These attacks are based on the idea to do cxhaustive search on n — k&
variables z;, k small, and to find the £ other variables from the public equations.
I was no able to see somebody who knows il a better attack is known to solve a
randomly set on n quadratic equations over GF(2) when n ~ 64. I will try to
have the efficiency of the known algorithms for the conference in August. Maybe
n = 64 is easy even for random quadratic equations?

Note 2 For any signature scheme with signatures of length 64 bits that can sign
messages of arbitrary length, alter about 23? signatures two messages signed have
the same signaturc. However here the collision is obtained between {wo messages



60

signed by the owner of the secrets, and moreover only after 232 signatures, made
by himsell. So this may not be a problem.

Note 3 The function f (as in a variation of HFE) can also be more general,
as long as in a basis f(a,b) is of small degree in @; and b; variables and the
computation of a such that f(a,b) = 0 is feasable. For example a multivariate
resolution algorithm with a few variables (8 equations with 8 variables for ex-
ample with each variable on & bits) will be hidden as an intractable system of
64 equations with 64 variables a; and 64 variables b; by s and t.

12 Conclusion

In this paper, we have studied some algorithms based on the idea of a “hidden”
monomial. The motivation was that these algorithms are very efficient and that
some of these algorithms were candidate trapdoor one way permutations. Un-
fortunately we have seen that all the easy transformations of C* can be attacked
in polynomial complexity. (Some simulations would be require to test the va-
lidity of the attacks). We have also described a candidate algorithm for 64 bits
signatures that has so far resisted all attacks. However this algorithm is not very
efficient and also has no proof of security. So at present, the two algorithms of
[3] seem to remain the best candidates to try to repair the C* algorithm of [1].
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