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Abstract. ‘I’he use of cryptographic devices as “black boxes”, namely 
trusting their internal designs, has been suggested and i r i  fact Capstone 
technology i s  offered as a next generation hardware-protectcd escrow en- 
cryption technology. Software cryptographic servers and programs are 
being offered as well, for use as library fiinctions, as cryptography gets 
more a.nd more prevalent in computing environments. The  question we 
address in this paper is how the usage of cryptography as a black box 
exposes users to  various threats and attacks that  are undetectable in 
a black-box environment. We preseul the SETUP (Secretly Embedded 
Trapdoor with Universal Protection) mechanism, which can be embed- 
ded in a cryptographic black-box device. It enables an attacker (the 
manufacturer) to get the user’s secret [from some stage of the output 
process of the dcvice) in an unnoticeable fashion, yet protects against 
attacks by others and against, reverse engineering (thus, maintaining the 
relative advantage of the actual attacker). We also show how the SETUP 
can, in fact, be employed for the design of “aubo-escrowing key” systems. 
We present embeddings of S E l U P s  in RSA, El-Gamal, DSA, and private 
key systems (Kerberos). We implemented an RSA key-generation based 
SETUP that  performs favorably when compared to  PGP, a readily avail- 
able RSA implementation. We also relate message-based SETUPS and 
subliminal channel attacks. Finally, we reflect on the potential irriplica- 
tions o f  “trust managernent? in the contcxt of the design and production 
of cryptosystems. 

Kcy words: Cryptanalytic attacks, hardware, software, RSA, DSA, b;IGa- 
mall  Kerberos, Private key, Public Key, applied systems, design a n d  nianufactur- 
ing of cryptographic devices arid software, Capstone, key cscrow, auto-escrowing 
keys, sublimin a1 chanriels, rail donmess, pseii clor andoIriness. 

1 Introduction 

Black-box cryptography (i.e., crypto using protected devices) is often used, and 
is strongly endorsed by tthe U.S. government, namely in  the Clipper and in par- 
ticular in Capstone escrow technology. Also, software crypt#osysterns are offered 
and used where users do not necessarily check t,hcir code ailt,hcnticity. In effect, 
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these modes employ cryptography as a black-box. Some of the most important 
questions that  arise with respect t o  black-box cryptography are the following: 
Is the algorithm contained within the black-box secure? Does it leak secret key 
information? If someone ever successfully reverse-engineers the black-box a m  I 
a t  risk? 

IIere, we present the notion of a SETUP mechanism that allows implementors 
and attackers to  modify cryptosystenis so that, they leak users’ key inforrnation 
in such a way that protects the attacker and gives him (and only him) access to 
keys. In the case of black-box devices, our results show that  the same exclusive 
ability of the attacker still holds in the case that a user successfully reverse- 
engineers the device. Thus, we shed some light on the above issues by showing 
how several existing cryptosystems can modified in this way. Furthermore, these 
modifications are internal, and are designed in such a way that the resulting 
cryptosystem conforms to  the specifications of the original cryptosystem. Our 
results indicate that software cryplosysterns can be modified t o  leak key infor- 
mation while significantly minimizing the attacker’s risk of getting caught. This 
has serious irriplicatioris for network security systems. When a cryptosystern is 
modified to leak secret key information subliminally using a SETUP implenieri- 
tation (rather than a standard one), we call the cryptosystem a Contaminated 
cryptosystem. The modifications t,hat, we present are general in the sense t>hat 
they can be implemented by the designer of a cryptosysterri or by an attacker 
that  uses rogue software. 

Specifically, we first show how RSA and ElGamal key generation programs 
can be contaminated in such a way t8hat, a database of public keys created us- 
irig the cryptosyslerri is eflectively a dahabase of publiclprivate key pairs with 
respect to the attacker, exclusively. We also show how such an idea can be used 
for hardware based overhead-free “auto-escrowing key” systems. We then present 
message-based SETUPS that are related but stronger than the subliminal chan- 
nels of Gus Simmons in ElGarnal and DSA. We also show how Kerberos can 
be contaminated in such a way that the attacker can passively t ap  the network 
and exclusively derive session keys. We conclude with a disciission of suggested 
measures on how to reduce and detect the existence of contamination in various 
installations. 

2 Definitions and Background 

Informally, a Secretly Embedded Trapdoor with Universal Protection (SETUP) 
mechanism is an algorithm that can be embedded within a cryptosystem to leak 
encrypted secret key information through a subliminal channel in that cryptosys- 
tem. This encryption is performed by a PKCS function E that  is also contained 
within the cryptosystem. Since the PKCS function E is a trapdoor one-way 
function, and since i t  is secretly embedded wit,hin the cryptosystem, we refer to 
the mechanism as a secretly embedded trapdoor. The information that is leaked 
through the subliminal channel of the cryptosystem is universally protected be- 
cause even if the attacker is given access lo the ciphertext arid the embedded 
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function E ,  the secret key information still cannot b e  determined The following 
is a more formal definition of a SETUP mechanisrri (contains all the details, but, 
avoids lengthy formalisms so as to keep the idea clear). 

Definition 1: 

Let C be a publicly known cryptosystem. A SETIJP mechanism i s  an algorithiic 
modification made to C to get C’ such that: 

1. The input of C’ agrees with the public specifications of the input of C .  
2. C’ computes using the attacker’s public encryption function E (and possibly 

other functions as well), contained within C’. 
3.  ‘I’he attacker’s private decryption function D is not contained williin C’ and 

is known only by the attacker. 
4. The output of C’ agrees with the public specifications of the output of C .  

At the same time, i t  contains published bits (of the user’s secret, key) which 
are easily derivable by the attacker but are otherwise hidden. (The output 
can be generated during key-generation or during system operation). 

5. Furthermore, the output of C and C’ are polynomialiy indistinguishable (see, 
e.g., [ACGS]) t o  everyone (including those who have access t o  the code of 
C’) except the attacker. 

Definition 2: 

Let C be a publicly known cryptosystem. A contaminated cryptlosystem C’ is a 
modified version of C that contains a SE’TIJP mechanism. 

Thus by forming C’ we have setup C1 to leak sccret key information. Such 
an attack is carried out without letting the users know that the cryptosystem 
in qiiestion is conlarninated, and without giving any advantagc t o  those who 
discover the contamination. 

Related Work 

Gus Simmons has pioneered the research in the area of subliminal channels and 
their inclusion in cryptosystems [Sim85]. IIe has published channels in the Ong- 
Schnorr-Shamir, EiGamal, Esign, and DSA digital signature schemes. Another 
channel was discovered by Desmedt [DesSO] . Killiari arid Leighton [KL95] showed 
how a key distribution channel containing a subliminal channel can be exploited 
by attackers that agree on a way t o  exploit i t .  Wc are inspired by all of these 
works and our goal is to  point, out, that  in the “black-box” context, the naive 
and somewhat restricted looking “imperfectness” exhibited by channels leaking 
information can becoiiie “serious flaws”. Furthermore, even if all agreements 
among the parties are known, the danger persists due t o  “new” applications of 
cryptography itself (i.e., using crypto to  attack crypto). 
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3 SETUP in RSA Key Generation 

The  obvious way to at,tack the RSA [RSA7K] key generation process is to include 
a fixed prime number 11. Since q will be chosen randomly, the rriodulus will look 
random to the casual observer. Obviously, th i s  i s  not a SETUP since anyone can 
find all keys aft8er two have heen gencrated (using tthe Euclidean Algorilhm). 
Hencc, reverse engineering requircs no effort at all. Using a fixed pseudorandom 
seed is easily delected by reverse engineering as well. 

A more advanced mechanism is as follows. Let n be the product, of two k-bit 
primes p and q. Let e and d denotc public and private exponents respect,ively. 
In t,liis description (e,n) and d are the  keys being generated and  (E,N) and D 
are the attacker’s keys. The idea is to hide enough information within (eln) to 
allow the  attackcr to derive d from (e,n).  Assurriirig the original cryptosyskm 
generates e a l  random from (0 ,  l}k, t,he following a.ttack can be performed. p 
and q are chosen randomly from (0,  l}k and are tested for primality. e is then 
sct to be p E  niod N .  Let this ciplierkxt be denoted by p‘. If e and 4(n)  are not 
relat,ivcly prime, a new value for p is chosen and the process is repeated. Once 
a valid e is found, d is coniputed as usual arid the public key (e,n) is published. 
To determine p ,  the attacker looks up ( e ,n )  arid decrypts e with his private key. 
If the  result divides n evenly then he  has siiccessfully factored the  user’s public 
modulus. ‘lhis SETUP mechanism cannot be used effectively iri programs like 
PGP, since PGP uses very small expoiient,s (on the order of 5 bits). Therefore, 
any such attack is unlikely t,o go unnoticed. Also, attacks with small e will enable 
attacks on Rabin’s scheme [Rabin]. 

We will now introduce our strongest version of the  RSA SEl’UP mechanism 
by describing a program called Pretty-Awful-Privacy. PAP is very similar to 
PGP, except that, t he  author of PAP has t1he exclusive ability to  factor the 
public keys that are generated by PAP. In PAP, the problem of requiring a 
large exponent, is circumvented entirely by hiding p’ i n  the public modulus. PAP 
hides p‘ in the upper order bit representat,ion of t,he public modulus, using a 
storage method for information within t,he RSA key tha t  was first pointed out 
by Desmed t, [DcsSO]). 

PAP works as follows. I t  contains t,hr k-bit, RSA public key of the attacker 
which is half the length of the key being gcneraied. It, first generates a random 
k-bit prime p .  It then randomizes 11 and makes siire t ha t  the resulting value is in 
the domain of the  at , txker’s public key. Namely i t  “randomizes” p using a keyed 
randomizing function F. l h e  key used in conjunction with F is (A’ + i )  where 
Ii‘ is fixed and i is an index initially zero. Let the resulting value be denoted by 
p’. If p’ isn’t less than  the attacker’s k-bit. modulus, then i is incremented and P’ 
is used once again. ‘I’his process continues at, most D1 times. If after B1 times, 
a value less t,lian the att,acker’s rriodiilus isn’t reached, a new p is generat>ed and  
the process is repeated (Bl is, say, 16). 

Once a value for p’ is found it is cncrypted using the  at,tacker’s public key 
tBo get p”. PAP then runs a pseudo-random function G on p” using the key 
(I< + j) where lr’ is tlie same as before arid j is an index initially zero. Let the  
resulting value be denoted by p‘”. N o k  tha t  y”’ is a k-bit quantity. (We tried 
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to  achieve a pseudo-raridoriiization of the values, and a mechariisni to  sample 
values relatively fast- t,he specific details can be changed). PAP then sets X to 
be p”’ concaknated witah a bit-string randomly chosen from (0, l}k. To find the 
other factor q ,  PAP divides X by p and t,hen test,s the quotient for prirriality. 
q is set to  be t,he quot,ient> if and only if Ihe quotient passes a primality test. 
If the quotient isn’t primp, j is incremented by 1, and p”’ is recomputed. PAP 
then reattempts t o  find a quotient. that, is prime, PAP will continue this process 
up t o  B2 times. If this bound is reached, a new prime p is chosen at random, i 
and j are set to  zero, and the entire key gcneration process is repeated. The Bz 
bourid gives a work factor that t,rndes off t h e  required work  of finding the prime 
number q for increasing the work of recovering p [Has]. It can be shown using 
suitable values for B1 a,nd HZ that  the probability of finding a valid p and q is 
appreciable, using the Prime Number Theorern [And71]” PAP initially set8s the 
value of the public exponent, e being generated to 17. Once a valid q is found, 
PAP checks to see if e and d ( n )  are relatively prime. If they aren’t t,hen e is 
incremented by 2 unt>il t8hey we.  n arid d are h r i  c,alculated in the usual way. 

To find out if a given public key was created using PAP, the attacker does 
the following. He first sets U to  be the upper ordcr bits of the victim’s public 
modulus n such that there are k bits to the right of this  value. He then decrypt,s 
U using K + j and where j ranges from 0 to  LIZ - I .  The attacker then decrypts 
all of these values using his private key to  get t,he set of possible p” values. 
Each potential p” is tJhen decrypted using F arid K + i where i ranges from 0 to 
B1 - 1. If any of one of t,he resulting plainkxts divides n,  then he has successfuily 
factored the victim’s modulus. If a factor isn’t, found, then the attacker decrypts 
I /  + 1 and proceeds as before. Note that since PA]’ ignores the remainder up011 
dividing X by p ,  it is possible that, a borrow bit, modified p” in the upper order 
bits of n. It is for this reason that  the at,tacker must try T i  + 1 as well. If by then, 
a factor isn’t found, tlic attacker concludes t,hat, his version of PAI’ was not, used 
to generate the public key. 

Note that t8he reason for encrypt,ing y with P’ prior to  performing the public 
key encrypt,iori is to  ensure tha.t p can have a value larger than that, of t’he 
attacker’s public modulus! The reason for encrypting the public key ciphertext, 
using G is t o  take advantage of the pseudo-randomness arid t o  avoid the overhead 
of excessive public key encryptions. In doing these extra encryptions we cut down 
on the computational complexity of PAP mid ensure the randomness of p and 
q .  We implemented this SETUP niechanisnr using t,he GNIJ M P  library. A more 
complete description of our implernentat.ion is given in Appendix A. 

3.1 Security of PAP 

We will now show that by nmking certain rerr3ona.ble cryptographic assumptions, 
the values for 11 and (I that, are chosen by PAP are random. Note t,hat p is 
contained in (0, l}k,  and that p is initially chosen uniformly at random. The 
randomizing function F is a mapping from t,he sct, of prime numbers in (0. l}k 
to [O..N-I], whcre N is (.he at,t,acker’s public modulus {recall that we only pass 
primes t,o F).  
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Lemmal. Assumzng thut p and the k upper order bzds o f  X are random, q as 
random zn the set of k-bat przmes. 

Let C be an RSA cryptosystem that generates RSA publiclprivale key pairs 
in the usual way, with the restriction that its random values are chosen inde- 
pendently from the user (this is the case in our modified version of PGP, see 
Appendix A).  Now if we assume that the application of G is similar t o  applying 
a random oracle (which a pseudo-random function in hardware-protection is!) 
its range is indistinguishable from a truly random choice, hence we can show: 

Theorem 1 PAP as a contamanated cryptosystem based on cryptosystem C. 

Remark 1: The  athcker’s key is used as a private cipher (encryption key 
unknown- so a reduction of half the size is acceptable). 

Remark 2: After reverse engineering, one learns the attacker’s encryption key. 
If we assume it is a strong public-key system (given k) then the reverse-engirieer 
cannot tell past or future keys since he does not see the random bits used in 
their generation. The “reverse engineer” still needs to solve strong encryptions 
by the attacker’s key 

Remark 3: If we have the freedom to choose e ,  where e is half the size of n ,  
then the attacker’s key can be the same size as the keys generated by the system. 
In this case the encryption is split into two halves, half being put in N and half 
in e. In this case we can also use RSA as a strong encryption (pseudo-random 
generator [ACGS]), hiding the final seed for the attacker to  invert in e .  

4 An Application: Auto-Escrowing-Keys in Hardware 

The notion of embedding a public key within a cryptosystem may lead to  a glob- 
ally trusted and efficient hardware key escrow mechanism. Each device would 
have its own unique public key. The corresponding private keys would be es- 
crowed among two or more agencies (as in threshold cryptography and function 
sharing). If the communications from one device needs to  be examined by law en- 
forcement, the escrow agencies could combine their shares and the corresponding 
private key could be reconstructed. The conimunicatioris device could be made 
lamperproof, and in the event that  it is ever successfully reverse engineered, it 
will still be a difficult task t o  derive private keys. This would allow the general 
public, to scrutinize the devices design, arid would therefore provide assurance 
as to how it, functions. Furthermore, there is 110 lengthy communications process 
between users and escrow agents in  detcrniinirig a key t o  be used, and the users 
are free to  generate their own keys at any time. To erisure that  users are us- 
ing the escrow device to  generate keys, the key distribution center can verify the 
SETUP existence before making keys publicly available. (A user may be required 
to  perform key generation for a session based 011 its own and its partner’s keys- 
this will be enough information for escrow regardless which partner is under a 
wiretapping procedure). 
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We have shown tlhat, under the hardwar? protection of key generation and 
assuming the use of RSA, we have, in effect, an escrow system. This is somewhat 
in the opposite direction of [BFL95] who showed that private encryption with 
universal escrow keys implies public-key crypt,ography. 

Claim 1 Gwen RSA (or a more general puhlzc-key functaon) wath a SETrJP 
an ats key generatzon procedure, we can zmplement a tamper-proof hnrdwarc k e y  
escrow system with no system overhead. 

Warning: It could be the case that public escrow keys themselves get gener- 
ated using a contaminated cryptosystem. The key escrow agencies would there- 
fore be fooled into thinking they were the only people who could access the 
private escrow keys and guard t,he rights of individuals. So, “the guards them- 
selves fail to  guard”. This hierarchy of attacks demonstrates the extreme level 
of caution that  must be taken in regards to cryptosyst,ems. 

5 SETUPS in ElGamal, DSA, and Kerberos 

SETUP in ElGamal Key Generation 

A similar subliminal channel can he implemented in EIGamal. The following is 
a summary of normal ElGamal encryption [ElG85]: 

Public Key: p,g,y 
Private Key: z 

Encryption: a = g‘ (mod p),  b = y k M  (mod p) 
Decryption: M = b/a” (mod p) 

Here M is the message being encryptcd and (a ,b)  is t,he ciphertext of M. TO 
generate a key pair, a prime number p is chosen at  random (typically with 
known factorization [Bac88]). Two numbers, g and z are chosen a t  random such 
that they are both less than p and g is a generator. The value for y is then 
found by calculating g“ (mod p). Two simple versions of the subliminal channel 
in ElGamal will now be described. Both versions require that  the key generation 
program is capable of choosing z and either p or g. 

In the first vcrsion, it is assumed that p is shared by a group of users arid z 
and g are generated by the key generation program. This attack is very similar 
to the attack on RSA key generation. The value for 2 is chosen randomly and 2 
is encrypted using the attacker’s public key arid a pseudorandom function to  get 
2’. If 2’ is less than p and it is a generator mod p (e.g., assuming p’s factorization 
is known) then g is set to  z‘. Otherwise, a new z is generated and t8he process 
is repeated. To retrieve z the attacker looks up the public key and decrypts g 
using his private key. The attacker’s key is an RSA key, say. 

Consider now the (less likely) case in which g is shared among a group of users 
and p is chosen by the key generation program. Another attack is as follows. The  
value for 2 is chosen randomly and is encryptcd using the attacker’s public key 
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and a pseudoraridom function t,o get, T’. If z’ is a prime greater than g (and g 
is a generator mod lzl ’, e.g. assuming lzl’ - 1 has  easy factorization into one large 
prime and other small prirnesj, and z is less than z’ , then p is set to  be d. The 
attacker can retrieve E by looking up the public key and decrypting p with his  
private key. 

Pure ElGamal systcm: Consider the case where we are free to choose 
p and g during key generation. In this attack, ;c is encrypted using ElGamal 
rather than RSA. Since only ElGamal is used (and private key cryptography), 
the primitive routines for encryption need not, he stored in the rogue routine 
since they are already present in the host cryptosystem. Let the attacker’s keys 
be denoted by P, G .  Y,  and X. The contaminated cryptosystein generates r 
randomly and then computes g and p the following way. A value is chosen at, 
random. If it is relatively prime to P-1, theri k is sek to be this value. b is thcn 
foiind by encryptiug z with k, Y ,  and P using ElGama,l. Hence b = Yka: mod P .  
b is then encrypted with a private key to crea,te pseudorandom functions and 
variability so t8hat one option meet,s our required distribution (as in RSA, tryirig 
with increasing keys as a pseudorandom function until1 a bound or a siiccess is 
reac.hed). If b is prime (we niay require that t,he h - 1-th factorization be known 
and have m e  largc prime, for cert!ifying the inst,ance), and if z is less than b ,  
then a is calculated using k, G, and P. Hence, a = Gk m,od P .  If a, is not less 
than p then a new k is chosen and the process is repeated. Once a valid k , ~ ,  
and b are found, p is set to t> and g is set to a. (Recall that we may have lo  have 
special primes and a special generator according to  the key generation procedure 
for the discrete logarithm problem in question.) Once g and p are chosen, y is 
then ca1culat;ed using g, 2, arid p .  If t,hc user publishes y, g ,  and p ,  then t8he 
att,acker can compute c by decrypting g and p with liis private key. 

The key generatmion atltjacks against, R,SA and ElGamal bear a strong resem- 
b1anc.e to the ideas described in “Reflections on ‘I’rusting ‘rrust” by Ken Thomp- 
son [Tho84]. Can programs be trusted to generate keys €or us? Can the programs 
that  make key generation programs be trust,ed? One way to  prevent these at- 
tacks is to  design key generation programs so t ,hat Lhe user has the option to 
choose his or her own random parameters whenever possible, or to at least allow 
for testing at the t i r n e  of installat,ion (in hardware). The user should be able 
to  check the devices manufactured by various vendors and compare the results. 
This would limit t,he avenues that an attacker could use to install a SETUP. It 
was pointed out to us by Diffic [Diffie] t>hnt in a typical cryptographic system, a 
key generation program is often put into hardware in order to  be able to  declare 
that  “our syst,em is secure”. This “traditional wisdom” tilay need revision in light 
of I h e  altacks preserited lierein. Thc- r,riist, between producers of cryptosyslcrris 
and users has tjo be built, on a differen(, foundation. 

SETUP in ElGamal Signature SchexnP 

In this section we introduce a SETUP where tahe leaking is done via t#hr sys- 
tem’s messages (i.e.,  signature values). ‘Hie at,ttack is general in the sense that 
users can change t’hcir public/privatje key pairs a t  any time and the at,t,ack will 
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still work. Note that  in the subliminal channel at,t,ack on signature schemes by 
Gus Simmons, the attacking parties collaborate, namely, Bob must know Alice’s 
private key in order t,o receive a subliminal message. This is not the case in the 
SETUP attack. 

Let p and .q (for the signature alg.) be shared among the users. A rogue 
routine is installed in ElGarnal that contains the ElGamal public key of the 
attacker. Let the public key of the attacker be denoted by p ,  g,  and Y and Ict, 
his private key be denoted by X.  Note that, t,he 9 and p in the attacker’s public 
key are the same as those in the ElGamal implementation. Let the user’s privat,e 
key be denoted by z. 

Our attack continually leaks 2 such that only the attacker can retrieve i t .  For 
the attacker to  derive 2 he must obtain a t  least two (wlog, consecutive) signatures 
from Alice (at some point during the signing history), denoted by (r. i ,si)  and 
(ri+l sj,+l). It is also assumed that  none of the random parameters are disclosed 
t o  the user, t o  assure that  the user cannot detect an attack. The computation of 
the signature ( r j ,  s;) proceeds in a similar way as in normal ElGamal. A random 
number ki is generat,ed such that ki and p - 1 are relatively prime. In addition, 
ki is used iff gcd(Ykl r ~ i o d  p ,  p - I)  = gcd(gi”-k’ mod P) mod p ,  p - 1) = 1. The 
signature of Alice’s message mi is found by calculating, ri = g k z  mod p ,  and 
si = (ki-’(mi - m i ) )  mod p -  1. Alice’s subsequent signature is determined in a 
slightly different way than usual. Rather than choosing k;+l randomly, its inverse 
is chosen to be a specific value. We set kLyl to be Y k t  m o d  p .  ki+l is then found by 
calculating tmhc inverse of k,>ll m o d  p ,  The signat,urc algorithm then proceeds as 
normal. We set r;+l = g k l + l  mod p and sit, = (ki+l -zri+] )) mod ~ 7 -  1 .  
Given these two digital signatures a.nd t,he corresponding messages, the attacker 
can derive z by computing, z = r,~11(7r1;+1-(s;+1/(r;X’ r r w d p ) ) )  m o d p - 1 .  Since 
z was chosen to be less than p - 1, t,his yields Alice’s private key. Furthermore, 
no one else can compute 2 since no one else knows the private key X. 

Theorem 2 Given I - , ,  r7+1, s,+1 a n d  m , + l ~  thP  n t f a r k r r  r a n  compute x. 

Proof. 

Comment: the probability of getsting two consecutive signatures that  permit 
the computation of z can be increased by being more selective of the k i .  The 
following is how to accomplish this. We make k,+2 a function of ki+l in the same 
way we made k i + l  a function of k i .  We the11 make kd+3 a furicliori of ki+z, and 
so on. We therefore include a pseudo-random numhrr generator for the ki in the 



contaminated cryptosystcm. The  effectiveness of this method is limited due l o  

the restrictions on ki. We can reduce this drawback by “looking ahead” and only 
using ki’s tha t  yield sets of valid ki’s witfh high cardinality. 

The  attack has been inspired by the work of Gus Simmons. T h e  attack is 
unique in tha t  it exclusively allows an attacker t o  compute z based on informa- 
tion arranged by the cryptographic device. This attack, which is quite simple to 
implement, implies t ha t  there may exist olher SETUP attacks on cryptosystems 
tha t  give the  implementor exclusive access to all enciphered information. 

Application: Recall now the  hypothetical situation proposed by Gus Simmons 
regarding his subliminal attack on ElGarrial. Alice is in prison and  wants to 
coordinate an  escape plan with Bob, who is on the outside. I t  was originally 
assumed tha t  Bob already knows Alice’s private key. The  SETUP attack is 
more general since we can discard this pre-coordination assumption: Alice need 
only look up Bob’s public key, and then contaminate her own cryptosystem 
with i t .  She can then send two signed messages to Bob, thereby giving him her 
private key. The  Simmons subliminal channel can then be used as usual. If their 
relationship ever goes awry, Alice can rekcy and seek a new person to help her 
plan an  escape. In general this can be phrased as: 

Theorem 3 If a s y s t e m  has a message-based SETUP version,  and the  user s  
are m e m b e r s  of a public key  s y s t e m  (based o n  a trapdoor p e r m u t a t i o n  l ike  RSA), 
t h e n  there exists a subl iminal  channel  between users who have not m e t  earlier. 

SETUP in DSA: SETUP from subliminal channels 

In fact, the  concept of securely disclosing keys via a SETUP can be used to 
extend subliminal channels in general (ignoring speed and bandwidth), e.g. the 
one found in DSA by Gus Simmons [SimYq]. One of the shortcomings of the  
attack on DSA is tha t  only a few bits (roughly 14) can be leaked in a given 
signature. The  other drawback i s  tha t  if anyone successfully reverse-engineers 
the tamperproof devic,e, they will have access to the secret primes. The  later 
drawback can be readily solved by including the attacker’s public key in the 
encryption device as a SETUP,  and having the device compute the  encryption 
of the  user’s private key with the attacker’s public key, with the ciphertext bits 
leaked in the same way as described by Simmons. This will prevent everyone 
except the designer of the dcvice from being able to  derive the private keys of 
others. A tamper proof device is therefore not needed, and the  set of secret 
primes can be made public. Tliis is a general strengthening, which gives the 
following implication jt,hat is somewhat converse to  the  last theorem): 

Theorem 4 If a cryptosystern has  a subl iminal  channel ,  t h e n  as suming  a lrap- 
door permutat ion,  (RSA,  say ) ,  it h a s  n message-based SETUP version.  

SETUP in Kerberos 

In this section we show how Kerberos [N1“34] can be modified to leak session 
keys exclusively to  an  attacker without putting the attacker at risk. The  Kerberos 



model is based OII a clierit server model in which the client, is either a user or 
a program. Upon logging i n ,  the user first communicates with the  Kerberos 
authentication server and receives a ticket granting server (TGS) ticket. This 
ticket is used to receive subsequent tickets to he used with various servers. Once 
the user decides which service he wants, he sends a ticket request along with 
the T G S  ticket t o  the ticket granting server. The  user then receives a ticket for 
a particular server. All Kerberos tickets have t imes tamps  and are only valid 
for a specified time interval. A concise descripliori of the ticket granting server 
interaction will now be given. 

Kerberos Table of Abbreviations 
C :  client 
S :  server 
k ,  : x’s secret  k e y  
{m}k ,  : m encryp ted  with x’s secret key 
Ts,y : 
Ax,y : 

x‘s t icket  to use y 
Authen t i ca tor  f r o m  x to y 

The  following applies to Kerberos Version 5. To receive a server ticket and 
server session key, the client sends the packet (s, {Te , tgs}k tgs ,  { A c } k c , t g s )  to the 
TGS. If the  TGS ticket and Authenticator are valid then ( { k c , s } k c , t , q s ,  {Tc ,s }ks)  
is sent back to the  client. 

Claim 2 Based on any puhlic-key cryptosystem there as u SETUP version of 
the Ir‘erberos k e y  dislribution mechanrsm. 

The  SETUP involves modifying the way the T G S  functions by including a 
rogue routine and the attacker’s public key. Rather than g e n e r a h g  k,,, ra.n- 
domly, the rogue routine receives k , , t g s  from the t,icket and creates the plaintext, 
m using rn = ( k c , t g s ,  R N D ) ,  where RN D is a random field. The  plaintext rn is 
then encrypted using the public key of the attacker to get the ciphertext m’ (say 
of 512 bits). Since m’ is longer than the ticket we have to split it  among a number 
of tickets. m’ is exposed block by block, each time the value of { k , , , } k C , t g s  is set 
to be the next (still unexposed) block of mi. Fhch of the k, , , ’s  is then found by 
decrypting the corresponding block of m’ using k c , l g s .  The derived ke ,s  is then 
placed into the Tc,s ticket. Given the blocks of m’ and the  private key of the 
attacker, one can get rri’ and recover the desired key, k , , t g s .  

In more detail, this attack will give the at,t,acker access to the  values k c , t g s  and 
kc , s  t ha t  can be found by passively tapping the network. The  attack proceeds as 
follows. The  attacker modifies Kerberos to become a contaminated Kerberos by 
modifying the  Ticket Granting Server. He then eavesdrops on the network and 
picks up packets emanating from the TGS. He also records any communications 
session tha t  he desires. When he wants t,o decrypt the session of client c (as- 
suming the session was SETUP), lie performs the following algorithm. First, he 
decrypts enough ciphertexts { k e , s } k c , t g s  using his private key to get the blocks 
of the plaintext rn. From m he gets k c , t g s .  



The attack is secure a.gainst system administrators who discover the contam- 
ination. The attacker breaks the sym~nct~ry het,ween what he can sec and what 
the system administrator can see by including a public key within the ‘I’CS. 
Without the private key, the set of { k c , , g ) k r , t g s ’ s  cannot be used to  get k , , l g s  by 
anyone except the attacker 

6 Conclusion 

SETUP attacks would corriplctely compromise system securit,y if they were irn-  
plemented and would give a unique advantage to  the attacking party. Fortu- 
nately, these mechanisms can only be abused by powerful entities, those who 
implement systems and those who have root, access t,o soft,ware. These attacks 
require one-time access to softwarc or dcvices. ‘I’hese attacks also have serious 
implications for smart card technology. Should we trust the key generation soft- 
ware that, comes with a smart card’? Even if key generation software is digitally 
signed we have 110 assurance that it, wasn’t contaminated by its implementor 
without explicitly analyzing its code. ‘l’he SPXYJP system “looks just the same”. 
This is a serious problem, particularly if the software is proprietary and incorpo- 
rates anti-piracy mechanisms t o  make analysis difficult. Capstone, cryptographic 
servers, and cryptographic libraries are all guards used t o  prevent system infil- 
tration. Due to the existence of SETUP at,t,acks, measures need to be taken to 
guard these giiards. We conclude wi th  recommendations that will help eliminate 
or rninirriize the effrc.ts o f  t,he at,t,acks. 

1. Control of randomness is important given its indistinguishability from pseu- 
dorandomnes. Thus, design software arid hardwarc that  permit the user to 
choose randoiii parameters, and make the algorithms used publicly known. 
This allows the user to c.ornpare the aiitput of one implementation with 
the output of a trusled irrlplerrlerltatiorl, basccl on uscr supplied parameters, 
which should be t,he same. 

2. If software is used to  generate keys, be absolutely certain that  the software is 
trustworthy. Int,egrity checks can help detect modifications made to  software 
aftjer installation. 

3 .  Cascading cryptosysterns that are designed and implcnicnted by independent 
sources is also a good measure. 

4. In the case of smartcards, make the card support third party random number 
generation devices. This will help corivirice users that  a SETUP mechariism 
isn’t being used in the smartcard. 

5. Make sure the randomness source, the key generator, and the user (message 
supplier) are three system components which arc? separated but, are well 
aut,henticated, hard to  bypass, and have private channels between them to 
assure secrecy. 

6. Tndiistry shnda rds  for tcst,ing-modes which work wit,h user supplied rnn- 
domness should help increase trust ,  in hardware devices. 
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O n e  problem is t h a t  very oftcn when left t,o Lheir own devices, users d o  
not choose t ru ly  random numbers .  Yet. our resu lk  indicate  t,hat cryptosystems 
cannot  b e  t rusted to d o  so ei ther .  It m a y  thcrefore b e  desirable to have a separat,e 
program or hardware  device that generat,es r a n d o m  values. It is  also obvious that 
the “common wisdom” of reducing lack of t,rust to a “hardware component”  with 
a well defined specification, needs revision. The hardware components  a n d  their  
source have to be included i n  t h e  t rus t  model  of t h e  sys tem.  

In s u m m a r y ,  we presented t h e  notion of a SETUP rrieclianism and showed at,- 
tacks against  RSA, ElGamal, DSA, a n d  Kerberos. The a t tacks  employed “crypt0 
from within” to a t tack  cryptographic  systems.  We believe t h a t  i t  is i m p o r t a n t  
for designers and syst,em adminis t ra tors  t,o be aware of the potent ia l  of a t tacks  
like t h e  ones described herein. By tak ing  appropr ia te  measures ,  analyzing t r u s t  
relalioriships, a n d  by making t h e  necessary modifications to existing systems,  we 
can  t r y  to ensure that cryptosystems provide t h e  degrec of t r u s t  a n d  security 
that we expcct  them to provide. 
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A Comparative Performance: RSA SETUP vs. PGP 

We compared the average key generation running time of our “SETUP program” 
with a modified version of PGP 2.6. Our program was written in ANSI C and was 
linked with the GNU MP library version 1.3.2.  Our program generates a 512 bit 
RSA public/private key pair using the SETUP mechariism described in this work. 
Our implementation uses truerand [MB95], which is part of CryptoLib [LMS], 
to generate physically random seeds for the pseudo-random number generator. 
We chose to use TEA [WN] as our pseudo-randoni function (any other block 
cipher like DES will do). We used the probabilistic prirnality test from Knuth 
to test the random values. We found that we had good results with B1 equal to 
16. The value for Bz was 512. 

Our goal in doing the comparison was only t,o see if our RSA SETUP mecha- 
nism took noticeably more time than PGP, and to  get a feel for the practicality 
of thc SETUP as a solution to the problem of key escrow. Since our program 
was developed using the G N U  MP library, and since PGP is based on RSALIB, 
we did not do as close a comparison with PGP as possible (since we wanted only 
rough figures). Ideally one would start with PGP and then rnodify it as little 
as possible in order to introduce a SETUP mechanisni. Our (quick) approach 
was to modify PGP to use the same random number generation routines, and 
to make it generat’e primes in a similar manlier as the SF:TUP. 

The primary changes that we made to PGP were the following. We modified 
randombits0 to invoke rand() instead of randornunit(). We removed the PGP 
random generation routine calls in rsa-keygen() . We also removed the test that 
is performed on the new key. We modificd randomprime0 to be the following: 

int randomprime(unitptr p, short nbits) 
c 
int numTested=O; 
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GenThatPrime : 
if (numTested == 10) 

srand(truerand() ) ; randombits (p,nbits-2) ;numTested++; 
mp-setbit(p, nbits - l);mp-setbit(p, nbits - 2 ) ;  
if (primetest(p)) return 0; 
else goto GenThatPrime; 
1 /* randomprime */ 

CnumTested = 0;printf ("Testing 10 more nums for primality\n");) 

We performed o u r  benchmark from the beginning of rsa-keygen() up until 
the end of rsalteygeno. 

Table 1 
512 bit RSA key generation times in seconds 0 'l'rial ]Modified PGPISETUP gen[SETUP decr[j 

flAveraxe1 108.9 25.9 

The Modified PGP column lists the modified PGP key generation times. 
The SETUP gen column lists the SETUP key generation times. The SETUP 
decr column lists the amount of time required to  derive a private key from 
the corresponding public key. We found that there is no appreciable difference 
between the running times of the modified PGP and our SETUP. We therefore 
believe that it may be possible to modify PGP to contain an RSA SETUP 
mechanism such that it can't be detected by analyzing key generation times 
alone. 
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