
The Dark Side of “Black-Box’’ Cryptography
or: Should We Trust Capstone?

Adam Young“ arid Mot1 Yung**

Abstract. ‘I’he use of cryptographic devices as “black boxes”, namely
trusting their internal designs, has been suggested and i r i fact Capstone
technology i s offered as a next generation hardware-protectcd escrow en-
cryption technology. Software cryptographic servers and programs are
being offered as well, for use as library fiinctions, as cryptography gets
more a.nd more prevalent in computing environments. The question we
address in this paper is how the usage of cryptography as a black box
exposes users to various threats and attacks that are undetectable in
a black-box environment. We preseul the SETUP (Secretly Embedded
Trapdoor with Universal Protection) mechanism, which can be embed-
ded in a cryptographic black-box device. It enables an attacker (the
manufacturer) to get the user’s secret [from some stage of the output
process of the dcvice) in an unnoticeable fashion, yet protects against
attacks by others and against, reverse engineering (thus, maintaining the
relative advantage of the actual attacker). We also show how the SETUP
can, in fact, be employed for the design of “aubo-escrowing key” systems.
We present embeddings of S E l U P s in RSA, El-Gamal, DSA, and private
key systems (Kerberos). We implemented an RSA key-generation based
SETUP that performs favorably when compared to PGP, a readily avail-
able RSA implementation. We also relate message-based SETUPS and
subliminal channel attacks. Finally, we reflect on the potential irriplica-
tions o f “trust managernent? in the contcxt of the design and production
of cryptosystems.

Kcy words: Cryptanalytic attacks, hardware, software, RSA, DSA, b;IGa-
mall Kerberos, Private key, Public Key, applied systems, design a n d nianufactur-
ing of cryptographic devices arid software, Capstone, key cscrow, auto-escrowing
keys, sublimin a1 chanriels, rail donmess, pseii clor andoIriness.

1 Introduction

Black-box cryptography (i.e., crypto using protected devices) is often used, and
is strongly endorsed by tthe U.S. government, namely in the Clipper and in par-
ticular in Capstone escrow technology. Also, software crypt#osysterns are offered
and used where users do not necessarily check t,hcir code ailt,hcnticity. In effect,

* Dept. of Computer Scierice, Columbia Tiniversity Einail: ayoung~cs.colurribis.edu.
** IBM T.J. Watson Resei~rch Center, P.0. Box 218, Yorktown Heights, NY 10598,

USA. Ern ail: motiQwatson.ibm. con1

N. Koblitz (Ed.): Advances in Cryptology - CRYPT0 ’96, LNCS 1109, pp. 89-103, 1996.
Q Springer-Verlag Berlin Heidelberg 1996

90

these modes employ cryptography as a black-box. Some of the most important
questions that arise with respect t o black-box cryptography are the following:
Is the algorithm contained within the black-box secure? Does it leak secret key
information? If someone ever successfully reverse-engineers the black-box a m I
a t risk?

IIere, we present the notion of a SETUP mechanism that allows implementors
and attackers to modify cryptosystenis so that, they leak users’ key inforrnation
in such a way that protects the attacker and gives him (and only him) access to
keys. In the case of black-box devices, our results show that the same exclusive
ability of the attacker still holds in the case that a user successfully reverse-
engineers the device. Thus, we shed some light on the above issues by showing
how several existing cryptosystems can modified in this way. Furthermore, these
modifications are internal, and are designed in such a way that the resulting
cryptosystem conforms to the specifications of the original cryptosystem. Our
results indicate that software cryplosysterns can be modified t o leak key infor-
mation while significantly minimizing the attacker’s risk of getting caught. This
has serious irriplicatioris for network security systems. When a cryptosystern is
modified to leak secret key information subliminally using a SETUP implenieri-
tation (rather than a standard one), we call the cryptosystem a Contaminated
cryptosystem. The modifications t,hat, we present are general in the sense t>hat
they can be implemented by the designer of a cryptosysterri or by an attacker
that uses rogue software.

Specifically, we first show how RSA and ElGamal key generation programs
can be contaminated in such a way t8hat, a database of public keys created us-
irig the cryptosyslerri is eflectively a dahabase of publiclprivate key pairs with
respect to the attacker, exclusively. We also show how such an idea can be used
for hardware based overhead-free “auto-escrowing key” systems. We then present
message-based SETUPS that are related but stronger than the subliminal chan-
nels of Gus Simmons in ElGarnal and DSA. We also show how Kerberos can
be contaminated in such a way that the attacker can passively t ap the network
and exclusively derive session keys. We conclude with a disciission of suggested
measures on how to reduce and detect the existence of contamination in various
installations.

2 Definitions and Background

Informally, a Secretly Embedded Trapdoor with Universal Protection (SETUP)
mechanism is an algorithm that can be embedded within a cryptosystem to leak
encrypted secret key information through a subliminal channel in that cryptosys-
tem. This encryption is performed by a PKCS function E that is also contained
within the cryptosystem. Since the PKCS function E is a trapdoor one-way
function, and since i t is secretly embedded wit,hin the cryptosystem, we refer to
the mechanism as a secretly embedded trapdoor. The information that is leaked
through the subliminal channel of the cryptosystem is universally protected be-
cause even if the attacker is given access lo the ciphertext arid the embedded

91

function E , the secret key information still cannot b e determined The following
is a more formal definition of a SETUP mechanisrri (contains all the details, but,
avoids lengthy formalisms so as to keep the idea clear).

Definition 1:

Let C be a publicly known cryptosystem. A SETIJP mechanism i s an algorithiic
modification made to C to get C’ such that:

1. The input of C’ agrees with the public specifications of the input of C .
2. C’ computes using the attacker’s public encryption function E (and possibly

other functions as well), contained within C’.
3. ‘I’he attacker’s private decryption function D is not contained williin C’ and

is known only by the attacker.
4. The output of C’ agrees with the public specifications of the output of C .

At the same time, i t contains published bits (of the user’s secret, key) which
are easily derivable by the attacker but are otherwise hidden. (The output
can be generated during key-generation or during system operation).

5. Furthermore, the output of C and C’ are polynomialiy indistinguishable (see,
e.g., [ACGS]) t o everyone (including those who have access t o the code of
C’) except the attacker.

Definition 2:

Let C be a publicly known cryptosystem. A contaminated cryptlosystem C’ is a
modified version of C that contains a SE’TIJP mechanism.

Thus by forming C’ we have setup C1 to leak sccret key information. Such
an attack is carried out without letting the users know that the cryptosystem
in qiiestion is conlarninated, and without giving any advantagc t o those who
discover the contamination.

Related Work

Gus Simmons has pioneered the research in the area of subliminal channels and
their inclusion in cryptosystems [Sim85]. IIe has published channels in the Ong-
Schnorr-Shamir, EiGamal, Esign, and DSA digital signature schemes. Another
channel was discovered by Desmedt [DesSO] . Killiari arid Leighton [KL95] showed
how a key distribution channel containing a subliminal channel can be exploited
by attackers that agree on a way t o exploit i t . Wc are inspired by all of these
works and our goal is to point, out, that in the “black-box” context, the naive
and somewhat restricted looking “imperfectness” exhibited by channels leaking
information can becoiiie “serious flaws”. Furthermore, even if all agreements
among the parties are known, the danger persists due t o “new” applications of
cryptography itself (i.e., using crypto to attack crypto).

92

3 SETUP in RSA Key Generation

The obvious way to at,tack the RSA [RSA7K] key generation process is to include
a fixed prime number 11. Since q will be chosen randomly, the rriodulus will look
random to the casual observer. Obviously, th i s i s not a SETUP since anyone can
find all keys aft8er two have heen gencrated (using tthe Euclidean Algorilhm).
Hencc, reverse engineering requircs no effort at all. Using a fixed pseudorandom
seed is easily delected by reverse engineering as well.

A more advanced mechanism is as follows. Let n be the product, of two k-bit
primes p and q. Let e and d denotc public and private exponents respect,ively.
In t,liis description (e,n) and d are the keys being generated and (E,N) and D
are the attacker’s keys. The idea is to hide enough information within (eln) to
allow the attackcr to derive d from (e,n). Assurriirig the original cryptosyskm
generates e a l random from (0 , l}k, t,he following a.ttack can be performed. p
and q are chosen randomly from (0, l}k and are tested for primality. e is then
sct to be p E niod N . Let this ciplierkxt be denoted by p‘. If e and 4(n) are not
relat,ivcly prime, a new value for p is chosen and the process is repeated. Once
a valid e is found, d is coniputed as usual arid the public key (e,n) is published.
To determine p , the attacker looks up (e ,n) arid decrypts e with his private key.
If the result divides n evenly then he has siiccessfully factored the user’s public
modulus. ‘lhis SETUP mechanism cannot be used effectively iri programs like
PGP, since PGP uses very small expoiient,s (on the order of 5 bits). Therefore,
any such attack is unlikely t,o go unnoticed. Also, attacks with small e will enable
attacks on Rabin’s scheme [Rabin].

We will now introduce our strongest version of the RSA SEl’UP mechanism
by describing a program called Pretty-Awful-Privacy. PAP is very similar to
PGP, except that, t he author of PAP has t1he exclusive ability to factor the
public keys that are generated by PAP. In PAP, the problem of requiring a
large exponent, is circumvented entirely by hiding p’ i n the public modulus. PAP
hides p‘ in the upper order bit representat,ion of t,he public modulus, using a
storage method for information within t,he RSA key tha t was first pointed out
by Desmed t, [DcsSO]).

PAP works as follows. I t contains t,hr k-bit, RSA public key of the attacker
which is half the length of the key being gcneraied. It, first generates a random
k-bit prime p . It then randomizes 11 and makes siire t ha t the resulting value is in
the domain of the at , txker’s public key. Namely i t “randomizes” p using a keyed
randomizing function F. l h e key used in conjunction with F is (A’ + i) where
Ii‘ is fixed and i is an index initially zero. Let the resulting value be denoted by
p’. If p’ isn’t less than the attacker’s k-bit. modulus, then i is incremented and P’
is used once again. ‘I’his process continues at, most D1 times. If after B1 times,
a value less t,lian the att,acker’s rriodiilus isn’t reached, a new p is generat>ed and
the process is repeated (Bl is, say, 16).

Once a value for p’ is found it is cncrypted using the at,tacker’s public key
tBo get p”. PAP then runs a pseudo-random function G on p” using the key
(I< + j) where lr’ is tlie same as before arid j is an index initially zero. Let the
resulting value be denoted by p‘”. N o k tha t y”’ is a k-bit quantity. (We tried

93

to achieve a pseudo-raridoriiization of the values, and a mechariisni to sample
values relatively fast- t,he specific details can be changed). PAP then sets X to
be p”’ concaknated witah a bit-string randomly chosen from (0, l}k. To find the
other factor q , PAP divides X by p and t,hen test,s the quotient for prirriality.
q is set to be t,he quot,ient> if and only if Ihe quotient passes a primality test.
If the quotient isn’t primp, j is incremented by 1, and p”’ is recomputed. PAP
then reattempts t o find a quotient. that, is prime, PAP will continue this process
up t o B2 times. If this bound is reached, a new prime p is chosen at random, i
and j are set to zero, and the entire key gcneration process is repeated. The Bz
bourid gives a work factor that t,rndes off t h e required work of finding the prime
number q for increasing the work of recovering p [Has]. It can be shown using
suitable values for B1 a,nd HZ that the probability of finding a valid p and q is
appreciable, using the Prime Number Theorern [And71]” PAP initially set8s the
value of the public exponent, e being generated to 17. Once a valid q is found,
PAP checks to see if e and d (n) are relatively prime. If they aren’t t,hen e is
incremented by 2 unt>il t8hey we. n arid d are h r i c,alculated in the usual way.

To find out if a given public key was created using PAP, the attacker does
the following. He first sets U to be the upper ordcr bits of the victim’s public
modulus n such that there are k bits to the right of this value. He then decrypt,s
U using K + j and where j ranges from 0 to LIZ - I . The attacker then decrypts
all of these values using his private key to get t,he set of possible p” values.
Each potential p” is tJhen decrypted using F arid K + i where i ranges from 0 to
B1 - 1. If any of one of t,he resulting plainkxts divides n, then he has successfuily
factored the victim’s modulus. If a factor isn’t, found, then the attacker decrypts
I / + 1 and proceeds as before. Note that since PA]’ ignores the remainder up011
dividing X by p , it is possible that, a borrow bit, modified p” in the upper order
bits of n. It is for this reason that the at,tacker must try T i + 1 as well. If by then,
a factor isn’t found, tlic attacker concludes t,hat, his version of PAI’ was not, used
to generate the public key.

Note that t8he reason for encrypt,ing y with P’ prior to performing the public
key encrypt,iori is to ensure tha.t p can have a value larger than that, of t’he
attacker’s public modulus! The reason for encrypting the public key ciphertext,
using G is t o take advantage of the pseudo-randomness arid t o avoid the overhead
of excessive public key encryptions. In doing these extra encryptions we cut down
on the computational complexity of PAP mid ensure the randomness of p and
q . We implemented this SETUP niechanisnr using t,he GNIJ M P library. A more
complete description of our implernentat.ion is given in Appendix A.

3.1 Security of PAP

We will now show that by nmking certain rerr3ona.ble cryptographic assumptions,
the values for 11 and (I that, are chosen by PAP are random. Note t,hat p is
contained in (0, l}k, and that p is initially chosen uniformly at random. The
randomizing function F is a mapping from t,he sct, of prime numbers in (0. l}k
to [O..N-I], whcre N is (.he at,t,acker’s public modulus {recall that we only pass
primes t,o F).

94

Lemmal. Assumzng thut p and the k upper order bzds o f X are random, q as
random zn the set of k-bat przmes.

Let C be an RSA cryptosystem that generates RSA publiclprivale key pairs
in the usual way, with the restriction that its random values are chosen inde-
pendently from the user (this is the case in our modified version of PGP, see
Appendix A). Now if we assume that the application of G is similar t o applying
a random oracle (which a pseudo-random function in hardware-protection is!)
its range is indistinguishable from a truly random choice, hence we can show:

Theorem 1 PAP as a contamanated cryptosystem based on cryptosystem C.

Remark 1: The athcker’s key is used as a private cipher (encryption key
unknown- so a reduction of half the size is acceptable).

Remark 2: After reverse engineering, one learns the attacker’s encryption key.
If we assume it is a strong public-key system (given k) then the reverse-engirieer
cannot tell past or future keys since he does not see the random bits used in
their generation. The “reverse engineer” still needs to solve strong encryptions
by the attacker’s key

Remark 3: If we have the freedom to choose e , where e is half the size of n ,
then the attacker’s key can be the same size as the keys generated by the system.
In this case the encryption is split into two halves, half being put in N and half
in e. In this case we can also use RSA as a strong encryption (pseudo-random
generator [ACGS]), hiding the final seed for the attacker to invert in e .

4 An Application: Auto-Escrowing-Keys in Hardware

The notion of embedding a public key within a cryptosystem may lead to a glob-
ally trusted and efficient hardware key escrow mechanism. Each device would
have its own unique public key. The corresponding private keys would be es-
crowed among two or more agencies (as in threshold cryptography and function
sharing). If the communications from one device needs to be examined by law en-
forcement, the escrow agencies could combine their shares and the corresponding
private key could be reconstructed. The conimunicatioris device could be made
lamperproof, and in the event that it is ever successfully reverse engineered, it
will still be a difficult task t o derive private keys. This would allow the general
public, to scrutinize the devices design, arid would therefore provide assurance
as to how it, functions. Furthermore, there is 110 lengthy communications process
between users and escrow agents in detcrniinirig a key t o be used, and the users
are free to generate their own keys at any time. To erisure that users are us-
ing the escrow device to generate keys, the key distribution center can verify the
SETUP existence before making keys publicly available. (A user may be required
to perform key generation for a session based 011 its own and its partner’s keys-
this will be enough information for escrow regardless which partner is under a
wiretapping procedure).

95

We have shown tlhat, under the hardwar? protection of key generation and
assuming the use of RSA, we have, in effect, an escrow system. This is somewhat
in the opposite direction of [BFL95] who showed that private encryption with
universal escrow keys implies public-key crypt,ography.

Claim 1 Gwen RSA (or a more general puhlzc-key functaon) wath a SETrJP
an ats key generatzon procedure, we can zmplement a tamper-proof hnrdwarc k e y
escrow system with no system overhead.

Warning: It could be the case that public escrow keys themselves get gener-
ated using a contaminated cryptosystem. The key escrow agencies would there-
fore be fooled into thinking they were the only people who could access the
private escrow keys and guard t,he rights of individuals. So, “the guards them-
selves fail to guard”. This hierarchy of attacks demonstrates the extreme level
of caution that must be taken in regards to cryptosyst,ems.

5 SETUPS in ElGamal, DSA, and Kerberos

SETUP in ElGamal Key Generation

A similar subliminal channel can he implemented in EIGamal. The following is
a summary of normal ElGamal encryption [ElG85]:

Public Key: p,g,y
Private Key: z

Encryption: a = g‘ (mod p), b = y k M (mod p)
Decryption: M = b/a” (mod p)

Here M is the message being encryptcd and (a ,b) is t,he ciphertext of M. TO
generate a key pair, a prime number p is chosen at random (typically with
known factorization [Bac88]). Two numbers, g and z are chosen a t random such
that they are both less than p and g is a generator. The value for y is then
found by calculating g“ (mod p). Two simple versions of the subliminal channel
in ElGamal will now be described. Both versions require that the key generation
program is capable of choosing z and either p or g.

In the first vcrsion, it is assumed that p is shared by a group of users arid z
and g are generated by the key generation program. This attack is very similar
to the attack on RSA key generation. The value for 2 is chosen randomly and 2
is encrypted using the attacker’s public key arid a pseudorandom function to get
2’. If 2’ is less than p and it is a generator mod p (e.g., assuming p’s factorization
is known) then g is set to z‘. Otherwise, a new z is generated and t8he process
is repeated. To retrieve z the attacker looks up the public key and decrypts g
using his private key. The attacker’s key is an RSA key, say.

Consider now the (less likely) case in which g is shared among a group of users
and p is chosen by the key generation program. Another attack is as follows. The
value for 2 is chosen randomly and is encryptcd using the attacker’s public key

96

and a pseudoraridom function t,o get, T’. If z’ is a prime greater than g (and g
is a generator mod lzl ’, e.g. assuming lzl’ - 1 has easy factorization into one large
prime and other small prirnesj, and z is less than z’ , then p is set to be d. The
attacker can retrieve E by looking up the public key and decrypting p with his
private key.

Pure ElGamal systcm: Consider the case where we are free to choose
p and g during key generation. In this attack, ;c is encrypted using ElGamal
rather than RSA. Since only ElGamal is used (and private key cryptography),
the primitive routines for encryption need not, he stored in the rogue routine
since they are already present in the host cryptosystem. Let the attacker’s keys
be denoted by P, G . Y, and X. The contaminated cryptosystein generates r
randomly and then computes g and p the following way. A value is chosen at,
random. If it is relatively prime to P-1, theri k is sek to be this value. b is thcn
foiind by encryptiug z with k, Y , and P using ElGama,l. Hence b = Yka: mod P .
b is then encrypted with a private key to crea,te pseudorandom functions and
variability so t8hat one option meet,s our required distribution (as in RSA, tryirig
with increasing keys as a pseudorandom function until1 a bound or a siiccess is
reac.hed). If b is prime (we niay require that t,he h - 1-th factorization be known
and have m e largc prime, for cert!ifying the inst,ance), and if z is less than b ,
then a is calculated using k, G, and P. Hence, a = Gk m,od P . If a, is not less
than p then a new k is chosen and the process is repeated. Once a valid k , ~ ,
and b are found, p is set to t> and g is set to a. (Recall that we may have lo have
special primes and a special generator according to the key generation procedure
for the discrete logarithm problem in question.) Once g and p are chosen, y is
then ca1culat;ed using g, 2, arid p . If t,hc user publishes y, g , and p , then t8he
att,acker can compute c by decrypting g and p with liis private key.

The key generatmion atltjacks against, R,SA and ElGamal bear a strong resem-
b1anc.e to the ideas described in “Reflections on ‘I’rusting ‘rrust” by Ken Thomp-
son [Tho84]. Can programs be trusted to generate keys €or us? Can the programs
that make key generation programs be trust,ed? One way to prevent these at-
tacks is to design key generation programs so t ,hat Lhe user has the option to
choose his or her own random parameters whenever possible, or to at least allow
for testing at the t i r n e of installat,ion (in hardware). The user should be able
to check the devices manufactured by various vendors and compare the results.
This would limit t,he avenues that an attacker could use to install a SETUP. It
was pointed out to us by Diffic [Diffie] t>hnt in a typical cryptographic system, a
key generation program is often put into hardware in order to be able to declare
that “our syst,em is secure”. This “traditional wisdom” tilay need revision in light
of I h e altacks preserited lierein. Thc- r,riist, between producers of cryptosyslcrris
and users has tjo be built, on a differen(, foundation.

SETUP in ElGamal Signature SchexnP

In this section we introduce a SETUP where tahe leaking is done via t#hr sys-
tem’s messages (i.e., signature values). ‘Hie at,ttack is general in the sense that
users can change t’hcir public/privatje key pairs a t any time and the at,t,ack will

97

still work. Note that in the subliminal channel at,t,ack on signature schemes by
Gus Simmons, the attacking parties collaborate, namely, Bob must know Alice’s
private key in order t,o receive a subliminal message. This is not the case in the
SETUP attack.

Let p and .q (for the signature alg.) be shared among the users. A rogue
routine is installed in ElGarnal that contains the ElGamal public key of the
attacker. Let the public key of the attacker be denoted by p , g, and Y and Ict,
his private key be denoted by X. Note that, t,he 9 and p in the attacker’s public
key are the same as those in the ElGamal implementation. Let the user’s privat,e
key be denoted by z.

Our attack continually leaks 2 such that only the attacker can retrieve i t . For
the attacker to derive 2 he must obtain a t least two (wlog, consecutive) signatures
from Alice (at some point during the signing history), denoted by (r. i ,si) and
(ri+l sj,+l). It is also assumed that none of the random parameters are disclosed
t o the user, t o assure that the user cannot detect an attack. The computation of
the signature (r j , s;) proceeds in a similar way as in normal ElGamal. A random
number ki is generat,ed such that ki and p - 1 are relatively prime. In addition,
ki is used iff gcd(Ykl r ~ i o d p , p - I) = gcd(gi”-k’ mod P) mod p , p - 1) = 1. The
signature of Alice’s message mi is found by calculating, ri = g k z mod p , and
si = (ki-’(mi - m i)) mod p - 1. Alice’s subsequent signature is determined in a
slightly different way than usual. Rather than choosing k;+l randomly, its inverse
is chosen to be a specific value. We set kLyl to be Y k t m o d p . ki+l is then found by
calculating tmhc inverse of k,>ll m o d p , The signat,urc algorithm then proceeds as
normal. We set r;+l = g k l + l mod p and sit, = (ki+l -zri+])) mod ~ 7 - 1 .
Given these two digital signatures a.nd t,he corresponding messages, the attacker
can derive z by computing, z = r,~11(7r1;+1-(s;+1/(r;X’ r r w d p))) m o d p - 1 . Since
z was chosen to be less than p - 1, t,his yields Alice’s private key. Furthermore,
no one else can compute 2 since no one else knows the private key X.

Theorem 2 Given I - , , r7+1, s,+1 a n d m , + l ~ thP n t f a r k r r r a n compute x.

Proof.

Comment: the probability of getsting two consecutive signatures that permit
the computation of z can be increased by being more selective of the k i . The
following is how to accomplish this. We make k,+2 a function of ki+l in the same
way we made k i + l a function of k i . We the11 make kd+3 a furicliori of ki+z, and
so on. We therefore include a pseudo-random numhrr generator for the ki in the

contaminated cryptosystcm. The effectiveness of this method is limited due l o

the restrictions on ki. We can reduce this drawback by “looking ahead” and only
using ki’s tha t yield sets of valid ki’s witfh high cardinality.

The attack has been inspired by the work of Gus Simmons. T h e attack is
unique in tha t it exclusively allows an attacker t o compute z based on informa-
tion arranged by the cryptographic device. This attack, which is quite simple to
implement, implies t ha t there may exist olher SETUP attacks on cryptosystems
tha t give the implementor exclusive access to all enciphered information.

Application: Recall now the hypothetical situation proposed by Gus Simmons
regarding his subliminal attack on ElGarrial. Alice is in prison and wants to
coordinate an escape plan with Bob, who is on the outside. I t was originally
assumed tha t Bob already knows Alice’s private key. The SETUP attack is
more general since we can discard this pre-coordination assumption: Alice need
only look up Bob’s public key, and then contaminate her own cryptosystem
with i t . She can then send two signed messages to Bob, thereby giving him her
private key. The Simmons subliminal channel can then be used as usual. If their
relationship ever goes awry, Alice can rekcy and seek a new person to help her
plan an escape. In general this can be phrased as:

Theorem 3 If a s y s t e m has a message-based SETUP version, and the user s
are m e m b e r s of a public key s y s t e m (based o n a trapdoor p e r m u t a t i o n l ike RSA),
t h e n there exists a subl iminal channel between users who have not m e t earlier.

SETUP in DSA: SETUP from subliminal channels

In fact, the concept of securely disclosing keys via a SETUP can be used to
extend subliminal channels in general (ignoring speed and bandwidth), e.g. the
one found in DSA by Gus Simmons [SimYq]. One of the shortcomings of the
attack on DSA is tha t only a few bits (roughly 14) can be leaked in a given
signature. The other drawback i s tha t if anyone successfully reverse-engineers
the tamperproof devic,e, they will have access to the secret primes. The later
drawback can be readily solved by including the attacker’s public key in the
encryption device as a SETUP, and having the device compute the encryption
of the user’s private key with the attacker’s public key, with the ciphertext bits
leaked in the same way as described by Simmons. This will prevent everyone
except the designer of the dcvice from being able to derive the private keys of
others. A tamper proof device is therefore not needed, and the set of secret
primes can be made public. Tliis is a general strengthening, which gives the
following implication jt,hat is somewhat converse to the last theorem):

Theorem 4 If a cryptosystern has a subl iminal channel , t h e n as suming a lrap-
door permutat ion, (RSA, say) , it h a s n message-based SETUP version.

SETUP in Kerberos

In this section we show how Kerberos [N1“34] can be modified to leak session
keys exclusively to an attacker without putting the attacker at risk. The Kerberos

model is based OII a clierit server model in which the client, is either a user or
a program. Upon logging i n , the user first communicates with the Kerberos
authentication server and receives a ticket granting server (TGS) ticket. This
ticket is used to receive subsequent tickets to he used with various servers. Once
the user decides which service he wants, he sends a ticket request along with
the T G S ticket t o the ticket granting server. The user then receives a ticket for
a particular server. All Kerberos tickets have t imes tamps and are only valid
for a specified time interval. A concise descripliori of the ticket granting server
interaction will now be given.

Kerberos Table of Abbreviations
C : client
S : server
k , : x’s secret k e y
{m}k , : m encryp ted with x’s secret key
Ts,y :
Ax,y :

x‘s t icket to use y
Authen t i ca tor f r o m x to y

The following applies to Kerberos Version 5. To receive a server ticket and
server session key, the client sends the packet (s, {Te , tgs}k tgs , { A c } k c , t g s) to the
TGS. If the TGS ticket and Authenticator are valid then ({ k c , s } k c , t , q s , {Tc ,s }ks)
is sent back to the client.

Claim 2 Based on any puhlic-key cryptosystem there as u SETUP version of
the Ir‘erberos k e y dislribution mechanrsm.

The SETUP involves modifying the way the T G S functions by including a
rogue routine and the attacker’s public key. Rather than g e n e r a h g k,,, ra.n-
domly, the rogue routine receives k , , t g s from the t,icket and creates the plaintext,
m using rn = (k c , t g s , R N D) , where RN D is a random field. The plaintext rn is
then encrypted using the public key of the attacker to get the ciphertext m’ (say
of 512 bits). Since m’ is longer than the ticket we have to split it among a number
of tickets. m’ is exposed block by block, each time the value of { k , , , } k C , t g s is set
to be the next (still unexposed) block of mi. Fhch of the k, , , ’s is then found by
decrypting the corresponding block of m’ using k c , l g s . The derived ke ,s is then
placed into the Tc,s ticket. Given the blocks of m’ and the private key of the
attacker, one can get rri’ and recover the desired key, k , , t g s .

In more detail, this attack will give the at,t,acker access to the values k c , t g s and
kc , s t ha t can be found by passively tapping the network. The attack proceeds as
follows. The attacker modifies Kerberos to become a contaminated Kerberos by
modifying the Ticket Granting Server. He then eavesdrops on the network and
picks up packets emanating from the TGS. He also records any communications
session tha t he desires. When he wants t,o decrypt the session of client c (as-
suming the session was SETUP), lie performs the following algorithm. First, he
decrypts enough ciphertexts { k e , s } k c , t g s using his private key to get the blocks
of the plaintext rn. From m he gets k c , t g s .

The attack is secure a.gainst system administrators who discover the contam-
ination. The attacker breaks the sym~nct~ry het,ween what he can sec and what
the system administrator can see by including a public key within the ‘I’CS.
Without the private key, the set of { k c , , g) k r , t g s ’ s cannot be used to get k , , l g s by
anyone except the attacker

6 Conclusion

SETUP attacks would corriplctely compromise system securit,y if they were irn-
plemented and would give a unique advantage to the attacking party. Fortu-
nately, these mechanisms can only be abused by powerful entities, those who
implement systems and those who have root, access t,o soft,ware. These attacks
require one-time access to softwarc or dcvices. ‘I’hese attacks also have serious
implications for smart card technology. Should we trust the key generation soft-
ware that, comes with a smart card’? Even if key generation software is digitally
signed we have 110 assurance that it, wasn’t contaminated by its implementor
without explicitly analyzing its code. ‘l’he SPXYJP system “looks just the same”.
This is a serious problem, particularly if the software is proprietary and incorpo-
rates anti-piracy mechanisms t o make analysis difficult. Capstone, cryptographic
servers, and cryptographic libraries are all guards used t o prevent system infil-
tration. Due to the existence of SETUP at,t,acks, measures need to be taken to
guard these giiards. We conclude wi th recommendations that will help eliminate
or rninirriize the effrc.ts o f t,he at,t,acks.

1. Control of randomness is important given its indistinguishability from pseu-
dorandomnes. Thus, design software arid hardwarc that permit the user to
choose randoiii parameters, and make the algorithms used publicly known.
This allows the user to c.ornpare the aiitput of one implementation with
the output of a trusled irrlplerrlerltatiorl, basccl on uscr supplied parameters,
which should be t,he same.

2. If software is used to generate keys, be absolutely certain that the software is
trustworthy. Int,egrity checks can help detect modifications made to software
aftjer installation.

3 . Cascading cryptosysterns that are designed and implcnicnted by independent
sources is also a good measure.

4. In the case of smartcards, make the card support third party random number
generation devices. This will help corivirice users that a SETUP mechariism
isn’t being used in the smartcard.

5. Make sure the randomness source, the key generator, and the user (message
supplier) are three system components which arc? separated but, are well
aut,henticated, hard to bypass, and have private channels between them to
assure secrecy.

6. Tndiistry shnda rds for tcst,ing-modes which work wit,h user supplied rnn-
domness should help increase trust , in hardware devices.

101

O n e problem is t h a t very oftcn when left t,o Lheir own devices, users d o
not choose t ru ly random numbers . Yet. our resu lk indicate t,hat cryptosystems
cannot b e t rusted to d o so ei ther . It m a y thcrefore b e desirable to have a separat,e
program or hardware device that generat,es r a n d o m values. It is also obvious that
the “common wisdom” of reducing lack of t,rust to a “hardware component” with
a well defined specification, needs revision. The hardware components a n d their
source have to be included i n t h e t rus t model of t h e sys tem.

In s u m m a r y , we presented t h e notion of a SETUP rrieclianism and showed at,-
tacks against RSA, ElGamal, DSA, a n d Kerberos. The a t tacks employed “crypt0
from within” to a t tack cryptographic systems. We believe t h a t i t is i m p o r t a n t
for designers and syst,em adminis t ra tors t,o be aware of the potent ia l of a t tacks
like t h e ones described herein. By tak ing appropr ia te measures , analyzing t r u s t
relalioriships, a n d by making t h e necessary modifications to existing systems, we
can t r y to ensure that cryptosystems provide t h e degrec of t r u s t a n d security
that we expcct them to provide.

Acknowledgements:
W e would like to acknowledge I h e liclp of Matt Hast ings for refining some of the
a t tacks described

References

[ACGS] W. Alexi, R. (%or, 0. Goldreich and (;, Schnorr. RSA and Rabin Functions:
In S I A M Journal of Computing, Certain Parts are as Hard as the Whole.

volume 17, n . 2, pages 194--209, April 1988.
[And711 G . E. Andrews. ”Nuniber Theory,” page 100, 1971. Dover Publications Inc.
[Bac88] E. Bach. How To Generate Factored Hmtlom Numbers. In SIAM Journal o./

[BFL95] M. Blaze, J . Feigenbaum and . Leighton. Masterkey Cryptosystems,

[OesSO] Yvo Dcismedt. Abuses in Cryptography arid How to Fight Them. In Advances

[Diffie] W. Diffie, Personal Commiinication.
[DSSSI]

Computing, volume 17, n. 2, April 1988.

C R Y P T 0 95 Rump session, Aug. 1995.

in Cryptology--CRYPT0 ’88, pages 375-389; Berlin, 1990. Springer-Verlag.

Proposed Federal Information Processing Standard for Digital Signature
Standard (DSS). In volume 56, n. 169 of Federul Regzster, pages 42980-42982,
1991.

[ElG85] T. ElGarrial. A Public-Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In Advances in Cryplptology- CRYPT0 ’84, pages 10-18,
Berlin, 1985. Springer-Verlag.

[Has] Matthew U. Hastings, private communication.
[KL95] J. Killian and F.T. Leighton. Fair Cryptosystems Revisit,ed. In Advances zn

Cryptology-- C R Y P T 0 ’95, pages 208-221, Berlin, l Y 9 S . Springer-Verlag.
[T,MS] J. Lacy, D. Mitchell, W. Schell. Crypt,oT,ib: Cryptography in Software. AT&‘l’

Bell Laboratories, section 2.2.1.
[hIB95] D. Mikhcll, M. €31
[NT94] B. C. Neiinian, ‘r. ’0 . Kvrbei-m: An Authmtication Service for Computrr

. truerand.c, ATL‘I’ Lahoratories, 1995.

Net,works. In I E E E Cornfnunicatzon,.i hfngozzrir, pages 33-38, Sept. 1994.

102

[Rabin] M. Rabin. A Public-key and Signature Scheme as Secure as Factoring, MIT
Tech. Report, 1978.

[RSA78] R. Rivest, A. Shamir, L. Adleman. A method for obtaining Digital Signatures
and Public-Key Cryptosystems. In Communications of the ACM, volume 21,
n. 2, pagcs 120-126, 1978.

[Sim85] G. J . Simmons The Subliminal Channel and Digital Signatures. In Advances
in Cryptology- -EUROCRYPT ’84, pages 51-57, Berlin, 1985. Springer-Verlag.

[Sirn94] G. J . Simmons. Subliminal Channels: Past arid Present. In European Trans.
on Telecommunication, 5(4), 1994, PAGES 459-473.

[Tho841 K. Thompson. In Communications of the
ACM, volume 27, n. 8, August 1984.

[WN] D. Wheeler, R. Needham. Tiny Encryption Algorithm (TEA). In Fast SoJt-
ware Encryption: second internution workshop, volume 1008 of Lecture Notes
in comput,er science, Dec. 1994. Springer.

Reflections on Trusting Trust.

[Zim92] Phil Zirnmerniao. PGP User’s C h d e , 4 Dec. 1992.

A Comparative Performance: RSA SETUP vs. PGP

We compared the average key generation running time of our “SETUP program”
with a modified version of PGP 2.6. Our program was written in ANSI C and was
linked with the GNU MP library version 1.3.2. Our program generates a 512 bit
RSA public/private key pair using the SETUP mechariism described in this work.
Our implementation uses truerand [MB95], which is part of CryptoLib [LMS],
to generate physically random seeds for the pseudo-random number generator.
We chose to use TEA [WN] as our pseudo-randoni function (any other block
cipher like DES will do). We used the probabilistic prirnality test from Knuth
to test the random values. We found that we had good results with B1 equal to
16. The value for Bz was 512.

Our goal in doing the comparison was only t,o see if our RSA SETUP mecha-
nism took noticeably more time than PGP, and to get a feel for the practicality
of thc SETUP as a solution to the problem of key escrow. Since our program
was developed using the G N U MP library, and since PGP is based on RSALIB,
we did not do as close a comparison with PGP as possible (since we wanted only
rough figures). Ideally one would start with PGP and then rnodify it as little
as possible in order to introduce a SETUP mechanisni. Our (quick) approach
was to modify PGP to use the same random number generation routines, and
to make it generat’e primes in a similar manlier as the SF:TUP.

The primary changes that we made to PGP were the following. We modified
randombits0 to invoke rand() instead of randornunit(). We removed the PGP
random generation routine calls in rsa-keygen() . We also removed the test that
is performed on the new key. We modificd randomprime0 to be the following:

int randomprime(unitptr p, short nbits)
c
int numTested=O;

103

GenThatPrime :
if (numTested == 10)

srand(truerand()) ; randombits (p,nbits-2) ;numTested++;
mp-setbit(p, nbits - l);mp-setbit(p, nbits - 2) ;
if (primetest(p)) return 0;
else goto GenThatPrime;
1 /* randomprime */

CnumTested = 0;printf ("Testing 10 more nums for primality\n");)

We performed o u r benchmark from the beginning of rsa-keygen() up until
the end of rsalteygeno.

Table 1
512 bit RSA key generation times in seconds 0 'l'rial]Modified PGPISETUP gen[SETUP decr[j

flAveraxe1 108.9 25.9

The Modified PGP column lists the modified PGP key generation times.
The SETUP gen column lists the SETUP key generation times. The SETUP
decr column lists the amount of time required to derive a private key from
the corresponding public key. We found that there is no appreciable difference
between the running times of the modified PGP and our SETUP. We therefore
believe that it may be possible to modify PGP to contain an RSA SETUP
mechanism such that it can't be detected by analyzing key generation times
alone.

	1 Introduction
	2 Definitions and Background
	Definition 1:
	Definition 2:
	Related Work

	3 SETUP in RSA Key Generation
	3.1 Security of PAP

	4 An Application: Auto-Escrowing-Keys in Hardware
	5 SETUPS in ElGamal, DSA, and Kerberos
	SETUP in ElGamal Key Generation
	SETUP in ElGamal Signature SchexnP
	SETUP in DSA: SETUP from subliminal channels
	SETUP in Kerberos
	Kerberos Table of Abbreviations

	6 Conclusion
	Acknowledgement
	References

