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Abstract. Encrypted multi-maps (EMMs) enable clients to outsource
the storage of a multi-map to a potentially untrusted server while main-
taining the ability to perform operations in a privacy-preserving man-
ner. EMMs are an important primitive as they are an integral building
block for many practical applications such as searchable encryption and
encrypted databases. In this work, we formally examine the tradeoffs
between privacy and efficiency for EMMs.

Currently, all known dynamic EMMs with constant overhead reveal
if two operations are performed on the same key or not that we denote
as the global key-equality pattern. In our main result, we present strong
evidence that the leakage of the global key-equality pattern is inherent
for any dynamic EMM construction with O(1) efficiency. In particular,
we consider the slightly smaller leakage of decoupled key-equality pattern
where leakage of key-equality between update and query operations is
decoupled and the adversary only learns whether two operations of the
same type are performed on the same key or not. We show that any EMM
with at most decoupled key-equality pattern leakage incurs Ω(lg n) over-
head in the leakage cell probe model . This is tight as there exist ORAM-
based constructions of EMMs with logarithmic slowdown that leak no
more than the decoupled key-equality pattern (and actually, much less).
Furthermore, we present stronger lower bounds that encrypted multi-
maps leaking at most the decoupled key-equality pattern but are able to
perform one of either the update or query operations in the plaintext still
require Ω(lg n) overhead. Finally, we extend our lower bounds to show
that dynamic, response-hiding searchable encryption schemes must also
incur Ω(lg n) overhead even when one of either the document updates
or searches may be performed in the plaintext.

1 Introduction

In this work, we study encrypted multi-maps [18,37], which is an example
of structured encryption (see Chase and Kamara [17]). Structured encryption
considers the problem of a client that wishes to outsource the storage of an
encrypted data structure to an untrusted server in a privacy-preserving manner.
In addition, the structured encryption scheme must enable the client to perform
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operations over the encrypted, outsourced data structure in an efficient manner.
For privacy, the goal is simply to reveal as little information as possible about
the data structure as well as the performed operations.

Encrypted multi-maps (EMMs) are a specific structured encryption scheme
for outsourcing multi-maps. For multi-maps, a client is able to update the tuple
of values associated with a key as well as query for the value tuple associated
with any key. In this paper, we focus on encrypted multi-maps due to its many
important practical applications. Two examples of applications are searchable
encryption and encrypted databases. The construction of private and efficient
encrypted multi-maps is an important problem to enable the deployment of these
privacy-preserving applications in the real-world.

Searchable encryption (also known as encrypted search) was first introduced
by Song et al. [60] and has been a well studied topic in the past couple decades
(see [2–4,7,9,11,14–16,18–20,35,37–39,49,54,61] as some examples). The repre-
sentative scenario for searchable encryption considers a client that owns a large
corpus of documents and an untrusted server with large amounts of available
storage. The goal of searchable encryption is to enable the client to outsource
the storage of the document corpus to the server. For functionality, the client
wishes to maintain the ability to efficiently search over the corpus and retrieve
the identifiers of all documents containing a specific keyword as well as update
documents by inserting, deleting and/or modifying keywords. In terms of privacy,
the client wishes to keep any information related to the contents of the docu-
ment corpus and the queries hidden from the server. In many works, searchable
encryption schemes utilize encrypted multi-maps as their main building block
to map keywords to documents that contain the keyword. We note that vari-
ous searchable encryption schemes have utilized encrypted multi-maps in other,
more sophisticated, manners as well.

Another important application is encrypted databases. In this problem,
the goal is to encrypt and outsource a database while enabling the database
owner to privately perform database operations. Earlier works on encrypted
databases [57] utilized property-preserving encryption schemes such as deter-
ministic [4] and order-preserving encryption [5,6,8,48]. It has been shown that
encrypted databases built from property-preserving encryption may have secu-
rity vulnerabilities [50]. In the most recent work, a scheme for encrypting SQL
databases was presented by Kamara and Moataz [36] utilizing encrypted multi-
maps instead of property-preserving encryption.

Due to these applications, the problem of constructing both efficient and pri-
vate encrypted multi-maps is very important. Unfortunately, the only way that
is currently known to achieve very strong levels of privacy is using very expensive
cryptographic primitives such as oblivious RAM [28,51] and/or fully homomor-
phic encryption [26]. These schemes only leak the size of inputs and outputs of
operations, which can also be mitigated by using techniques from recent volume-
hiding schemes [37,55]. However, the large performance overheads of these expen-
sive cryptographic primitives preclude them from being used in practical appli-
cations. Instead, structured encryption schemes take a different approach by
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slightly relaxing privacy requirements with the hope of improving efficiency. In
particular, the privacy of searchable encryption schemes is parameterized by a
leakage function. The leakage function is an upper bound on the information
revealed to the adversarial server when processing queries over a stored docu-
ment corpus. Therefore, the design of encrypted multi-map schemes consists of
minimizing the leakage function while ensuring the overhead is as small as possi-
ble. Using this relaxed variant of privacy, several dynamic encrypted multi-map
schemes such as [18,39] with constant overhead have been presented. However,
all these schemes have shown to have non-trivial leakage including the global
key-equality pattern that enables the adversary to learn whether two multi-map
operations are performed on the same key or not.

On the other hand, there has been a long line of work starting with the paper
of Islam et al. [33] that evaluate the negative privacy consequences of various
leakage profiles. Using various and continuously improving frequency analysis
and statistical learning methods [13,50,58], it has been shown that the contents
of documents and/or the queried keywords may be compromised by using access
pattern leakage that shows whether a specific memory location is accessed by
different queries or not. These ideas are further extended to present attacks on
schemes that enable clients to perform range queries in [29,42]. In another line
of work, Zhang et al. [64] consider the scenario where adversaries may inject files
into encrypted search schemes. By carefully arranging keywords in the injected
files, it is shown that viewing the identifiers of matching injected documents of
any query enables the adversary to determine the queried keyword with perfect
accuracy. Finally, a recent work by Kornaropoulos et al. [41] show new non-
parameteric estimation techniques to utilize global key-equality pattern leakage
to compromise privacy in certain settings.

Therefore, it is important to ensure that encrypted multi-map constructions
are both efficient (to be deployable in practice) as well as only leak small amounts
of information (to ensure privacy is not compromised). In this work, we explore
and present formal tradeoffs of privacy and efficiency for encrypted multi-maps.

1.1 Our Results

In this section, we present our lower bounds in the leakage cell probe model. We
start by focusing on encrypted multi-maps. Afterwards, we move onto dynamic
searchable encryption schemes.

To start, we briefly describe how the efficiency of schemes in the leakage cell
probe model is measured. Typically, data structures measure efficiency amortized
over the number of operations. This approach cannot be used for data structures
that may return outputs of varying sizes. As a concrete example, let us consider
multi-maps. Roughly speaking, a multi-map is a data structure that maintains
a sequence of pairs (key, vals), where key is taken from a key universe K and
vals is a tuple of varying length of values from a value universe V. A multi-map
supports Get(key) operations, that return the tuple associated with key, and
Add(key, val) operations, that add value val ∈ V to the tuple associated with
key. So two Get operations might return tuples of values of vastly different sizes
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and thus cannot be expected to incur the same costs. So, we measure the query
efficiency as the amount of server computation per returned value. The problem
does not occur for Add updates operations as they operate on a single value and
thus we can consider the update efficiency as the amount of server computation
per Add operation. The efficiency of a dynamic scheme is the maximum of the
update and query efficiency.

Encrypted multi-maps. We start by describing our results for encrypted multi-
maps and we note our results also apply to encrypted arrays (which can be
interpreted as oblivious RAMs with larger leakage). The efficiency of encrypted
multi-maps crucially depends on the leakage one is willing to tolerate. If no
security is sought and each operation may completely leak its inputs, the multi-
map problem is identical to the classic dynamic dictionary problem (see [52] for
a survey). One can obtain constructions of plaintext multi-maps with constant
amortized efficiency by utilizing, for example, the optimal dynamic perfect hash-
ing scheme in [21]. In this case, all operations are performed in the plaintext and
the inputs and outputs of all operations are revealed.

At the other hand of the leakage spectrum, there exist folklore solutions
of encrypted multi-maps with minimal leakage that can be obtained by using
efficient ORAMs [1,53] while achieving logarithmic overhead for each updated
value in update operations and for each returned value in query operations.
In particular, these folklore solutions only leak the number of values (volume)
associated with the queried key and nothing else. For completeness, we present
a formal definition of this minimal leakage function as well as a description and
a proof of the folklore solution in the full version.

In this work, we are interested in understanding the transition from constant
to logarithmic amortized efficiency as a function of the leakage allowed. In partic-
ular, we attempt to identify the smallest leakage where O(1) overhead solutions
still exist. Furthermore, we want to find the largest leakage where constructions
must incur asymptotically larger than constant overhead. Specifically, we start
by observing that non-trivial leakage can be obtained with constant amortized
efficiency by using a simple hash-and-encrypt approach. We start from the con-
struction of plaintext multi-maps based on any dynamic perfect hashing scheme
such as the one by Dietzfelbinger et al. [21]. During the initialization of the
encrypted multi-map, the client randomly selects a key K1 for a collision resistant
hash function H and a random encryption key K2 for an IND-CPA symmetric
encryption scheme (E ,D). For each Add(key, val) operation, the client executes
the algorithm for the insertion operation for the dynamic perfect hashing scheme
with the hashed value H(K1, key) as the key and an encryption E(K2, val) of
the value being added. A query operation Get(key) is implemented by executing
the query algorithm of the dynamic perfect hashing scheme using H(K1, key) as
a key and then decrypting all the returned values with the IND-CPA key K2. As
a result, the client is successfully able to retrieve all plaintext values associated
with the queried key. We note that the hash-and-encrypt method is not novel
and implicitly appeared in many previous works such as [18,39].
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The above implementation provides some privacy for the inserted and queried
keys and values. In particular, the hash-and-encrypt version of dynamic per-
fect hashing does not leak the keys and values in the plaintext. However, the
adversarial server learns the type of operation performed as well as the num-
ber of encrypted values returned by a Get operation. Additionally, the server
learns whether two different operations are performed on the same key or not
as the server learns the value H(K1, key) when either performing a Get or Add
operation. We denote this leakage, Lglob, as the global key-equality pattern that
describes whether two operations are given the same key as input or not. We
refer readers to the full version for a formal description and analysis of the
hash-and-encrypt compiler when applied to dynamic perfect hashing.

The above simple hash-and-encrypt construction provides a baseline of what
privacy may be efficiently implemented with O(1) overhead. A natural next step
is to try and improve the privacy of the above scheme without incurring signifi-
cantly larger overhead. A slight improvement in privacy would be to consider the
leakage function Ldec which allows the adversary to learn the equality pattern
on keys but only for operations of the same type. In more detail, the adversary
still learns whether two Get operations are on the same key or not as well as
whether two Add operations are on the same key or not. However, the adversary
cannot link an Add operation and a Get operation as operating on the same key.
We denote this leakage Ldec as the decoupled key-equality pattern (see Sect. 3 for
a formal definition) as it decouples the Add key-equality pattern from the Get
key-equality pattern. From a quick glance, this small improvement in privacy
seems insignificant. In the main result of our work, we show that any encrypted
multi-map that leaks at most the decoupled key-equality pattern must incur
logarithmic overhead.

Theorem 1 (Informal). Let DS be a Ldec-leakage encrypted multi-map that
leaks at most the decoupled key-equality pattern. Then the amortized efficiency
of DS must be Ω(lg(n/c)) per updated and/or returned value for any scheme
storing n key-value pairs and using c bits of client storage.

In other words, our results show that the global key-equality pattern is
an inherent and seemingly necessary leakage for any O(1) efficiency encrypted
multi-map. By attempting to mitigate the global key-equality pattern even in an
extremely small (seemingly meaningless) manner, the resulting encrypted multi-
maps must incur logarithmically lower efficiency. As a result, one must either
tolerate the leakage of the global key-equality pattern or at least logarithmic
overhead when implementing encrypted multi-maps. Furthermore, if the mitiga-
tion of global key-equality pattern leakage is necessary or logarithmic overhead
is tolerable, then the encrypted multi-map construction using oblivious RAMs
may be used resulting in minimal leakage. We also note that the bound in Theo-
rem 1 (with formal statement in Theorem3) is tight in view of the upper bound
provided by the ORAM-based construction (see the full version).

The proof of the lower bound for Ldec only relies on the fact that an adversary
cannot link an Add and a Get operation as operating on the same key. Note that
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this property is guaranteed even if one of the two operations completely leaks
the inputs on which it operates. For example, the leakage function Ladd, that
for any Add(key, val) operation leaks both key and val, can still be considered
as decoupling the Get and Add key-equality patterns. We can strengthen the
proof of our main result to show that encrypted multi-maps that only leak the
decoupled key-equality pattern but are allowed to perform all Add operations in
plaintext must also incur logarithmic overhead. The same holds also for leakage
function Lget in which Get operations are performed in the clear while keeping the
key-equality patterns decoupled. These results further reinforce the difficulty of
mitigating the global key-equality pattern leakage even when willing to sacrifice
privacy in other areas. We refer the reader to the full version for more details.

Theorem 2 (Informal). Let DS be a {Ladd,Lget}-leakage encrypted multi-map
that leaks at most the decoupled key-equality pattern but may perform one of
either the Add or Get operations in the plaintext. Then the amortized efficiency
of DS must be Ω(lg(n/c)) per updated and/or returned value for any scheme
storing n key-value pairs and using c bits of client storage.

Searchable encryption. We can further prove lower bounds for searchable encryp-
tion schemes. In particular, one can use a searchable encryption scheme to con-
struct an encrypted multi-map. As a result, the lower bounds follow directly by
interpreting the encrypted multi-map leakage functions as searchable encryption
leakage functions.

First, we interpret the notion of decoupled key-equality pattern for searchable
encryption scheme. The adversary may learn whether two distinct searches are
performed for the same keyword or not. For two different document insertions,
the adversary may learn the number of keywords that appear in the intersection
of the two inserted documents (a generalization of key-equality for documents
with multiple keywords). However, this keyword-equality knowledge is limited to
operations of the same type. The adversary should not learn whether a queried
keyword appears in an inserted document or not. As a result, we refer to these
searchable encryption schemes as response-hiding where the adversary cannot
learn the identity of documents matching a queried keyword.

For the static searchable encryption problem where documents are given
during initialization and the documents are immutable, there exists response-
hiding schemes with O(1) overhead such as [18]. On the other hand, our lower
bounds show that the dynamic version of response-hiding schemes require loga-
rithmic overhead. Furthermore, our lower bounds still hold for searchable encryp-
tion schemes even when the construction may perform one of either document
updates or searches in the plaintext. In more detail, plaintext updates mean
the construction can reveal the entirety of the updated document in plaintext.
Similarly, plaintext searches mean the scheme can reveal the queried keyword
in plaintext. As a consequence, our results show that dynamic, response-hiding
searchable encryption schemes must either leak the matching documents for any
search or incur logarithmic efficiency. For more information, see the full version.
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Comparison with [10]. In an independent work, Bost and Fouque [10] present
lower bounds for searchable encryption in the “balls-and-bins” model (first
used in [28] but formally introduced in [12]). Their work shows an Ω(lgc(n))
lower bound for static searchable encryption schemes that mitigate key-equality
leakage completely against unbounded adversaries. We note that Bost and
Fouque [10] additionally present lower bounds for forward private leakage func-
tions that is not considered in our work. We compare their key-equality leakage
lower bounds with our key-equality leakage lower bounds.

First, for super-constant client storage, our lower bound of Ω(lg(n/c)) is
higher than the lower bound proved in [10]. Our work rules out the use of large
(but still sub-linear) client storage to speed up schemes. In contrast, the result
of [10] gives the trivial bound of Ω(1) even for small client storage of, say,
c = Θ(n0.1), for which our lower bound remains Ω(lg n). Secondly, our results
apply for computational adversaries while the results in [10] apply only for sta-
tistical adversaries. Our results are therefore more applicable to current tech-
niques as, to our knowledge, all recent constructions use computationally-secure
encryption and pseudorandom functions that circumvent the lower bound of [10].
Additionally, we prove our lower bounds in the leakage cell probe model where
schemes may arbitrarily encode data before storage. The “balls-and-bins” model
adopted by [10] only applies to scheme that store each key-value pair (ball) sep-
arately in memory locations (bins). Furthermore, the only permitted operations
are moving key-value pairs between different memory locations. Therefore, our
results rule out clever uses of FHE that might store the encrypted sum of two
entries in a memory location for more efficient schemes that would, otherwise,
have circumvented the lower bounds of [10]. Finally, our lower bounds only apply
to dynamic schemes while [10] applies to both static and dynamic schemes. There
is an inherent hardness in proving lower bounds in the leakage cell probe model
for static data structures. Weiss and Wichs [62] have shown that proving non-
trivial lower bounds for static ORAMs in the cell probe model would solve at
least one of two major open problems in complexity. As encrypted multi-map
and searchable encryption lower bounds imply ORAM lower bounds, non-trivial
lower bounds for static searchable encryption seem out of reach for now.

Related works. Searchable encryption was introduced by Song et al. [60]. The
notion of adaptive security was first presented by Curtmola et al. [18]. Chase
and Kamara [17] present structured encryption that is a generalization of search-
able encryption. Subsequent works study different variants such as dynamic
schemes [14,39,61], cache locality [2,3,16,19,20,49], forward and backward secu-
rity [9,11,22,27], expressive queries [15,17,23,35], public-key operations [7], mul-
tiple users [18,31,54] and using ORAMs or ORAM-like techniques [11,25,27,38].
Several works investigate the implications of leakage in searchable encryption by
presenting leakage-abuse attacks [13,29,30,33,40,42,50,58,64].

Most data structure lower bounds are proven in the cell probe model [63].
The chronogram technique was first introduced by Fredman and Saks [24] to
prove Ω(lg n/ lg lg n) bounds. Pǎtraşcu and Demaine [59] present the informa-
tion transfer technique proving Ω(lg n) bounds. Larsen [43] presented the first
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techniques that proved Ω̃(lg2 n) bound for dynamic, two-dimensional range
counting, which is the highest lower bound proven for any data structure with
Ω(lg n) bit outputs. For dynamic data structures with boolean outputs, the
highest lower bound is presented by Larsen et al. [47] of Ω̃(lg1.5 n). Goldreich
and Ostrovsky [28] first presented ORAM lower bounds in the “balls-and-bins”
model [12]. The seminal work by Larsen and Nielsen [45] is the first to show
the applicability of the cell probe model for privacy-preserving data structures
by giving an Ω(lg n) lower bound for ORAMs. Persiano and Yeo [56] extend
the Ω(lg n) lower bound for differentially private RAMs with weaker privacy.
Hubáček et al. [32] extend the lower bounds to the case where the adversary is
unaware when operations start and end. Larsen et al. [44] present Ω̃(lg2 n) lower
bounds for oblivious near-neighbor search. Multi-server ORAM lower bounds
are presented in [46].

1.2 Overview of Our Techniques

We present an overview of the techniques used to prove our lower bounds. Our
lower bounds are proven in the cell probe model which only measures running
time by the number of server memory accesses. We refer the reader to Sect. 2.1
for more details on the cell probe model. We will utilize the information transfer
of Pǎtraşcu and Demaine [59], which Larsen and Nielsen [45] used to prove lower
bounds for ORAMs. We review their proof which will be our starting point.

The information transfer technique starts by constructing the information
transfer tree for a given sequence of n operations. The information transfer tree
is a complete tree with one leaf node for each of the n operations. Operations
are assigned to the leaves in chronological order: the first operation is assigned
to the leftmost leaf node, the second operation is assigned to the second leftmost
leaf node and so forth. Each cell probe is assigned to at most one node in the
tree in the following manner. First, we determine the operation performing the
probe and the associated leaf and then the most recent operation that overwrote
the probed cell and its associated leaf. If this is the first probe for the cell then
the probe is not assigned to any node; otherwise, the probe is assigned to the
lowest common ancestor of the two leaves.

Having defined the information transfer tree, we move onto the hard distri-
bution for the ORAM lower bounds in [45]. Fix any internal node v in the tree
and consider the subtree rooted at v. The hard distribution for v consists of
writing uniformly random strings to unique array indices in the leaves of the left
subtree and, subsequently, querying for these array indices in the leaves of the
right subtree. To answer the queries correctly, significant amounts of information
must be transferred from the left subtree to the right subtree. For sufficiently
large subtrees, it can be shown that the majority of this information must be
transferred by query operations in the right subtree performing many probes to
cells last overwritten by operations in the left subtree. As a result, these probes
will be uniquely assigned to the root of the tree, v.

To complete the proof, Larsen and Nielsen [45] use the obliviousness require-
ments of ORAM. Suppose there exists another sequence of operations of the
same length that assigns significantly less cell probes to the internal node v
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compared to the hard distribution described above. Note, there exists polyno-
mial time algorithms to compute the number of probes assigned to v. Therefore,
a computationally bounded adversary can distinguish between the hard distri-
bution for v and the sequence that does not assign enough probes to v. This
contradicts obliviousness. Therefore, a large number of probes must be assigned
to each node in the tree. As each probe is uniquely assigned to a node, adding
the counts over all nodes gives the desired lower bound.

There are two major obstacles for using the information transfer technique to
prove lower bounds for multi-maps. The first problem appears because the lower
bounds for oblivious RAMs of [45], as well the one for differentially private RAMs
of [56], assumes that the stored array entries are chosen as uniformly random
strings. Recall that the crux of the information transfer argument shows that the
large entropy of the random strings generated independently in the left subtree of
a node v must be retrieved by the query operations in the right subtree of v. The
natural extension for encrypted multi-maps would be to assume that all values
are truly random strings. While this assumption might be appropriate for multi-
maps, it is unreasonable for the application of searchable encryption as it would
force either the keywords or the document identifiers to be truly random. It is well
known in practice that the entropy of keywords is not too large. Similarly, there is
no reason that document identifiers are required to be very random. For example,
document identifiers could be titles of documents or just generated by a counter.
Instead, our lower bounds will derive entropy from the random distribution of
values into keys for multi-maps (or, the random distribution of keywords into
documents for the searchable encryption application). As an example, consider
an arbitrary set of values V and keys K. We view the distribution of the values
V to keys K as a bipartite graph with K as the left partition and V as the right
partition. An edge exists between a key ∈ K and val ∈ V if and only if val
is associated with key in the multi-map. The edges are drawn randomly such
that the resulting graph is l-left-regular so each key is associated with exactly l
values. Consider the scenario where all values in V are inserted according to this
randomly chosen bipartite graph. Suppose that queries are performed to all keys
in K. The answers to these queries allows one to correctly retrieve the randomly
chosen edges of the graph. In other words, the queries perfectly retrieve the
entropy of the update operations. Furthermore, our lower bounds do not make
assumptions that either the keys in K or values in V are random.

The other and more serious problem arises from the fact that we are attempt-
ing to prove lower bounds for encrypted multi-maps that leak significantly more
information to the adversary compared to ORAMs. The ORAM lower bound
proof of [45] critically uses the fact that the information transfer tree for any
two sequences of the same length must be computationally indistinguishable.
On the other hand, we will be proving lower bounds for encrypted multi-maps
that leak at least the decoupled equality pattern as well as performing one of
either the Add or Get operations in the plaintext. As a result, the overwhelming
majority of pairs of sequences of encrypted multi-map operations of the same
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length will have different leakage and, thus, they will be computationally distin-
guishable to the adversary.

Therefore, we must choose the hard distributions for each node v such that
the decoupled equality pattern leakage is the same for the hard distribution of
all nodes in the tree. To do this, we will carefully coordinate Get operations
and Add performed on the same key. Recall that Ldec leaks whether two Add
operations are performed on the same key as well as whether two Get operations
are performed on the same key. To ensure that leakage incurred by Get operations
are identical, we choose our hard distribution such that all Get operations are
performed on unique keys. As a result, we are able to swap any two Get operations
without changing the leakage as long as the number of values returned by both
operations are identical. We will arrange Add operations such that each queried
key is always associated with exactly l ≥ 1 values where l is a parameter (one
can achieve encrypted arrays by setting l = 1). Using the above properties, we
construct our hard distribution for each node v. We assign each leaf node in the
information transfer tree with two disjoint equal-sized set of keys Ka

v and Kg
v

and a set of values Kv. Furthermore, all assigned key and value sets are pairwise
node disjoint. Each leaf node will be associated with |Ka

v| · l Add operations
where each key in Ka

v is associated with l uniformly random chosen values from
Vv. Recall that we can model these random assignments of values to keys as
picking a random l-left-regular bipartite graph with Ka

v and Vv acting as the left
and right partition respectively. Additionally, each leaf node will perform |Kg

v |
Get operations for each key in Kg

v . We will use this distribution of sequences
as our baseline to construct hard distributions for each internal node v in the
information transfer tree. Each of these node-specific hard distributions will have
the same leakage with respect to the decoupled leakage function Ldec.

Recall that the goal of a hard distribution for node v is to ensure that a
large number of cell probes are assigned to v in the information transfer tree.
To do this, we should pick a hard distribution that requires queries in the right
subtree of v to retrieve large amounts of entropy generated in the left subtree
of v. To start, we denote Ka,Kg and V as the union of the sets Ka

v′ ,K
g
v′ , Vv′

that are assigned to leaf nodes v′ that appear in the left subtree of v. We keep
the identical Add and Get operations that appear in the left subtree of v. We
modify the Get operations that appear in the right subtree to query keys in Ka,
which are all the keys updated in the left subtree of v. As a result, the answers
to Get operations in the right subtree of v are able to retrieve the random l-left-
regular bipartite graph generated in the left subtree of v forcing a large number
of cell probes to be assigned to v. Furthermore, our hard distribution for v only
swapped the key parameters of Get operations maintaining the same leakage as
the baseline hard distribution. By privacy, it must be that a large number of cell
probes are assigned to many nodes of the information transfer tree. As a result,
we are able to prove lower bounds for the leakage Ldec that is significantly larger
compared to ORAM leakage. Similar ideas can be used to prove lower bounds
for the leakage functions Ladd and Lget which enable schemes to perform one of
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either the Add or Get operations in the plaintext. We refer the reader to Sect. 4
for full details on the lower bound.

2 Definitions and Models

In this section, we formalize the notion of a leakage function and the leakage cell
probe model, which is a generalization of the oblivious cell probe model of Larsen
and Nielsen [45] and it can be used to derive lower bounds on the efficiency of
general data structures with respect to a leakage function. We will then describe
the dynamic encrypted multi-map problem for which we will derive lower bounds.
We also consider the dynamic searchable encryption problem whose formal def-
inition can be found in the full version.

2.1 Cell Probe Model

The cell probe model was introduced by Yao [63] and has widely been used to
prove lower bounds for data structures (see [24,43,47,59] as examples). The goal
of the cell probe model is to abstract the interactions of CPUs and word-RAM
architectures. Memory in the cell probe model is an array of cells where each
cell consists of exactly w bits. The operations of a data structure consist of cell
probes where each probe may read the contents of a cell and/or update the cell’s
content. The cost or running time of an operation is measured by the number
of cell probes. A data structure in the cell probe model may perform unlimited
computation based on the contents of cells that were probed. Note, lower bounds
in the cell probe model immediately imply results to more realistic models that
measure costs using both memory accesses and computation.

In the context of privacy-preserving data structure, the cell probe model is
adapted to a two-party setting: the client and the server. The client outsources
the storage of data to the server and uses the data structure algorithms to per-
form operations that read and/or update the data stored on the server. For
privacy, the client wishes to hide the content of outsourced data and/or the
operations performed from the adversarial server. The adversarial server’s view
consists of the content of all cells on the server and the probes performed by
operations. The adversary does not view the content of the client’s storage nor
the probes performed to the client’s storage. In the first work relating the cell
probe model to privacy-preserving data structures, Larsen and Nielsen [45] intro-
duced the oblivious cell probe model in which any two sequences of operations
of the same length are required to induce indistinguishable server’s views. This
model has been used to prove a lower bound for oblivious RAMs [45] and for
other data structures, like stacks and queue [34]. Subsequently, Persiano and
Yeo [56] introduced the differentially private cell probe model, a generalization
of the oblivious cell probe model in which the adversary’s view must abide to
the standard differential privacy definition for neighboring sequences.

In this work, we define the leakage cell probe model which considers data
structures with more complex leakage. For a leakage function L, we denote the
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L-leakage cell probe model such that the adversary’s view when processing two
sequences of operations O and O′ must be indistinguishable if L(O) and L(O′)
are equal. The leakage cell probe model is a generalization of the oblivious cell
probe model as obliviousness can be viewed as privacy with respect to a leakage
function that only leaks the number of operations performed. We note that the
client-server interaction in the leakage cell probe model is identical to both the
oblivious cell probe model [45] and the differentially private cell probe model [56].
The only difference is in the privacy notion.

We next describe the notion of a data structure problem in the cell probe
model as consisting of a set U of update operations and a set Q of queries that
return values in the domain O. The response to a query q ∈ Q is determined by a
function R : U�×Q → O based on the choice of the query q ∈ Q and the sequence
of updates (u1, . . . , ul) ∈ U

� that have been executed before the query q. For any
DS solving a data structure problem in the cell probe model, the server’s memory
is assumed to consist of w-bit cells. The client’s storage consists of c bits. There
exists a random string R accessible by the operations of DS. We will assume that
R is finite, but may be arbitrarily large. For cryptographic purposes, R may act
as a private random function or a random oracle. An operation of DS is allowed
to perform probes to cells in server memory, access bits in the client storage and
access bits in R. The data structure is only charged for probes to server cells.
Accessing bits in client storage or R are free. The sequence of cell probes chosen
by an operation of DS are a deterministic function of the client storage, random
string R and the contents of cells that were previously probed in the current
operation. Note, this deterministic function need not be efficiently computable
as the cell probe model does not charge for computation. We denote the failure
probability as the maximum probability that DS outputs the incorrect answer
over all query operations and preceding sequence of operations. Note that the
probability is strictly over the random choice of R. Additionally, we note that
the cell probe model assumes that DS processes operations in an online manner.
DS must finish processing an operation before receiving the next operation. As
a result, each cell probe performed by DS may be uniquely associated to an
operation. The assumption of online operations is realistic as the majority of
practical scenarios consider online operations.

The assumption that R is finite does not preclude the applicability of our
result to algorithms with vanishing failure probabilities that may run infinitely.
We show they can be converted into data structures with finite running time
but non-zero failure probabilities by a standard reduction. The data structure
is run for an arbitrary number of cell probes until the failure probability is
sufficiently small. At this point, the data structure must return an answer. Our
lower bounds will consider data structures with any constant failure probability
strictly less than 1/2. As a result, our lower bounds also apply to data structures
whose failure probabilities decrease as the running time increases but have no
termination guarantees.
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2.2 Leakage Cell Probe Model

In this section, we formalize the privacy notion for data structures in the leakage
cell probe model. Roughly speaking, we give an upper bound on the maximum
amount of information viewed by the adversary when processing a sequence of
operations by specifying a leakage function L. Concretely, a leakage function L
takes as input any valid sequence of operations, O, of DS. For online DS and
for any sequence O = (op1, . . . , op�), we can rewrite the leakage L(O) as:

L(O) = L(op1),L(op1, op2), . . . ,L(op1, . . . , op�) = L(O1),L(O2), . . . ,L(O�),

where Oi denotes the prefix Oi = (op1, . . . , opi) consisting of all operations up to
and including the i-th operation. We formalize the notion that DS leaks at most
L by means of an indistinguishability-based definition in which we require that,
for any two sequences O and O′ such that L(O) = L(O′), no efficient adversary
A can distinguish a sequence of cell probes executed by DS while performing O
from one executed while performing sequence O′. For two sequences O and O′,
we say that L(O) = L(O′) if and only if L(Oi) = L(O′

i) for every i = 1, . . . , �.
Let us now proceed more formally. For any sequence of operations O =

(op1, . . . , op�), the adversary’s view VDS(O) of DS processing O consists of
the sequence of probes performed by DS while processing sequence O. The
randomness of VDS(O) is over the choice of the random string R. For online
DS, each cell probe is uniquely assigned to an operation. So, we can rewrite
VDS(O) = (VDS(O1), . . . ,VDS(O�)).

The formal definition of non-adaptively L-IND is given below.

Definition 1 (Non-adaptively L-IND). DS is ν-non-adaptively L-IND if
for every pair of sequences O and O′ such that L(O) = L(O′) and any deter-
ministic polynomial time algorithm A, then

|Pr[A(VDS(O)) = 1] − Pr[A(VDS(O′)) = 1]| ≤ ν

The acute reader might notice several differences between the above secu-
rity notion and previous definitions (for example, see [14,17,18,39]). First, our
definition uses the weaker indistinguishability notion as opposed to the stronger
simulation paradigm. Secondly, many previous works consider adaptive security
where the adversary is allowed to view the leakage by DS on previous operations
before picking the next operation. Our definition does not allow the operations to
be picked depending on the adversary’s view. Both differences result in a weaker
security notion. However, a lower bound for a scheme satisfying this weaker secu-
rity notion also implies a lower bound for the normal, stronger security notion.
In other words, by assuming a weaker security notion, we improve the strength
and applicability of our lower bound. We also note that our definition considers
deterministic, polynomial time adversaries.

Finally, we formally define a L-leakage cell probe model data structure.

Definition 2. A DS is a L-leakage cell probe model data structure if DS has
failure probability strictly less than 1/2 and is 1/4-non-adaptively L-IND.



446 S. Patel et al.

Note that, the distinguishing probability only has to be at most 1/4 as
opposed to negl(λ) where λ is the security parameter. Once again, we stress
that this results in a weaker security notion and a lower bound for any DS that
is 1/4-non-adaptively L-IND applies for any DS satisfying a stronger security
notion. Overall, our lower bounds for L-leakage cell probe model data structure
imply lower bounds to the standard simulation-based, adaptive security notions
against PPT adversaries with negl(λ) advantage.

In practice, the assumption of failure probability close to 1/2 is unacceptably
large. Once again, this is to improve the strength of our lower bound as it
immediately implies results for DS with small or zero failure probability.

We also note that leakage cell probe model is a generalization of the obliv-
ious cell probe model [45]. Consider the leakage function, L(op1, . . . , opi) = i,
that only leaks the number of operations. In the L-leakage cell probe model, all
sequences of the same length must be indistinguishable which is identical to the
oblivious cell probe model [45].
Comparing leakage functions. In general, leakage functions are not numerical
as they encapsulate all the information learned by the adversary and for this
reason it is hard to linearly order leakage functions. We can nonetheless define
the following partial order on leakage functions.

Definition 3. Leakage function L1 is at least as secure as leakage function L2

(in symbols L1 ≤ L2) if any DS that is L1-IND is also L2-IND.

We note the we use L1 ≤ L2 as the leakage of L1 is smaller than the leakage
of L2 and that a lower bound for a DS with leakage L2, also applies to any
DS′ with leakage L1 ≤ L2. The following lemma gives a sufficient condition for
L1 ≤ L2.

Lemma 1. If there exists an efficient function F such that for all sequences O
of operations it holds that L1(O) = F (L2(O)), then L1 ≤ L2.

2.3 Encrypted Multi-Maps

In this section, we present the dynamic multi-map problem where we consider
the multi-map data structure that maintains m pairs MM = {(keyi, valsi)}i∈[m]

where each keyi is from the key universe K and valsi is a tuple of values from
the value universe V. We assume that all keys are unique (that is, keyi �= keyj

for all i �= j). This assumption is without loss of generality as any multi-map
with duplicate keys can merge the associated tuples of values. For any keyi, we
denote the number of values associated with keyi by �(keyi) (that is, �(keyi) :=
|valsi|). Note, different keys can be associated with tuples of different length.
We denote the total number of values by n :=

∑
i∈[m] �(keyi) =

∑
i∈[m] |valsi|.

Additionally, we introduce the following notation for convenience. For any key,
vals(MM, key) is the tuple of values associated with key. Whenever the multi-
map MM is clear from the context, we will omit MM and write vals(key) instead
of vals(MM, key).

We consider dynamic multi-maps with Create, Get and Add operations.
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1. Create returns an empty MM := ∅.
2. Get(key) takes as input key ∈ K and outputs vals(key), the tuple of values

associated with key.
3. Add(key, val) adds value val to the tuple associated with key.

Note that we only allow a very simple type of insertions in which only one value
is added for each operation. By proving a lower bound on a multi-map with only
a simple insertion operation, our lower bound will also apply to more general
multi-maps with more complex insertions and update operations.

Definition 4. The dynamic encrypted multi-map problem is parameterized by
K, the key universe, and by V, the value universe. The problem is defined by the
tuple (U,Q,R) where

– U = {Add(key, val) | key ∈ K, val ∈ V} ∪ {Create};
– Q = {Get(key) | key ∈ K};
and for any sequence O = (Create,Add(key1, val1), . . . ,Add(keym, valm)),

R(O,Get(key)) = {val | ∃ 1 ≤ i ≤ m s.t. keyi = key and vali = val}.

In other words, Get(key) returns vals(MM, key), where MM is the instance
obtained by executing the sequence O of update operations.

Efficiency measure. For a data structure DS solving the dynamic encrypted
multi-map problem, we denote CostDS(O) as the expected number of cell probes
needed by DS to perform the sequence of operations O where the expectation is
taken over the random coin tosses of DS. We note that, unlike ORAMs, CostDS

is not a good measure of the efficiency of the data structure DS. For example,
some Get operations might return an extremely long tuple while others only a few
values and it would be unreasonable to expect these vastly different operations to
perform the same number of cell probes. We thus define the amortized efficiency
EffDS of a data structure DS solving the dynamic encrypted multi-map problem
with respect to a sequence of operations O = (op1, . . . , op�) as the expected value
of the total number of cell probes executed by DS divided by the total number of
values returned by Get or taken as inputs by Add. More precisely, the add op =
Add(key, v) operation will receive a single value tuple as input as in our setting
only one value can be added to a key. Therefore, EffDS(op) := CostDS(op). For
each get op = Get(key), we consider the length of the returned tuple vals(key)
as the length of the output and thus EffDS(op) := CostDS(op)/|vals(key)|.

In this paper, we prove lower bounds on EffDS(n) for all probabilistic DS
where EffDS(n) is defined to be the maximum over all possible sequences O of
n operations of the total expected amortized efficiency of all n operations where
the expectation is taken over the random coin tosses of DS.

3 Leakage Profiles

In this section, we formally define the leakage profile Ldec for which we prove
our main result. As stated before, the efficiency of encrypted multi-maps cru-
cially depends on its leakage. For strong privacy, there exist several solutions of
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encrypted multi-maps with minimal leakage using efficient oblivious RAMs [1,53]
while achieving logarithmic efficiency. Minimal leakage Lmin refers to the adver-
sary learning only the size of inputs and outputs of operations and nothing else.
We formally define Lmin and present a simplified version of a folklore construction
in the full version.

To understand the transition from constant to logarithmic efficiency as a
function of the leakage allowed, we consider the smallest leakage achieved by
constant efficiency encrypted multi-maps. In particular, these schemes leak the
global key-equality pattern, Lglob, where adversaries learn whether two operations
use the same key as input or not. We formally define Lglob and present the simple
hash-and-encrypt compiler that achieves Lglob leakage in the full version.

The next step up in security would be to still allow the adversary to learn
which operations are on the same key but to limit this ability to operations of
the same type. That is, the adversary still learns whether two Get operations are
on the same key or not and whether two Add operations are on the same key
but it cannot link an Add and a Get that receive the same key as input. This is
captured by the following leakage function.

Definition 5 (Decoupled Key-Equality Leakage Ldec). For sequence O =
(op0 = Create, op1, . . . , op�) of operations where key1, . . . , key� are the input
keys to each non-create operation, then the decoupled key-equality leakage
Ldec(O) associated with O consists of Ldec(O) = (Ldec(O0), . . . ,Ldec(O�)) where
Oi = (op0, . . . , opi) and MMOi is the multi-map resulting from the first i opera-
tions. Then, Ldec(Oi) is defined as:

1. if opi = Create then Ldec(Oi) = (Create);
2. if opi = Add(keyi, vali) then Ldec(Oi) = (Add, epdeci);
3. if opi = Get(keyi) then Ldec(Oi) = (Get, |vals(MMOi−1 , keyi)|, epdeci).

The decoupled key-equality pattern epdeci := (epdeci,1, . . . , ep
dec

i,i−1) is:

epdeci,j =

⎧
⎪⎨

⎪⎩

⊥, if opi and opj are not of the same type.
0, if opi and opj are of the same type and keyi �= keyj .

1, if opi and opj are of the same type and keyi = keyj .

We note that the above leakage still leaks the number of returned values for
each Get operation. Using Add key-equality leakage, the adversary can observe
the number of values added for a pseudonymous representation of a key. If the
number of values added is unique for any key, then the adversary will learn the
global key-equality pattern about this specific key that leaks whether specific
Add and Get operations operate on this key with a unique number of associ-
ated values. In particular, Ldec hides key-equality patterns between Add and Get
operations when there exist multiple keys with the same number of associated
values when Get is executed. In other words, Ldec is a very minimal increase in
privacy over Lglob. The main result of this paper is that Ldec-IND security for
encrypted multi-maps (and arrays) incurs Ω(lg n) overhead even though it is
minimally more secure than Lglob-IND schemes.
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We can further extend our lower bounds to DS with even larger leakage
functions. We define leakage functions Ladd and Lget, which leak the decoupled
key-equality pattern like Ldec. Additionally, Ladd leaks the keys and values that
are input to all Add operations while Lget leaks the keys that are input to all
Get operations. In other words, Ladd enables the multi-map to perform Add
operations in the plaintext while Lget enables the multi-map to perform Get
operations in the plaintext. It turns out our lower bounds still apply as long as
the encrypted multi-map performs at most one of either Get or Add operations
are performed in the plaintext. We formally define Ladd and Lget in the full
version. The counterparts of Ladd and Lglob for dynamic searchable encryption
may also be found in the full version.

4 Lower Bounds for Decoupled Key-Equality Leakage

In this section, we present our main result that any encrypted multi-map with
leakage at most Ldec must incur logarithmic overhead.

Theorem 3. Let DS be a Ldec-leakage cell probe model dynamic encrypted
multi-map implemented over w-bit cells and a client with c bits of storage. Then

EffDS(n) = Ω

(

lg
(n

c

)
· lg(n)

w

)

.

In the natural setting that c = O(nα), for some constant 0 ≤ α < 1, and cell
sizes of w = Θ(lg n) bits, the above bound simplifies to Ω(lg n).

This result will be proven using the information transfer technique [59].
Throughout the proof, we will assume that DS has error probability at most
1/128 (instead of strictly smaller than 1/2) and this is without loss of generality
as we can apply a standard reduction of executing a constant number of indepen-
dent copies and returning the majority answer without affecting the asymptotic
efficiency.

4.1 Hard Distribution

We start by formalizing the hard distribution and the random variables used in
our proof. Fix positive integers n and l and constant 0 < ε < 1 such that l < nε.
Set p := n1−ε. The hard distribution will use the following p + 1 disjoint sets of
values:

1. V0 consisting of l values;
2. V1, . . . , Vp each consisting of nε values;

Additionally, we define the following 2p pairwise disjoint sets of keys:

1. Sets Ka
j , for j = 1, . . . , p, each of size nε;

2. Sets Kg
j , for j = 1, . . . , p, each of size nε.
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Table 1. Generation of hard distribution.

Hardn,l,ε(V0, V1, . . . , Vp, Ka
1, . . . , K

a
p, Kg

1, . . . , K
g
p)

– Phase 0:
Execute SubPhase Initi for each i ∈ {1, . . . , p}:

For each key ∈ Kg
i :

For each val ∈ V0:
output: Add(key, val).

– Phase j for each j ∈ {1, . . . , p}:
Execute SubPhase Aj of add operations and SubPhase Gj of get operations.
1. SubPhase Aj

For each key ∈ Ka
j :

Select subset Vkey ⊂ Vj of l values uniformly at random.
For each val ∈ Vkey:

output: Add(key, val).
2. SubPhase Gj

For each key ∈ Kg
j :

output: Get(key).

We describe the probabilistic process that generates our hard distribu-
tion of sequences of encrypted multi-map operations in Table 1. We denote
the resulting distribution by Hard(V0, V1, . . . , Vp,K

a
1, . . . , K

a
p,Kg

1 , . . . , Kg
p). For

convenience, we will assume that all of n, l, ε as well as the sets
V0, V1, . . . , Vp,K

a
1, . . . , K

a
p,Kg

1 , . . . , Kg
p are fixed going forward and denote our

hard distribution by Hard.
As described in Table 1, a sequence in the support of our hard distribution

consists of p + 1 phases. In phase 0, each of the l values of V0 is added to the
tuple of each key in Kg

i , for all i ∈ {1, . . . , p}. Phase j, for j = 1, . . . , p, consists
of two sub-phases: sub-phase Aj that consists of l · nε Add operations, directly
followed by sub-phase Gj that consists of nε Get operations. The Add operations
of phase j add a subset of l values chosen uniformly at random from the set Vj to
each key in Ka

j . This naturally defines a bipartite graph Bj = (Ka
j , Vj , Ej) where

the set of key Ka
j appear in the left partition, the set of values Vj appear in the

right partition, and Ej represents the edge set. An edge (key, val) appears in
Ej if and only if val is added to the tuple of values associated with key; that is,
val ∈ vals(key). We note that our choice of adding l randomly chosen values
to each key ∈ Ka

j is equivalent to choosing Bj uniformly at random from the set
of all left l-regular bipartite graphs. Furthermore, bipartite graph Bj uniquely
identifies the Add operations that appear in phase j. Note that a sequence of
operations in the support of Hard builds an encrypted multi-map that contains
2n different keys.
Leakage of the hard sequence. We now describe the leakage Ldec(H) associated
with a sequence H in the support of our hard distribution.

We observe that each Get operation returns the l values in V0 and, as the Kg
i s

are pairwise disjoint by definition, each Get operates on a different key. Thus,
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all Get operations in H will have identical leakage; specifically, the adversary
learns that the size of the tuple associated with each query key is l and that the
queried keys are distinct.

For the leakage incurred by Add operations, we observe that the 2p sets
{Kg

i }i∈{1,...,p} and {Ka
i }i∈{1,...,p} are pairwise disjoint by definition. H will per-

form exactly l consecutive Add operations to each of the nε keys of Kg
i , for

i = 1, . . . , p during phase 0. In phase j, H will perform exactly l consecutive Add
operations to each of the nε keys in Ka

j . Therefore, the Add key-equality leakage
pattern will reveal to the adversary that Add operations to the same key always
occurs in consecutive blocks of l operations.

From the above, it is not hard to see that Ldec is the same on any two pair of
sequences H1 and H2 in the support of the hard distribution. Indeed, the leakage
for the Get operations depends only on the choice of l and, similarly, the leakage
for the Add operations depends only on the choice of l and nε. As both l and nε

are fixed, the leakages Ldec(H1) and Ldec(H2) for any H1 and H2 in the support
of the hard sequence is identical.
Information transfer tree. Next, we define an abstract model of data flow called
the information transfer tree, which will be integral in our lower bound proofs.
For each sequence H in the support of the hard distribution, we will denote the
information transfer tree of H by T (H). T (H) is a binary tree whose nodes
contain the cell probes performed by DS when executing H. Without loss of
generality, we assume that p is a power of 2 and construct a complete binary tree
with p leaves. For all j ∈ {1, . . . , p}, we assign phase j, consisting of subphases
Aj and Gj , to the j-th leftmost leaf. Phase 0 is ignored in the construction of
the information transfer tree.

Next, we proceed by uniquely assigning cell probes to nodes of the informa-
tion transfer tree. Consider a probe to cell address x that occurs as part of an
operation of the phase j. If this is the first probe to cell address x, then the
probe is not assigned to any node. Otherwise, pick the most recent phase i that
precedes phase j (i ≤ j) such that an operation in phase i overwrote the contents
at cell address x. The probe is then assigned to the least common ancestor of
the leaf nodes associated with phase j and phase i. Note that the assignment
of probes to nodes is probabilistic and depends on the random coin tosses R
of DS. So, T (H) is also a random variable over R. For each node v, we define
Cv(H) as the set of probes assigned to v when executing H over the choice of R.
We denote T (Hard) and Cv(Hard) as probability distributions over the random
choices of both Hard and R.

4.2 Bounding Probes Assigned to Internal Nodes

To prove our lower bound, we will show that for many nodes v, the expected
size of Cv(Hard) must be large. Since each probe is assigned to at most one node,
the sum of the number of probes assigned over all the nodes v will result in a
lower bound on the expected number of cell probes needed to process a random
sequence generated by Hard.
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Denote depth(v) as the distance of v from the root. As there are p = n1−ε

leaf nodes, the leaf nodes have depth lg(p) = (1 − ε) lg(n) where all logarithms
are base 2. We will prove the following lemma which states that a large number
of cells must be assigned to nodes in expectations for all nodes that are not too
close to either the root node or the leaf nodes.

Lemma 2. Let DS be a Ldec-leakage cell probe model dynamic encrypted multi-
map scheme that errs with probability at most 1/128. For any 1 ≤ l ≤ nε/2, there
exists a constant γ1 > 0 such that for every node v of depth 8 ≤ d ≤ 1−ε

2 lg(n
c ),

it must be that
E [|Cv(Hard)|] ≥ γ1 · n

2d
· l lg n

w
.

We now show that Lemma 2 would complete the proof of Theorem3.

Proof of Theorem 3. Recall that each probe is assigned to a most one node of
the tree. So, counting the cell probes assigned to a subset of nodes gives a lower
bound on the number of cell probes. A complete binary tree has 2d nodes at depth
d. By Lemma 2, all nodes v such that 8 ≤ depth(v) ≤ 1−ε

2 lg(n
c ) have Ω( n

2d
l lg n

w )
assigned cell probes in expectation. Therefore, each level in this range contributes
Ω(n · l lg n

w ) cell probes in expectation and by multiplying by the number of levels
for which Lemma 2 holds we obtain Ω(n lg(n

c ) l lg n
w ) cell probes. Recall that we

are considering both the Get and Add operations and the efficiency is measured as
running time per response of a query and per value added. Note, a hard sequence
performs Θ(n) queries with exactly l responses each and performs Θ(n · l) Add
each of exactly one value. So, we get the expected amortized running time is
Ω(lg(n

c ) · lg n
w ). ��

4.3 Using the Privacy Guarantees

Therefore, it remains to prove Lemma 2 to finish the proof of our main result.
To do this, we will prove a weaker lemma which shows that for a large number
of nodes v there exists a probability distribution Hardv (specifically built for
node v) that forces the number of probes assigned to v, Cv(Hardv), to be large in
expectation. This lemma is significantly weaker than Lemma 2 which states that
there exists a single distribution, Hard, that simultaneously assigns many probes
to the sets Cv(H) for a large number of nodes v. We note that our proof must
critically use the privacy guarantees of DS as there exist constructions with O(1)
efficiency that do not provide any privacy such as the dynamic perfect hashing
solutions [21]. By leveraging the privacy guarantees of DS, we can show the two
statements are equivalent. First, we formally state our weaker lemma.

Lemma 3. Fix integers n and l and 0 ≤ ε ≤ 1 such that 1 ≤ l ≤ nε/2. Let DS
be a Ldec-leakage cell probe model dynamic encrypted multi-map scheme that
errs with probability at most 1/128. Then, there exists a constant γ2 > 0 such
that, for every node v with 8 ≤ depth(v) ≤ 1−ε

2 lg n
c , there exists a probability

distribution Hardv such that Ldec(Hard) = Ldec(Hardv) and

Pr
[

|Cv(Hardv)| ≥ γ2 · n

2d
· l lg n

w

]

≥ 1
2
.
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By combining Lemma 3 with the privacy guarantees of DS, we show that we
can prove Lemma 2. By Lemma 3, there exists a distribution Hardv that forces
any DS with at most 1/128 failure probability to assign many cell probes to
Cv(Hardv) in expectation. Furthermore, Hardv and Hard have the same leakage
with respect to leakage function Ldec. Since the size of Cv(O) can be computed
by a deterministic, polynomial time algorithm for any sequence O, it must be
that the expected sizes of Cv(Hard) and Cv(Hardv) cannot differ significantly.
Otherwise, a deterministic, polynomial time adversary will be able to distinguish
whether DS is executing a sequence randomly drawn from Hard or Hardv. As a
result, it can be shown that the size of Cv(Hard) for all nodes v must be large in
expectation. We proceed to formalize these ideas.

Proof of Lemma 2. Pick γ1 < γ2/4 and suppose, for the sake of contradic-
tion, that there exists a node v of depth 8 ≤ depth(v) ≤ 1−ε

2 lg n
c , such that

E[|Cv(Hard)|] < γ2
4

n
2d · l lg n

w . By Markov’s inequality, we have that

Pr
[

|Cv(Hard)| ≥ γ2 · n

2d
· l lg n

w

]

< 1/4.

On the other hand, by Lemma3 we know that

Pr
[

|Cv(Hardv)| ≥ γ2 · n

2d
· l lg n

w

]

≥ 1/2.

Therefore a deterministic, polynomial time adversary that computes the number
of probes assigned to v and outputs 1 if and only if the number of cell probes
assigned to v is less than γ2 · n

2d · l lg n
w . This adversary successfully distinguishes

whether DS is processing Hard or Hardv. Thus, this contradicts that DS is non-
adaptively Ldec-IND. ��

4.4 An Encoding Argument

Finally, we present the proof of Lemma3 that requires finding a distribution
Hardv with the properties that Cv(Hardv) is large in expectation and that Hardv

has the same leakage as Hard with respect to Ldec. We start by describing sim-
ple modifications to Hard that are used to construct Hardv while keeping Ldec

unchanged.

Ldec-invariant swaps. Let us start with a simple example and consider distribu-
tion Hard(s,s′) defined as follows for indices 1 ≤ s ≤ s′ ≤ p. Recall that in our
definition of Hard, phase 1 ≤ j ≤ p consists of subphase Aj where Add opera-
tions are performed on the keys in Ka

j and subphase Gj where Get operations are
performed on the keys in Kg

j . In distribution Hard(s,s′) where s ≤ s′, subphase
As′ still consists of Add operations performed on the keys in Ka

s′ but the Get
operations of subphase Gs′ are performed on the keys in Ka

s instead of Kg
s′ . We

show that this swap does not change the leakage with respect to Ldec.

Lemma 4. For any 1 ≤ s ≤ s′ ≤ p, Ldec(Hard) = Ldec

(
Hard(s,s′)

)
.
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Proof. Since no Add operation is affected by the swap, the leakage generated
by the Add operations remains the same. For the Get operations, observe that
the Get operations in Hard(s,s′) are always performed on distinct keys, just as in
Hard and thus the key-equality pattern does not change. Moreover, since s ≤ s′,
when the keys in Ka

s are queried in phase s′, l values have already been added to
them. Therefore the Get operations of Hard(s,s′) return l values just as in Hard
and thus the volume pattern does not change either. ��

The same argument applies to any set S = {(s1, s′
1), . . . , (st, s

′
t)} of swaps

provided that si ≤ s′
i, for i = 1, . . . , t, and that each index is involved in at

most one swap. We call such a set S of swaps a legal set of swaps and we denote
by HardS the distribution resulting from first sampling according to Hard and
then performing the swaps in S. The following lemma follows by considering the
swaps one at a time and by invoking Lemma4 for each swap.

Lemma 5. For any legal set S = {(s1, s′
1), . . . , (st, s

′
t)}, it holds that

Ldec(Hard) = Ldec(HardS).

Defining Hardv. Distribution Hardv is designed to make the set of cell probes
assigned to v, Cv(Hardv) large in expectation for any DS with a bounded fail-
ure probability while ensuring the leakages of Hard and Hardv remain identical
according to Ldec. Recall that Cv(Hardv) contains only probes that occur in the
right subtree of v to a cell last overwritten in the left subtree of v. Suppose we
design Hardv so that the Add operations in the left subtree of v insert a large
amount of random information that is independent from all other operations and
that this information must be extracted by Get operations in the right subtree
of v. For DS to answer the queries with low failure probability, a lot of the
information inserted in the left subtree of v must be transferred to the answers
of the queries in the right subtree of v. We show that there are only two ways
to transfer information between the left and right subtree. First, the client can
store information in the c bits of client storage. The other option is that queries
in the right subtree of v must probe cells that were last overwritten in the left
subtree of v. If the information required to transfer is much larger than the c bits
of client storage, it must be the number of probes performed by queries in the
right subtree of v to cells that were last overwritten by operations in left subtree
of v must be sufficiently large. All these probes will be assigned to Cv(Hardv).

Let us be more precise. Fix any node v of depth d and denote by 2� the
number of leaves in the tree rooted at v so that each of the left and right
subtree has exactly � := p/2d+1. Let i be the index of the leftmost leaf of
the subtree rooted at v. Then, the Add operations performed in the left subtree
of v add values to keys in Ka

i , . . . , Ka
i+�−1 according to the bipartite graphs

Bi, . . . , Bi+�−1. Recall that each of the bipartite graphs Bj where j ∈ {i, . . . , i+
� − 1} arrange the keys Ka

j in the left subtree and the values Vj in the right
subtree. An edge occurs between a key key ∈ Ka

j and value val ∈ Vj if and only
if val is added to the tuple of values associated with key. In other words, the
operation Add(key, val) was executed in the left subtree of v. The Get operations
performed in the right subtree of v are for keys in Kg

i+�, . . . , K
g
i+2�−1. Each of
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these keys has been associated with the l values of V0 by the Add operations
of phase 0. We construct Hardv by modifying the Get operations in the right
subtree of v to query the keys that were used as inputs by the Add operations of
the left subtree of v. Specifically, the leaves in the right subtree of v will contain
Get operations to the keys in Ka

i , . . . , Ka
i+�−1. This corresponds to the set of

swaps swapv = {(i, i + �), . . . , (i + � − 1, i + 2� − 1)} which is easily seen to be
legal. By invoking Lemma 5, we get the following lemma.

Lemma 6. Leakage distributions Ldec(Hardv) and Ldec(Hard) are identical.

We remind the reader that in phase j, each keyword of Ka
j is assigned a ran-

dom subset of exactly l values from the set of values Vj . These chosen values are
uniquely defined by a left l-regular bipartite graph Bj that is chosen uniformly at
random. The entropy of the left subtree of v in Hardv originates from the chosen
bipartite graphs Bj that are chosen uniformly and independently at random for
all j ∈ {i, . . . , i + � − 1}. For each key that appears in the left partition of Bj ,
there are

(|Vj |
l

)
=

(
nε

l

)
possible choices for the l edges (corresponding to the l

values that will be associated with the key). Therefore, the choice of the l edges
adjacent to each key in the left partition of Bj has entropy lg

(
nε

l

)
. By picking

l ∈ {1, . . . , nε/2}, the choice of the edges adjacent to each key in the left partition
of Bj generates Ω(l lg n) bits of entropy by applying Stirling’s approximation.
We note our lower bound do not assume any entropy for the actual values as
done in previous lower bound results [45,56].

As the right subtree of v will query for all keys that were input to Add
operations in the left subtree and DS has low failure probability, most of this
entropy must be retrieved by DS from the left subtree of v. Note, there are a total
of Θ( n

2d ) queries performed in the right subtree of v. As a result, Ω( n
2d · l lg n)

bits of entropy must be transferred from the left subtree. Each cell probe can
transfer at most w bits of entropy and, intuitively, this implies that Ω( n

2d · l lg n
w )

cell probes must be assigned to v. We now formalize these arguments.

Lemma 7. Fix integers n and l and 0 ≤ ε ≤ 1 such that 1 ≤ l ≤ nε/2. Let DS
be a Ldec-leakage cell probe model dynamic encrypted multi-map that errs with
probability at most 1/128. For every node v of depth 8 ≤ d ≤ 1−ε

2 lg n
c ,

Pr
[

|Cv(Hardv)| ≥ 1
100

· n

2d
· l lg n

w

]

≥ 1
2
.

Proof. Fix any vertex v with depth 8 ≤ d ≤ 1−ε
2 lg n

c . We consider the one-
way communication problem between Alice and Bob in which a sequence O of
operations is sampled according to Hardv. The entirety of O is given to Alice
whereas Bob receives all of O except the operations performed in the left subtree
of O. That is, the operations of phases i, . . . , i + � − 1 in O are only given to Alice
and not to Bob for some i where � = n

2d+1 . Both Alice and Bob receive common
randomness R used by DS. Furthermore, they have agreed on an arbitrary,
but fixed ordering for each of the value and key sets. The goal of the one-way
communication is for Alice to allow Bob to reconstruct the missing operations
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which are uniquely defined by the bipartite graphs Bi, . . . , Bi+�−1. We observe
that the entropy of the missing bipartite graphs is � · lg

(
nε

l

)
= Θ((n/2d) · lg

(
nε

l

)
)

even when conditioned on Bob’s input as all the graphs are chosen independently
of R and all other operations that appear in O. By Shannon’s source coding
theorem, the expected length of Alice’s message must be at least as large as the
entropy of the graphs.

Towards a contradiction, we will assume that there exists DS with error prob-
ability at most 1/128 such that Pr[|Cv(Hardv)| ≥ 1

100 · 1w · n
2d+1 ·lg

(
nε

l

)
] < 1

2 . We will
use DS to construct an impossible encoding contradicting Shannon’s source cod-
ing theorem. Note this assumption contradicts the statement of Lemma 7 for any
1 ≤ l ≤ nε/2 as by Stirling’s approximation it implies that lg

(
nε

l

)
= Ω(l lg(n)).

Alice’s encoding. Alice receives the sequence O sampled according to Hardv and
R as input and produces the following encoding:

1. Alice executes DS using R as the randomness and performs all operations in
sequence O up to, but not including, phase i + �. Note that phase i + � is the
first phase in O that belongs to the right subtree of v. At this point, Alice
takes a snapshot of the contents of all memory cells on the server as well as
the contents of client storage.

2. Alice executes the remaining operations in v’s right subtree. That is, all oper-
ations of phases i + �, . . . , i + 2� − 1 in O. Alice collects the set F of all query
operations in v’s right subtree where DS fails to return the correct answer.
Additionally, Alice collects the set Cv(O) of the cell probes that are assigned
to v along with the addresses of the probed cells.

3. If either |F | ≥ 1
32 · n

2d+1 or |Cv(O)| ≥ 1
100 · n

2d+1 ·lg
(
nε

l

)
/w, then Alice’s encoding

will start with a 0 followed by the response to each of the queries in the right
subtree of v. Specifically, for j ∈ {i, . . . , i + � − 1}, Alice iterates through all
key ∈ Ka

j in the order agreed upon with Bob and encodes the subset of l

values from Vj associated with each key using lg
(
nε

l

)
bits. This completes

Alice’s encoding for this case.
4. Suppose instead that |F | < 1

32 · n
2d+1 and |Cv(O)| < 1

100 · n
2d+1 · lg

(
nε

l

)
/w. In

this case, Alice’s encoding will start with a 1-bit and continues by encoding
the following information:
(a) The c bits of client storage recorded in snapshot.
(b) The number |F | of failed query using Θ(lg n) bits as |F | ≤ n.
(c) The index and the answer of the |F | keys in Ka

i ∪ . . . ∪ Ka
i+�−1 for which

DS fails to return the correct answer. The indices are encoded using
lg

(
n/2d+1

|F |
)

bits and the answer to each of the failing queries are encoded

using lg
(
nε

l

)
.

(d) The number |Cv(O)| of the probes assigned to v using Θ(lg n) bits.
(e) The address and content of each cell probe in Cv(O) where w bits are

used to encode the address and another w bits to encode the contents.

Bob’s decoding. Bob receives Alice’s encoding, the sequence of operations O
except for the operations of that occur phases i, . . . , i + � − 1 and the random
string R. Bob decodes in the following manner:
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1. If Alice’s encoding starts with a 0-bit then the answers to all Get queries of
Phases i + �, . . . , i + 2� − 1 are explicitly encoded in Alice’s message and thus
Bob proceeds as follows. For j ∈ {i, . . . , i + � − 1} and for each key ∈ Ka

j in
the agreed upon order, Bob reads the lg

(
nε

l

)
bits that encode which l values

of Vj have been assigned to key. This directly provides the l edges of the
vertex in Bj corresponding to key. Repeating this process for all keywords
allows Bob to completely retrieve Bj completing the decoding when Alice’s
message starts with a 0-bit.

2. From now on, we suppose Alice’s encoding starts with a 1-bit.
(a) Bob simulates DS using R for phases 0, . . . , i − 1. That is, all operations

up to, but not including, the first operation of v’s left subtree. The result
of this execution is identical to Alice’s execution as they both use the same
random string R. Bob will record the contents of all cells in snapshot′.

(b) Bob skips phases i, . . . , i + � − 1 that are the left subtree operations of v.
(c) Bob retrieves the following information from Alice’s encoding:

i. The contents of client storage in snapshot where snapshot is the state
of DS just before any operations in the right subtree of v.

ii. The set F of keywords for which DS will fail to return the correct
answer. For each of these failed keywords, Bob will also retrieve the
correct answer from Alice’s encoding using the same algorithm as the
one where Alice’s encoding started with a 0-bit described above.

iii. The address and content of each of the cells in Cv(O).
(d) Bob simulates DS on the operations in the right subtree of v. That is, all

phases j ∈ {i + �, . . . , i + 2� − 1} using R. Specifically, for each cell probe
performed by DS, Bob checks if the probed cell was last overwritten by
any of the preceding operations in the right subtree of v. If so, Bob will use
the most recent contents of the cell. Otherwise, checks if the cell belongs to
Cv(O) in which case Bob will use the contents of the cell that were encoded
by Alice. Finally if the cell was last overwritten before any operations in
the left subtree of v, Bob will use the cell content as reported by snapshot′.
After Bob completes the simulation, Bob successfully decodes the answer
for all queries where DS returns the correct answer. As a result, Bob
successfully decodes all bipartite graphs Bi, . . . , Bi+�−1.

We now argue that Bob’s simulation of DS for operations in the right subtree
of v (phases j ∈ {i+ �, . . . , i+2�− 1}) is identical to Alice’s execution. Consider
the first time any cell is probed during Bob’s execution of operations in v’s right
subtree. Either the cell is read from Alice’s encoding of Cv(O) or the cell is read
from snapshot′. Bob’s execution will be different from Alice if and only if Bob
uses the incorrect contents of a cell when first probed. This only happens if Bob
uses the contents of a cell from snapshot′ yet that cell was overwritten by an
operation in the left subtree of v (phases j ∈ {i, . . . , i + � − 1}). If this were the
case, this cell probe is assigned to v and, thus, the cell contents would have been
encoded by Alice in Cv(O). As a result, we know both executions by Alice and
Bob are identical and Bob successfully decodes all answers in v’s right subtree.
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Analysis. We now analyze the expected length of the encoding and show that
the expected size of Alice’s encoding is smaller than the entropy of the bipartite
graphs decoded by Bob contradicting Shannon’s source coding theorem.

We distinguish two cases. In the case that Alice’s encoding starts with a 0-
bit, the length is exactly 1 + n

2d+1 · lg
(
nε

l

)
bits. Let us upper bound probability

that Alice produces an encoding that starts with 0. There are two cases in
which this happens. In the first case, it is because F is large and thus DS
made too many errors. Since DS has error probability at most 1/128, we know
that E[|F (Hardv)|] ≤ (1/128)n/2d+1 by linearity of expectation. By Markov’s
inequality, it follows that Pr[|F (Hardv)| ≥ (1/32)n/2d+1] ≤ 1/4. In the second
case, Cv(O) is too large and, by our assumption towards a contradiction, this
happens with probability at most 1/2. Therefore, Alice’s encoding starts with a
0-bit with probability at most 3/4. Let us now analyze the expected length of
an encoding that starts with a 1-bit.

(a) Client storage is encoded using c bits. Recall that we chose 8 ≤ d ≤ (1/2)(1−
ε) lg(n/c). As a result, we know that

c ≤ n

22d
≤ 1

2d−1
· nl

2d+1
≤ 1

128
· n

2d+1
· lg

(
nε

l

)

.

(b) |F | ≤ n and thus Θ(lg n) bits are needed;
(c) The indices and the answers for the failed queries are encoded using

Θ(lg n) + lg
( n

2d+1

|F |

)

+ |F | lg
(

nε

l

)

bits. The above encoding size increases as a function of |F |. The largest
encoding occurs when |F | = (1/32)n/2d+1. By substituting and adding the
Θ(lg n) bits from above items, we obtain

Θ(lg n) +
1
32

· n

2d+1

(

lg(32e) + lg
(

nε

l

))

≤ 1
16

· n

2d+1
· lg

(
nε

l

)

.

(d) |Cv(O)| = O( n
2d+1 lg

(
nε

l

)
/w) and thus Θ(lg n) bits are needed;

(e) By our contradiction assumption, the expected length of the encoding of
Cv(O) requires at most (1/100) · n

2d+1 · lg
(
nε

l

)
bits. If we sum the Θ(lg n)

bits from (d) we obtain a total of

1
100

· n

2d+1
· lg

(
nε

l

)

.

Altogether, the expected length of the encoding starting with a 1-bit is at most
(

1
128

+
1
16

+
1
50

)

· n

2d+1
· lg

(
nε

l

)

<
1
8

· n

2d+1
· lg

(
nε

l

)

.

By putting the two cases together, we can conclude that the expected length
of the encoding is at most 1 + (3/4 + 1/8) · n

2d+1 · lg
(
nε

l

)
< n

2d+1 · lg
(
nε

l

)
which

contradicts Shannon’s source coding theorem thus completing the proof. ��
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We note the proof of Lemma 3 follows directly from Lemma 6 and Lemma 7.
Thus, the proof of Theorem 3 is complete. We refer readers to the full version
for extensions to larger leakage functions and searchable encryption.
Discussion 1. Previous works in the ORAM literature consider passive servers
that act exclusively as storage that may only retrieve or update server memory.
In this model, a cell probe corresponds to one cell of bandwidth. As a result, the
above lower bounds can be interpreted as bandwidth lower bounds for passive
servers. For servers with general computation (like we assumed in our work), cell
probe lower bounds apply to server computation.
Discussion 2. As noted above, our lower bounds can be applied to the encrypted
array primitive that is much closer to the ORAM primitive. One can interpret
our leakage cell probe model with respect to the Ω(lg n) ORAM lower bounds
that appear in [45,56]. In particular, our lower bounds show that the Ω(lg n)
overhead necessarily incurred by ORAMs is caused by mitigating the global key-
equality pattern leakage. After mitigating global key-equality pattern leakage,
other leakage mitigation by ORAMs do not cost additional asymptotic overhead.
Discussion 3. We note that the efficiency of some previous schemes are evaluated
for specific scenarios. For example, the schemes in [38] are evaluated assuming
queries are drawn according to the Zipf’s distribution. We note that our lower
bounds do not apply to any scenario where our hard distribution is not a valid
input. Our lower bounds can be interpreted as if one wishes to leak at most
Ldec, then one must either incur Ω(lg n) overhead or only accept specific input
distributions. We leave it as an interesting and important open question to study
the efficiency schemes assuming specific distributions.

5 Conclusions

To summarize, our work presents the first lower bounds for encrypted multi-maps
as well as searchable encryption schemes in the natural setting of computational
adversaries without any limitations of the data encoding used by the construc-
tions. In particular, we show that mitigating the global key-equality pattern
leakage (even in a very small manner) fundamentally incurs an Ω(lg n) over-
head. We show our lower bounds hold even when the encrypted multi-map is
able to perform one of the Add or Get operations in plaintext. These results may
be applied to the setting of searchable encryption where we show that dynamic
schemes that are response-hiding also must use Ω(lg n) overhead even when one
of the document updates or searches may be performed in the plaintext.

In terms of techniques, our paper introduces several new ideas that may
be widely applicable. First, we introduce the notion of the leakage cell probe
model that allows proving lower bounds for structured encryption with arbitrary
leakage profiles. Next, our lower bounds apply to the setting where the data
structure contents do not necessarily have to be random such as the keywords
that appear in documents. Finally, we present new methods to construct hard
distributions even when considering much larger leakage profiles than previous
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results. We believe these techniques may be helpful in analyzing the efficiency
and privacy tradeoffs for many other primitives.
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