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Abstract. Composable security definitions, at times called simulation-
based definitions, provide strong security guarantees that hold in any
context. However, they are also met with some skepticism due to many
impossibility results; goals such as commitments and zero-knowledge that
are achievable in a stand-alone sense were shown to be unachievable com-
posably (without a setup) since provably no efficient simulator exists. In
particular, in the context of adaptive security, the so-called “simulator
commitment problem” arises: once a party gets corrupted, an efficient
simulator is unable to be consistent with its pre-corruption outputs. A
natural question is whether such impossibility results are unavoidable or
only artifacts of frameworks being too restrictive.

In this work, we propose a novel type of composable security statement
that evades the commitment problem. Our new type is able to express
the composable guarantees of schemes that previously did not have a
clear composable understanding. To this end, we leverage the concept of
system specifications in the Constructive Cryptography framework, cap-
turing the conjunction of several interval-wise guarantees, each specifying
the guarantees between two events. We develop the required theory and
present the corresponding new composition theorem.

We present three applications of our theory. First, we show in the con-
text of symmetric encryption with adaptive corruption how our notion
naturally captures the expected confidentiality guarantee—the messages
remain confidential until either party gets corrupted—and that it can be
achieved by any standard semantically secure scheme (negating the need
for non-committing encryption). Second, we present a composable for-
malization of (so far only known to be standalone secure) commitment
protocols, which is instantiable without a trusted setup like a CRS. We
show it to be sufficient for being used in coin tossing over the telephone,
one of the early intuitive applications of commitments. Third, we reexam-
ine a result by Hofheinz, Matt, and Maurer [Asiacrypt’15] implying that
IND-ID-CPA security is not the right notion for identity-based encryp-
tion, unmasking this claim as an unnecessary framework artifact.

1 Introduction

1.1 A Plea for Composable Security

Common security definitions found in the literature are game-based, i.e., they
require that an adversary cannot win a game that exports certain oracles to
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the adversary. The goal of such a security game is to capture the adversary’s
potential attacks in a minimal manner. However, the mapping of the game’s
interface to potential attacks in the real-world use of the cryptographic protocol
is commonly not straight-forward. Thus, it is often a-priori unclear which game-
based security notion is required in order for the protocol to be secure in a specific
application. Rather, that aspect is often informally considered and passed down
outside the security definitions, becoming “folklore” over the years.

Composable frameworks, such as [4,11,16,21], on the other hand, provide
operational security definitions instead. The way they formalize security is based
around comparing the execution of the protocol in the real world to an idealized
world that intrinsically has the desired security properties. Importantly, this
definition is with respect to any environment, thereby ensuring that the security
guarantees not only do not exclude any attacks but also hold irrespective of
other protocols (or multiple instances of the same one) being executed. For
instance, the composable security definition of a symmetric encryption scheme
is the construction of a secure communication channel from an authentic one
and a key, with different assumed and constructed channels leading to different
notions (e.g., whether replaying is possible). Hence, for a given application it is
now trivial to decide whether a certain scheme suffices.

Finally, composable frameworks facilitate modularity. First, they are based
on defining components with clean abstraction boundaries (e.g., a secure chan-
nel) that abstract away the details of how that module has been constructed (or
otherwise obtained). This idealized module can then be used by a higher-level
protocol with the security of the combined overall protocol following directly
from the composition theorem. Thus, the security of complex protocols can be
neatly proven by composing it from smaller sub-protocols.

1.2 Obstacles for Composable Security

While the clear semantics, modularity, and high security guarantees suggest that
all protocols should be proven secure in a composable framework rather than in
an ad-hoc game-based manner, composable definitions are still not prevalent
with the majority of new research still carried out using game-based definitions.

One of the main reasons hindering adoption might be that many primitives
are known to be impossible to achieve in the plain UC model, such as zero
knowledge [4] and commitments [5]. Furthermore, Lindell has shown [12] that
impossibility results are not specific to the UC model but inherent to any kind
of similar model based around the existence of an efficient simulator. As a conse-
quence, respective protocols have to rely on additional setup assumptions, such
as a common reference string, and are also generally less efficient.

One particular obstacle composable definitions often face is the so-called
“simulator commitment problem”, which mainly arises when considering adap-
tive security. In a nutshell, it describes the simulator’s inability to explain some
of its previous choices the moment a party gets corrupted. More concretely, con-
sider the example of two parties securing their communication using symmetric
encryption. The intuition is that the adversary does not learn the messages until
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either of the parties gets corrupted, thereby revealing the key. Before, the adver-
sary should learn at most the length. As a result, the simulator, in the first
phase, has to output a fake ciphertexts independent of the real messages. For
any semantically secure encryption scheme he can actually do so. This, however,
commits him on those fake ciphertexts. At the moment a party gets corrupted,
the simulator then needs to be able to explain those ciphertexts by outputting a
matching encryption key. Even if he learns all the previous messages, he will not
be able to do so for regular encryption schemes. Note, however, that the commit-
ment problem is not restricted to adaptive corruptions only. Similar issues also
arise, for instance, in the context of password-based security [7] or identity-based
encryption [8], where it has been shown that due to this commitment problem
the standard game-based notions do not induce the expected corresponding com-
posable statements.

On a general level, this raises the fundamental question whether such impos-
sibility results actually indicate a security issue, and hence protocols not satis-
fying the stronger composable definitions should not be used, or whether they
present an artifact of the framework. Especially for the commitment problem,
the common understanding is that the latter is true. Furthermore, the obsta-
cles are often dealt with by either reverting to composable security with static
corruptions only, or by simply retracting to game-based definitions. As a result,
there is a clear need for a better composable security notion that lets us settle
this question and remedy the issue of the spurious impossibilities.

1.3 Existing Attempts to Overcome the Obstacles

A number of approaches have been proposed in order to circumvent the afore-
mentioned issues of composable security.

First, Canetti and Krawczyk proposed the notion of non-information oracles
[6] within the UC-framework. A non-information oracle is essentially a game-
based definition embedded into an ideal functionality. For instance, rather than
saying that an encryption scheme should realize a secure channel that only leaks
the length, the respective functionality leaks the output of the non-information
oracle, which is required to satisfy a CPA-like definition. While this circumvents
the commitment problem, there are two drawbacks. First, it weakens composi-
tion by requiring explicit reductions to the embedded games in the security proof
of the higher-level protocols using the functionality. Second, for each ideal func-
tionality a different type of non-information oracle needs to be defined, without
providing any generic template. As a consequence, the question of the “right”
non-information oracle re-arises, just like when defining a security game.

Second, a line of work considers super-polynomial simulators [3,20,22]. The
initial proposal by Pass [20] considered sub-exponential simulators and polyno-
mially bounded environments. This implies, however, that the simulator cannot
be absorbed into the environment, ceding some of the most fundamental com-
position properties of the UC-framework. The later works by Prabhakaran and
Sahai [22] and Broadnax et al. [3] empower the simulator in a more controlled
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manner, preserving most natural composition properties. Their adoption, how-
ever, still suffers from being rather technical, and moreover, still quite limited in
the number of issues they can overcome. For instance, when considering a PRG
whose seed might leak, even an all powerful simulator will not be able to explain
a truly randomly chosen output with an appropriate seed.

Finally, Backes, Dürmuth, Hofheinz, and Küsters [1] proposed an approach
where the real-world resource would just disallow certain activation sequences by
the environment that were otherwise impossible to simulate. While this avoids
the complications of the other approaches, it scarifies the evident semantics of
composable security notions by excluding certain—deemed artificial—attacks. A
similar approach has recently been used by Jost, Maurer and Mularczyk in [10].

1.4 Contributions

Interval-wise guarantees. In this work, we propose an alternative solution to
the simulator-commitment problem that is aimed at expressing the guarantees of
regular schemes within a composable framework. More concretely, we introduce
a novel type of construction notion within the Constructive Cryptography (CC)
framework that avoids the commitment problem while providing a number of
distinct benefits. First, it provides a clean semantics of how the guarantees should
be interpreted. Second, it holds in any environment, just as any statement in
the CC framework. Third, it is equipped with a composition theorem.

Since the commitment problem usually occurs at a very specific point of the
protocol execution, such as when a party gets corrupted, where the security guar-
antees of the protocol anyway inherently change, our novel construction notion
is centered around the very natural idea of formalizing guarantees that hold in a
certain interval (between two events). That is, our notion for instance allows to
formalize separate security guarantees before and after the corruption event. In
contrast to existing simulation-based notions, we thereby only require the sim-
ulation to work within each interval, not forcing the simulation to be consistent
between the intervals (which causes the initial commitment issues). We discuss
how the security guarantees provided by our notion should be interpreted, when
stronger notions might still be desirable, and how our notion fits into the space
of static versus adaptive security.

Theory extensions. On a technical level, we leverage the specification-based
approach of the CC framework, where proving a protocol π to be secure corre-
sponds to modeling the assumed real-world specification R, and showing that the
resulting specification πR is contained in an ideal specification S, i.e, πR ⊆ S.

We formalize interval-wise guarantees as a novel type of specifications within
the CC framework. We carefully consider the subtleties arising when defining
such specifications and show how they interact with the other aspects of the
framework. Finally, we present the respective composition theorem, that actually
supersedes all the existing ones, and in particular allows to syntactically combine
multiple such interval-wise construction statements, or an interval-wise one with
a regular construction statement.
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Applications. As a third contribution, we apply our methodology to several
examples. First, we consider the encrypt-then-MAC paradigm in a setting where
the keys can adaptively leak to the adversary, stylizing adaptive passive corrup-
tions. Using our interval-wise guarantees, we obtain a simple composable security
definition thereof without the need for non-committing encryption. More con-
cretely, we consider the following three properties. First, we require the messages
to be confidential as long as neither the encryption nor the authentication key
leaked. (An IND-CPA secure scheme cannot guarantee confidentiality without
authenticity.) In our definition, this is phrased as the construction of a secure
channel up to that point. Second, between the exposure of the encryption key
and the authentication key, we require communication to still be authentic, i.e.,
an authenticated channel to be constructed. Finally, after the encryption key
has been exposed, we still require correctness.

As a second application, we show a composable formalization of information-
theoretically binding commitment schemes realizable in the plain model. We then
show how, based on such a commitment scheme, Blum’s protocol constructs a
composable coin-toss notion. Applying composition then directly implies that
this formalization can be achieved in the plain model as well. While the result-
ing specification is obviously too weak to serve as a common reference string, it
guarantees unbiasedness. Hence, it is provides a good enough type of random-
ness resource whenever unbiasedness is sufficient, in particular formalizing and
formally validating the intuitive-level argumentation about flipping a coin over
the telephone of the corresponding papers of that time.

Finally, we consider the composable guarantees of identity-based encryption.
We revisit the result by Hofheinz, Matt, and Maurer [8] that shows the standard
ind-id-cpa notion to be too weak when considering a traditional composable
statement based on the existence of a single simulator, even when considering
static corruptions, due to the commitment problem. Furthermore, the authors
have shown that the same weaker construction that actually can be achieved,
could also be achieved by a weaker game-based notion ind-id1-cpa, modeling so-
called lunch-time attacks. We refute their results in the following way: Based
on interval-wise guarantees we formalize a composable specification of IBE that
corresponds exactly to the standard ind-id-cpa notion.

1.5 Outline

In Sect. 3, we provide a introduction to our notion, before presenting the technical
details in Sect. 4. In Sect. 5 we present a novel composable definition of perfectly
binding commitments and its application to coin tossing. In the full version [9],
we moreover revisit composable security of identity-based encryption.

2 Preliminaries: Constructive Cryptography

This work builds upon some more recent aspect of the Constructive Cryptogra-
phy (CC) framework [13,16]. We therefore revisit the key aspects thereof, follows
the exposition introduced in [16], with some adaptations from [10].



38 D. Jost and U. Maurer

2.1 Resources, Converters, and the Interaction Model

At its heart, the Constructive Cryptography framework views cryptography as
a resource theory, in which parties use certain resources (e.g., communication
channels and a shared secret key) to construct another resource via a protocol.

Global events. In this work, we use the version of Constructive Cryptography
introduced in [10] that enriches the interaction model by a notion of globally
observable events. Formally, events are a generalization of monotone binary out-
puts (MBO) introduced by Maurer et al. [15]. Roughly, an MBO is a value
that can change from 0 to 1 but not back, which can be interpreted as a single
event happening once the MBO changes to 1. An event then just corresponds to
a named MBO and the global event history E is a list of event names without
duplicates (to model that every event can occur at most once). For an event name
n, we denote by E +← En the act of appending n to E (or leaving it unchanged if
it is already contained). Moreover, we use En as a short-hand notation to denote
that n is in the list E , and say that the event happened. Finally, we denote by
En1

≺ En2
that the event n1 precedes the event n2 in the event history.

Resources. A resource1 R is a reactive system that interacts in the following
two ways with the rest of the world: First, it allows interaction at one or several
named communication interfaces, in the following just called interfaces, at which
it can be queried an input x, and must answer with an output y at the same
interface. Second, during an activation, the resource R can depend on the global
event history E , and can furthermore append events from a predefined set of
names. We call this set of names the events controlled by R.

Formally, resources are modeled as random systems [14], where the interface
address, the actual input x, and the current state of the event history are encoded
as part of the input. Analogously, the answer y and the new state of the event
history are encoded as part of the output, under the constraint that the old state
of the event history is a prefix of the new one. For the sake of this paper, a reader
unfamiliar with the CC framework might however just think of a resource as the
behavior of an oracle machine, where each interface corresponds to an oracle and
the event history being similar to the “directory” ITI used in the recent version
of UC [4]. Note, however, that a resource only defines the behavior of the system
and not its description, i.e., two different (pseudo-code descriptions of) ITMs
having the same input-output behavior denote the same resource.

A set of resources can be viewed as a single one, with the interface set of
the composed resource being the union. For resources R1, . . . ,Rn (with disjoint
interface sets) we denote by [R1, . . . ,Rn] the parallel composition.

Converters and protocols. In the Constructive Cryptography framework,
converters express the local action executed by one party. A converter expects
1 The analogon to functionalities in the UC framework [4].
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to be connected to a given number of interfaces at the “inside”, and emulates a
certain set of interfaces at the “outside”. Upon an input at an outside interface,
the converter is allowed to make a bounded number of oracle queries to the inside
interfaces, before returning a value at the queried interface.

For a converter π and a resource R, let I denote a tuple describing an injec-
tive mapping from π’s inside interfaces to interfaces of R. We then denote by
R′ := πIR the resource obtained from connecting the converter accordingly.
The resource R′ no longer exposes those interfaces but the ones emulated by
π instead. Converter attachment satisfies the natural property of composition
order independence, stating that the composition order does not matter—only
the final system does.

Proposition 1. Let π1 and π2 be two converters, let R be a resource and let I1

and I2 be such that they assign disjoint interfaces. Then, πI1
1 πI2

2 R = πI2
2 πI1

1 R.
Moreover, if S is another resource such that the interface sets of R and S are
disjoint, then we have πI1

1

[
R,S

]
=

[
πI1
1 R,S

]
.

We define a protocol to be a set of converter-connection pairs, i.e,. π :=
{(π1, I1), . . . , (πn, In)} with pairwise disjoint Ii’s. Moreover, we say that π is
a protocol for a resource R, if R has all the required interfaces for the protocol
application to be well-defined, and write πR to denote its application.

The environment (distinguisher). The distinguisher D is a special type of
environment that first interacts with a resource R by making queries to the
resource’s interfaces. Between two such queries it can access the global event
history and append events to it, except the ones controlled by R. Note that
activations are atomic, i.e., at any moment in time either the resource or the
distinguisher is activated, but not both. Finally, the distinguisher ends the inter-
action with the resource by outputting a bit. The advantage of D is then defined
as

ΔD
(
R, S

)
:= Pr

[
DE(S) = 1

]
− Pr

[
DE(R) = 1

]
,

where we use the syntax DE(·) to make explicit that the distinguisher has oracle
access to the global event history E .

2.2 Constructions

Specifications. It is natural to consider only certain desired (or assumed) prop-
erties of a system and deliberately not specify others. Some of those choices are
intrinsic to the mathematical model we use, such as only considering the input-
output behavior and ignoring the physical aspects. Other properties can be pur-
posefully ignored by considering specifications of systems that simply leave out
those aspects, focusing only on the relevant properties. Following [17], we model
specifications as sets of resources R that all have the same interface set. For
each property, such as confidentiality, one has in mind, one can consider the set
R of resources satisfying that property. Vice versa, each set of resources R can
be interpreted as the set of properties common to all elements. For instance,
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authenticated communication might be modeled as the set of all communica-
tion channels that are authentic—not specifying the level of confidentiality by
including both confidential as well as non-confidential channels.

Constructions as subsets. In provable security one typically considers the
execution of a protocol π that makes use of some assumed specification R, such
as a communication network or a public-key infrastructure. In short, one wants
to show that the specification πR := {πR | R ∈ R} satisfies the desired security
properties. As explained in the previous section, those properties are formalized
as a specification S, and thus proving security means proving πR ⊆ S. Note
that obviously the guarantees given by S are generally weaker than the ones by
πR. The purpose of such a statement is, however, that the security properties
are in S both more explicit and simpler to analyze. In other words, the goal is
to distill out the relevant properties and abstract away the others.

Traditionally, the statement πR ⊆ S is read as the protocol π construct-
ing the specification S from the specification R, or in UC-jargon the protocol
securely realizing the specification S in the R-hybrid model. Hence, as a short-
hand notation we introduce the following construction notion.

Definition 1. Let R and S be specifications, and let π be a protocol for R.
Then, we say that π constructs S from R, denoted R π−−→ S, if and only if
πR ⊆ S, i.e.,

R π−−→ S :⇐⇒ πR ⊆ S.

In slight abuse of notation, we write R
π−−→ S in lieu of {R} π−−→ {S} for singleton

specifications.

This construction notion is associated with the usual composition properties
of Constructive Cryptography: sequential and parallel composition—which form
the equivalence of the universal composition theorem of the UC-framework.

Theorem 1. Let R, S, and T be arbitrary specifications, and let π and π′ be
arbitrary protocols for R and S, respectively. Then, we have

1. R π−−→ S ∧ S π ′
−−→ T =⇒ R π ′◦π−−−→ T ,

2. R π−−→ S =⇒
[
R, T

] π−−→
[
S, T

]
.

Proof. The first property follows directly from the transitivity of the subset
relation, π′(πR

)
⊆ π′S ⊆ T , and the second property follows from Proposition

1: π
[
R, T

]
=

[
πR, T

]
⊆

[
S, T

]
.

The specifications πR and S are often referred to as real- and ideal-world,
respectively, according to the so-called real-world/ideal-world paradigm on which
most composable frameworks [4,11,16,21] are based. Following that paradigm,
security statement affirm that the real word is “just-as-good” as the ideal world,
meaning that for all parties, no matter whether honest or adversarial, it does
not make a difference whether they live in the real (where an arbitrary element
of πR is present), or in the ideal world (where some element of S is present).
Hence, if the honest parties are content with the guarantees they get from the
ideal specification, they can safely execute the protocol in the real world instead.
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The (in)existence of a simulator. Simulation-based security turned out to be
one of the most fundamental concepts in cryptography and is closely linked with
the real-world/ideal-world paradigm. It not only forms the foundation of seman-
tic security, zero knowledge, and the security of MPC, but also of virtually every
composable framework. Whereas the former definitions tend to require an after-
the-fact simulation of the transcript, composable frameworks get their stronger
guarantees from requiring on-line simulation, where an adaptive environment
interacts with the simulator. The common understanding of those security def-
initions is then that the simulator “translates” the attacks from the real-world
adversary to the ideal world such that they achieve the same effect.

While the initial version of the Constructive Cryptography framework also
hard-coded the existence of a simulator (with respect to the dummy adversary),
starting from [17], the simulator is no longer an integral part of the construction
notion. Rather, employing a simulator is just one way of defining an ideal spec-
ification, σS that makes the achieved security properties obvious. For instance,
the specification of confidential channels can then be written as the specification
S of channels that only leak the message length, combined with an arbitrary sim-
ulator. From this description it is apparent that for any resource in the combined
specification σS, only the length is leaked.

If one restricts oneself to specifications of this type, then the following more
specific composition theorem can be deduced.

Proposition 2. Let R, S, and T be specifications, and let π and π′ be protocols
for R and S, respectively. For any simulators σ (for S) and σ′ (for T ), such
that the set of interfaces controlled by the simulators are disjoint from the ones
controlled by the protocols, we have

1. R π−−→ σS ∧ S π ′
−−→ σ′T =⇒ R π ′◦π−−−→ σσ′T ,

2. R π−−→ σS =⇒
[
R, T

] π−−→ σ
[
S, T

]
.

Proof. By composition order invariance we have π′σS = σπ′S ⊆ σσ′T , imply-

ing S π ′
−−→ σ′T =⇒ σS π ′

−−→ σσ′T . The first property then follows directly
from combining this with Theorem1. The second property follows from Theo-
rem 1 and Proposition 1 as well: π[R, T ] = [πR, T ] ⊆ [σS, T ] = σ[S, T ]. 
�

2.3 Relaxations

The basic construction notion does not take into account statistical errors or
computational assumptions. Those aspects are formalized by so-called relax-
ations, as introduced in [17]. On an abstract level, a relaxation is a mapping
from specifications to weaker, so-called relaxed, specifications. For our purpose,
where we instantiate specifications by sets of resources, we can define a relaxation
as a function mapping a single resource to a set of resources.

Definition 2. Let Θ denote the set of all resources. A relaxation φ is a function
φ : Θ → 2Θ (where 2Θ denotes the power set of Θ) such that R ∈ φ(R) for all
R ∈ Θ. In addition, for a specification R, we define Rφ :=

⋃
R∈R φ(R) as a

shorthand notation.
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A concrete relaxation thereby formalizes some notion of resources being
“almost-as-good” in some context. That is, if we were happy with constructing
a resource specification S, then we should also be happy with Sφ, if we believe
the weakening φ to be justifiable in the given context. For instance, one could
consider the relaxation that maps the resource R to the set of all computation-
ally indistinguishable resources from R under some computational assumption.
Hence, if we believe the computational assumption to be valid, we should be as
content with the relaxed specification as with the original one.

Abstracting away irrelevant properties is a core paradigm of any modular
analysis. Applied to Constructive Cryptography, this means that ideally we
should be able to “forget” relaxations. That is, if one shows that one protocol
constructs Sφ (from some assumed resources), one should be able to compose it
with another statement that assumes S instead. On the most abstract level, it
is easy to see that the following rules apply to any relaxation.

Proposition 3. For any specifications R and S, and any relaxation φ, we have

1. R ⊆ Rφ,
2. R ⊆ S =⇒ Rφ ⊆ Sφ,
3. (R ∩ S)φ ⊆ Rφ ∩ Sφ,
4. (R ∪ S)φ = Rφ ∪ Sφ.

Proof. All properties trivially follow from R ∈ φ(R).

The reduction relaxation. We now introduce the most fundamental relax-
ation, which captures computational security based on explicit reductions. This is
defined as a function ε that maps distinguishers to their respective performance
in [0, 1], where ε(D) typically refers to the winning probability of a modified
distinguisher D′ (the reduction) on the underlying computational problem.

Definition 3. Let ε be a function that maps distinguishers to a value in [0, 1].
Then, the induced relaxation on a resource R, denoted Rε, is defined as

Rε :=
{
S

∣
∣ ∀D : |ΔD(R,S)| ≤ ε(D)

}
.

We call such a relaxation generally an ε-relaxation or reduction relaxation.

We now discuss several properties that ε-relaxations have. First, the errors
just add up, as expressed by the following theorem.

Theorem 2. Let R be an arbitrary specification, and let ε1 and ε2 be arbitrary
ε-relaxations. Then we have

(
Rε1

)ε2 ⊆ Rε1+ε2 .

Proof. This follows directly from the triangle inequality of the distinguishing
advantage.

Second, they naturally commute with protocol application and parallel com-
position of additional resources, i.e., the relaxation can be “pulled out”. In such a
step, however, the additional resource or converter has to be explicitly accounted
for in the reduction.
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Theorem 3. The ε-relaxation is compatible with protocol application in the fol-
lowing sense that π (Rε) ⊆ (πR)επ , for επ (D) := ε(Dπ(·)), where Dπ(·) denotes
the distinguisher that first attaches π to the given resource and then executes D.
Moreover, it is compatible with parallel composition, i.e.,

[
Rε,S

]
⊆ [R,S]εS , for

εS(D) := supS∈S ε(D[ · ,S]), where D[ · ,S] denotes the distinguisher that emulates
S in parallel to the given resource and then lets D interact with them.

Proof. The proof can be found in the full version [9].

The composition theorem with ε-relaxations then follows directly from these
compatibility results. The following corollary phrases the corresponding result—
which in older version of Constructive Cryptography used to be called the com-
position theorem, thereby hard-coding computational security.

Corollary 1. For any specifications R, S, and T , any protocols π and π′, and
any ε-relaxation ε and ε′, we have

1. R π−−→ Sε ∧ S π ′
−−→ T ε′

=⇒ R π ′◦π−−−→ T επ ′+ε′
,

2. R π−−→ Sε =⇒ [R, T ] π−−→ [S, T ]εT ,

where επ and εS are defined as in Theorem 3, respectively.

Proof. The proof can be found in the full version [9].

3 Interval-Wise Guarantees: Motivation and Intuition

In this section, we outline the general approach, and its motivation, proposed in
this work, before we deep dive into the technicalities in Sect. 4. In particular, we
believe that the conceptual contributions are of interest independent from the
exact mathematical formalization.

3.1 A Motivating Example

Consider two parties, Alice and Bob, who want to communicate securely over the
Internet. If they have a pre-shared secret key available, e.g. from running a key
agreement protocol, then it is well known that the encrypt-then-MAC paradigm
achieves the desired goal. Assuming independent keys for the encryption and
MAC scheme, this construction is secure if the underlying encryption scheme is
IND-CPA secure and the MAC scheme is weakly unforgeable.

What, however, if we assume that in reality the keys to not be one hundred
percent secure? Intuitively one should expect the scheme to remain secure until
either of the keys leak to an adversary, and the security properties then to
gracefully downgrade accordingly. More concretely, there is little reason to doubt
the following security guarantees should be provided by the scheme:

1. until either of the keys leak, the scheme should provide both confidentiality
and authenticity;



44 D. Jost and U. Maurer

2. if only the encryption key leaked so far, then the scheme should still provide
authenticity;

3. once the MAC key leaked, the scheme should at least still provide correctness,
i.e., allow the parties to communicate in the absence of an active network
attack.

(Note that if first the MAC key gets exposed, then a scheme that is only IND-
CPA secure might not provide full confidentiality.)

3.2 A Naive Attempt

While the encrypt-then-MAC paradigm has composably proven to be sound
in a context where both parties are honest and the keys are secure (e.g. [6,
18]), extending those results to deal with key exposures has turned out to be
surprisingly strenuous.

Intuitively, one might model the achieved security guarantees as an secure
channel with downgradable security, which waives confidentiality and authentic-
ity once the respective keys leaked. The protocol should then construct such
a channel from an insecure channel and two leakable keys2, for authentication
and encryption, respectively. See Fig. 1 for a formal definition of the respective
resources InsecCh, AuthKey, and EncKey (for the assumed resources), and SecCh
for the secure channel with downgradable security. Following the paradigm of
modularity, one might try to formalize and prove this in two steps and first con-
sider authentication only, as modeled by a downgradable authenticated channel
AuthCh (c.f. Fig. 1 as well). Indeed, one can show the following construction.

Proposition 4. Let AuthCh denote the authenticated channel that degrades its
security once the respective key is leaked, as formally defined in Fig. 1, and let
πMAC denote the simple protocol that applies a MAC scheme to the messages.
Then, there exists a simulator σMAC such that

[
AuthKey, InsecCh

] πMAC−−−→
(
σMACAuthCh

)εMAC ,

where εMAC denotes a simple reduction to the MAC-forgery game.

Proof. This is a well-known result, which has for instance been sketched in [13].

However, once we turn our attention towards the second construction step—
using encryption to achieve confidentiality—we run into the so-called simula-
tor commitment problem of composable security, as expressed by the following
proposition.

2 In CC, the adversary by definition only has access to interfaces statically assigned to
him. Hence, adaptive corruptions are modeled by introducing explicit memory and
computation resources with an adversarial interface, granting the adversary access
once the party is corrupted. For simplicity, we here consider directly leaking key
resources instead. Assuming secure erasure, this is equivalent to passive corruptions.
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Fig. 1. The resources involved in the encrypt-then-MAC example. Observe how the
authenticated and the secure channel degrade their guarantees once the respective
keys have been leaked.

Proposition 5. Let SecCh denote a secure channel that degrades the respective
guarantees once the keys have been exposed, as depicted in Fig. 1, and let πENC

be the protocol that applies a symmetric encryption scheme. For any (efficient)
simulator σENC, and (an efficiency preserving) reduction εCPA to the IND-CPA
game, we have [

EncKey,AuthCh
]

�πENC−−−→
(
σENCSecCh

)εCPA ,

i.e., IND-CPA security does not suffice.

Proof (Sketch). In the first phase, the simulator has to produce, without knowing
the message, fake ciphertexts c1, c2, . . . , cn that look indistinguishable from the
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real one. For an IND-CPA secure scheme, he can easily do so by encrypting an
arbitrary message of the correct length. The moment the encryption key leaks
in the real world, he however has to output a uniformly looking key that makes
his ciphertexts decrypt to the correct messages. Even knowing the messages by
now, this is infeasible unless we assume a non-committing encryption scheme.
Furthermore, as long as the requested key is shorter than n, Nielsen [19] showed
that NCE cannot be achieved in the standard model by non-interactive protocols.

Of course one could avoid this impossibility by utilizing stronger primitives
and/or assumptions, such as non-committing encryption. In some contexts, such
as when considering deniability, their stronger guarantees might even be inher-
ently necessary. In this work, we however pose the following question: How can
we express the aforementioned security guarantees, that the encrypt-then-MAC
paradigm using regular encryption intuitively does provide, in a composable
framework? That is, rather than establishing a stronger security notion, we aim
at expressing the exact guarantees provided by existing game-based notions.

3.3 Our Solution

So how to express the natural properties that are achieved? First, let us have
another look at the reason for the impossibility: traditional simulation-based
security notions require the simulator to commit to a ciphertext, emulating the
encryption, based on the length only. Even if the simulator later gets to learn
the entire message, it cannot come up with an encryption key that decrypts the
previously output ciphertext to this message. Observe, however, that outputting
the length only is just a technical way of expressing confidentiality until either
one of the keys leak. In principle, there is no inherent requirement for a consis-
tent simulation strategy across the different phases of the experiments. This is
exactly what our proposal of interval-wise guarantees builds on: allowing disjoint
simulation strategies for different phases of a protocol run. In other words, we
simply make three disjoint security statements, one guaranteeing confidentiality
and authenticity until either key is leaked, one only guaranteeing authenticity
between the exposure of the encryption key and the MAC key, and one guar-
anteeing correct delivery of messages afterwards. Given the specification centric
approach of Constructive Cryptography, this can be phrased as

πENCπMAC[AuthKey,EncKey, InsecCh] ⊆ S1 ∩ S2 ∩ S3,

where S1 to S3 are specifications formalizing the respective guarantees.
Phrasing separate statements can trivially be done in any framework, but also

comes with a number of drawbacks. First, having to specify three constructions
of unconnected, potentially differently described, specifications incurs a certain
cognitive overhead, making the overall achieved security more demanding to
understand. Second, and more severely, one loses some compositional properties.
In particular, the analysis of another protocol building on top of those guarantees
would require to make the exact same case distinction.
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To overcome those drawbacks, we phrase each guarantee as an appropri-
ate interval-wise relaxation of the same underlying resource: the downgradable
secure channel. That is, we phrase security as

πENCπMAC[AuthKey,EncKey, InsecCh] ⊆ SecChφ1 ∩ SecChφ2 ∩ SecChφ3 ,

where φ1 to φ3 formalize the interval-wise relaxations. Another protocol can then
simply assume the overly idealized downgradable secure channel SecCh, with
our novel composition theorem taking care of devising the appropriate overall
security statement. We formalize this type of relaxation and the corresponding
composition theorem in the next section, i.e., Sect. 4.

Translating the approach to another composable framework, such as UC,
might be feasible but non-trivial. First, one might try to formalize a single
interval-wise guarantee as a different corruption model, where for instance the
adversary simply does not get the encryption key to securely realize a functional-
ity analogon to SecCh. To then compose this step with a SecCh-hybrid statement,
one would probably require some compiler translating the statement. We, thus,
believe that formalizing our results in CC that allows for arbitrary specifications
is both simpler and more natural.

A remark on adaptive versus static security. Our security statement makes
a static case separation on the intervals considered. This might raise the question
as to how this differs from simply considering static corruptions only. We would
like to stress that our statement is about a real-world system, where the envi-
ronment gets to adaptively (depending on all the outputs it sees) choose when
the appropriate keys are leaked. Hence, our notion lies somewhere in between
the traditional notions of static and adaptive security.

To which extent our notion suffices in practice, and when a stronger tra-
ditional adaptive statement is required, is in our opinion an interesting open
research problem. On the one hand, fully adaptively secure notions, without
doubt, play a crucial role as a technical tool in many cryptographic construc-
tions. On the other hand, very few cases are known where the overall security
of an application actually seems to be meaningfully impacted by adaptiveness.
For instance, consider the folklore example of an MPC protocol where an adver-
sary knows which party she has to corrupt based on some observed value during
the execution. Nevertheless, for a polynomially sized adversary structure (i.e.,
choices which parties to corrupt), the adversary could still guess upfront, imply-
ing that even traditional static security would suffice. This is for instance the
case if there are only logarithmically (or constant) many parties overall.

Moreover, even if there super-polynomially many choices, it could still be
that our interpretation of the static result is wrong: if we distinguish n static
cases, and in each one of them a certain property is violated with probability
ε, then all we can say is that by the union bound the probability of a property
being violated is bounded by nε. Hence, concluding from ε being negligible that
the protocol is overall secure, might simply not be sound in the first place.
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A remark on stronger security guarantees. The primary goal of this work is
to express the security guarantee of certain schemes in a composable framework,
for which so far this has not been possible. This does not contradict stronger
security notions, such as non-committing encryption, being of use as well. For
instance, insisting that the simulator can explain the ciphertexts (in the tradi-
tional notion) formalizes that the ciphertexts are never of any value—in a broader
sense than confidentiality. This might play an important role in advanced prop-
erties such as deniability, or e.g. in a scenario where an adversary wants to prove
to another party that he managed to wiretap the channel before the transmitted
message and the corresponding encryption key are publicly announced. Phrasing
that no adversary can succeed requires the simulator to work beyond the public
announcement, and achieving it requires non-committing encryption. Otherwise,
committing to the ciphertext ahead of the public announcement should convince
the other party.

4 Interval-Wise Guarantees: Definitions

In this section, we formalize interval-wise guarantees as a type of relaxation
and provide the corresponding composition theorem. In the spirit of modularity,
we proceed in several steps. First, we introduce one relaxation that waives all
guarantees after a certain point, and second, the complementary one that waives
all guarantees before a certain event. Third, we combine those relaxations and
show that it fits well into the existing theory. Finally, we present the resulting
construction notion and phrase the motivating example therein.

4.1 Guarantees up to Some Point

As we have seen in the motivational example, the confidentiality of the messages
should be guaranteed until the key is leaked. To phrase this, we, on a high level,
only require that the simulator works up to this event. We formalize this as a
novel type of relaxation consisting of all systems behaving equally up to this
point. To this end, for a resource R, we consider the modified resource that halts
once a certain predicate on the global event history is satisfied.

Definition 4. Let R denote a resource, and let P (E) denote a monotone predi-
cate on the global event history. That is, if E is a prefix of E ′ then P (E) → P (E ′).
Then, we denote by untilP (R) the resource that behaves like R but halts the
moment P (E) becomes true. That is, it no longer triggers any further events
and all subsequent (including the one for the query that triggered the condition)
answers are the special symbol ⊥.

Getting back to our example, consider the resource untilP (SecCh) for P (E) :=
E leaked
AuthKey ∨ E leaked

EncKey, depicted in Fig. 2. Since this resource no longer produces any
output once either event occurred, it clearly never leaks the messages to Eve
and removes Eve’s capability of injecting messages. Hence, the resulting resource
closely matches the expected secure channel when ignoring key exposures.
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Fig. 2. The secure channel from Fig. 1 when halted once either key leaks. In contrast
to the original one, this resource never leaks the actual messages.

We now define the according relaxation, which maps a system to the set of
all systems that behave equivalently up to some event.

Definition 5. Let P be a monotone predicate on the global event history, indi-
cating until when the behavior must be the same as the one of the resource R.
Then, the induced relaxation on a resource R, denoted RP ], is defined as

RP ] :=
{
S

∣
∣ untilP (R) = untilP (S)

}

We call such a relaxation generally an until-relaxation.

As with the ε-relaxation, the statements only become reusable and thus truly
composable if we understand how the until-relaxation interacts with the other
elements of the framework. For this, first observe that equality up to some point
is monotone, i.e., if two resources are equivalent up to some point, they are also
equivalent up to every earlier point. This furthermore implies that two until-
relaxations add up in the natural manner, as follows.

Theorem 4. Let R and S be two resources, and let P1 and P2 be two monotone
predicates. Then, we have

untilP1(R) = untilP1(S) =⇒ untilP1∨P2(R) = untilP1∨P2(S).

In particular, for every specification R, we have RP1] ⊆
(
RP1]

)P2] ⊆ RP1∨P2].

Proof. The first property follows directly from the definition of the until() pro-
jection. In order to prove the second property, let S ∈

(
RP1]

)P2]. Then, there
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exists T ∈ RP1] such that untilP2(S) = untilP2(T). Moreover, there exists
R ∈ R such that untilP1(T) = untilP1(R). By the first property we, thus, obtain
untilP1∨P2(S) = untilP1∨P2(T) = untilP1∨P2(R), concluding the proof. 
�

Furthermore, on a positive note, the relaxation is compatible with both proto-
col application and parallel composition, as expressed by the following theorem.
Those compatibility properties—analogously to Corollary 1—also directly imply
sequential and parallel composition properties. For the lack of use, we however
omit explicitly stating them.

Theorem 5. The until-relaxation is compatible with protocol attachment, i.e.,
π

(
RP ]

)
⊆

(
πR

)P ] and with parallel composition, i.e.,
[
RP ],S

]
⊆

[
R,S

]P ].

Proof. A proof is presented in the full version [9].

Unfortunately, however, the until-relaxation does not commute directly with
the ε-relaxation, as expressed by the following theorem.

Theorem 6. There exist specifications R and S, a monotone predicate P , and
a function ε mapping distinguishers to values in [0, 1] such that

(
RP ]

)ε �⊆
(
Rε

)P ] and
(
Sε

)P ] �⊆
(
SP ]

)ε
.

Proof. The proof can be found in the full version [9].

This not only raises the question which order actually corresponds to the intu-
itive interpretation of such a combination—the set of all systems which behave
equally until the condition is triggered assuming the assumption of ε is valid—
but also restricts reuse of such statement. That is, if one construction assumes
SP ] to obtain T , and another one constructs Sε instead, then adjusting the for-
mer construction to assume Sε instead is non-trivial. As a consequence, we will
introduce a combined relaxation in Sect. 4.3, resolving both issues.

4.2 Guarantees From Some Point On

In this section, we now consider the complementing type of guarantees: guaran-
tees that only hold from a certain point on. Formalizing such guarantees in a
model where an adaptive environment interacts with the resource is, however,
quite delicate. In this work, we thus opt for a rather simple (and restricted)
version of it, where we use again a monotone condition on the global event his-
tory. We then define the projection that disables access to a system R before
that condition is met. Clearly, the condition must rely on “external” events only
(the ones not controlled by R), i.e., satisfying it must not require accessing the
resource itself.

Definition 6. Let P (E) denote a monotone predicate on the global event history.
For a resource R, let fromP (R) denote the resource that behaves like R, except
that it only accepts queries once P (E) is true (and before only returns ⊥).
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For instance, the resource fromE leaked
EncKey

(SecCh) only answers queries once the envi-

ronment triggered the event E leaked
EncKey. Thus, in contrast to SecCh, this resource

always leaks the full message of the adversary, in line with our intuition that it
describes the behavior after the key has been exposed.

Based on this projection, we now introduce the corresponding relaxation.

Definition 7. Let P (E) be a monotone predicate, indicating from which point
on the behavior must be the same as the one of the resource R. Then, the induced
relaxation on a resource R, denoted R[P , is defined as

R[P :=
{
S

∣
∣ fromP (R) = fromP (S)

}

We call such a relaxation generally a from-relaxation.

The way the from-relaxation interacts with the other elements of the theory is
analogous to the until-relaxation. First, two from-relaxations add up naturally: if
we relax the guarantees offered by a specification to only hold from the moment
P1 is satisfied, and then further relax them to only hold once P2 is satisfied, then
the guarantees only hold once P1 ∧ P2 is satisfied.

Theorem 7. Let R and S be two resources, and let P1 and P2 be monotone
predicates on the global event history. Then, we have

fromP1(R) = fromP1(S) =⇒ fromP1∧P2(R) = fromP1∧P2(S).

In particular, for every specification R, we have R[P1 ⊆
(
R[P1

)[P2 ⊆ R[P1∧P2 .

Proof. The proof is analogous to the one of Theorem 4.

Second, the relaxation is compatible with protocol application and parallel com-
position, which moreover implies that it graciously interacts with the basic con-
struction notion.

Theorem 8. The from-relaxation is compatible with protocol application, i.e.,
π

(
R[P

)
⊆

(
πR

)[P and with parallel composition, i.e.,
[
R[P ,S

]
⊆

[
R,S

][P .

Proof. The proof is analogous to the one of Theorem 5.

Analogously to the until-relaxation, the from-relaxation, however, does not com-
mute with the ε-relaxation.

Theorem 9. There exist specifications R and S, a monotone predicate P (E),
and a function ε mapping distinguishers to values in [0, 1] such that

(
R[P

)ε �⊆
(
Rε

)[P and
(
Sε

)[P �⊆
(
S [P

)ε
.

Proof. A proof can be found in the full version [9] of this report.

Finally, consider the interaction between the from- and the until-relaxation.
While the from-projection and the until-projection commute, i.e.,

fromP1(untilP2(R)) = untilP2(fromP1(R)),

it is an interesting open question whether the two respective relaxations actually
commute. As a consequence, we introduce a combined from-until relaxation in
the next subsection.
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4.3 The Interval-Wise Relaxation

As we have seen, the ε-relaxation commutes neither with the until-relaxation nor
the from-relaxation, and its unclear whether the from- and until-relaxations do.
This impedes modularity and reusability of the statements and also deteriorates
their intuitive semantics: if for instance we want to express that a system behaves
like a certain ideal up to some point, and under certain computational assump-
tions, which order of the relaxations is the right one and should be proven? To
alleviate those issues, in this section, we introduce two combined relaxations that
build on the atomic ones introduced in the previous section. We then show that
they both have natural semantics and clean properties.

First, we consider a relaxation that combines the from- and until-relaxation,
thereby alleviating the issue that those relaxations might not commute.

Definition 8. Let P1(E) and P2(E) be two monotone predicates, indicating from
when until when the resource must behave like R. We then define the following
relaxation

R[P1,P2] :=
{
S

∣
∣ untilP2(fromP1(R)) = untilP2(fromP1(S))

}
.

While this combined relaxation apparently neither corresponds to
(
R[P1

)P2]

nor
(
RP2]

)[P1 , it interestingly corresponds to the transitive closure thereof. Tak-
ing the transitive closure, moreover, also restores symmetry, i.e., S ∈ R[P1,P2] ⇔
R ∈ S[P1,P2], lost by each of the two individual combinations. Overall, this
indicates that the combined relaxation best corresponds to the intuition of the
“almost-as-good” relation it should intuitively represent.

Theorem 10. For any resource R and any monotone predicates P1 and P2, we
have

R[P1,P2] =
⋃

n∈N

(⋃{
Rφ1·φ2···φn | ∀i ≤ n : φi ∈ {P2], [P1}

})

=
((

R[P1
)P2]

)[P1

=
((

RP2]
)[P1

)P2]

,

where Rφ1·φ2···φn is a shorthand notation for first applying φ1, then φ2, until φn.

Proof. The proof can be found in the full version [9].

We can now leverage this alternative definition to directly derive properties
about the combined relaxations based on the proven properties of the two under-
lying ones. In particular, we can show that two such relaxations add up in the
expected manner and are compatible with both protocol application as well as
parallel composition.

Theorem 11. For every specification R, and all monotone predicates P1, P2,
P ′
1, and P ′

2, we have
(
R[P1,P2]

)[P ′
1,P ′

2] ⊆ R[P1∧P ′
1,P2∨P ′

2].
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Proof. This follows directly by combining Theorems 4, 7 and 10.

Theorem 12. The combined relaxation is both compatible with protocol appli-
cation, i.e., π

(
R[P1,P2]

)
⊆

(
πR

)[P1,P2] and with parallel composition, i.e.,
[
R[P1,P2],S

]
⊆

[
R,S

][P1,P2].

Proof. By Theorem 10 we have that R[P1,P2] =
((

R[P1
)P2]

)[P1

. Using the com-
patibility of the from-relaxation and until-relaxation, i.e., Theorems 5 and 8,
directly implies the desired properties. 
�

As we have seen, neither the until- nor the from-relaxation commute with the
computational ε-relaxation, and the same holds true for the from-until-relaxation
as well. As a consequence, neither (R[P1,P2])ε nor (Rε)[P1,P2]) seems to capture
the set of all systems that behave like R in the interval [P1, P2] assuming that the
computational problem encoded in ε is hard. In the spirit of the combined from-
until relaxation, we solve this issue by introducing a combined relation. Since
the ε relaxation is not idempotent, but the epsilons add up, taking the transi-
tive closure, however, does not match the desired relaxation but the following
restricted version of transitive closure does.

Definition 9. For two monotone predicates P1 and P2, and a function ε map-
ping distinguishers to values in [0, 1], we define the following relaxation:

R[P1,P2]:ε :=
((

R[P1,P2]
)ε

)[P1,P2]

,

and call such a relaxation an interval-wise relaxation.

We now prove that the interval-wise relaxation has all the desired properties.

Theorem 13. Let P1 and P2 be two monotone predicates, and let ε be a function
mapping distinguishers to values in [0, 1]. Then, for any specification R we have

(
R[P1,P2]:ε

)[P ′
1,P ′

2]:ε
′
⊆ R[P1∧P ′

1,P2∨P ′
2]:ε[P1∧P ′

1,P2∨P ′
2]+ε′

[P1∧P ′
1,P2∨P ′

2] ,

where ε[P1∧P ′
1,P2∨P ′

2]
(D) := ε(D ◦ untilP2∨P ′

2
◦ fromP1∧P ′

1
), i.e., the performance

of the distinguisher interacting with the projected resource, and analogously for
ε′
[P1∧P ′

1,P2∨P ′
2]
.

Proof. The proof can be found in the full version [9].

Theorem 14. The interval-wise relaxation is compatible with protocol appli-
cation, i.e., π

(
R[P1,P2]:ε

)
⊆

(
πR

)[P1,P2]:επ and with parallel composition, i.e.,
[
R[P1,P2]:ε,S

]
⊆

[
R,S

][P1,P2]:εS .

Proof. By definition we have R[P1,P2]:ε :=
((

R[P1,P2]
)ε

)[P1,P2]

. Using the compat-
ibility of the ε-relaxation and the from-until-relaxation, i.e., Theorems 3 and 12,
directly implies the result.
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4.4 The Resulting Construction Notion

Based on the interval-wise relaxation, we now introduce our new construction
notion. To this end, let Ω denote a set of tuples (P1, P2, ε,σ), where P1 and P2

are monotone predicates on the global event history, ε is a function mapping
distinguishers to values in [0, 1], and σ denotes a simulator. We then consider
constructions of the following type:

R π−−→
⋂

(P1,P2,ε,σ)∈Ω

(σS)[P1,P2]:ε.

That is, each element in Ω describes a time-interval in which the elements in
πR can be abstracted as elements in S—with respect to the simulator σ and
error ε.

Application to the running example. In our example, we want to phrase
that the symmetric encryption protocol constructs the secure channel from the
authenticated one and the key in the corresponding intervals.

Proposition 6. Let πENC = (πenc, πdec) denote the protocol securing communi-
cation using a symmetric encryption scheme. Then, for the resources in Fig. 1,
there exist (efficient) simulators σ1, σ2, and σ3 such that

[
EncKey,AuthCh

] πENC−−−→
⋂

(P1,P2,ε,σ)∈Ω

(σSecCh)[P1,P2]:ε

for

Ω :=
{(

true, E leaked
EncKey ∨ E leaked

AuthKey, εCPA,σ1

)
,
(
E leaked
EncKey, false, 0,σ2

)
,

(
E leaked
AuthKey, false, 0,σ3

)}
,

where εCPA denotes a simple reduction from distinguishing the secure and authen-
ticated channel (without key leakage) to the IND-CPA game.

Proof. A proof sketch is presented in the full version [9] of this report.

Composition. Finally, we finish the section by stating the composition guaran-
tees of this type of construction statement. It follows directly from the properties
proven about the interval-wise relaxation in Theorems 13 and 14.

Theorem 15. Let R, S, and T be arbitrary specifications, let π and π′ be
arbitrary protocols, and let Ω and Ω′ be arbitrary interval-wise guarantees. Then,
we have

R π−−→
⋂

(P1,P2,ε,σ)∈Ω

(σS)[P1,P2]:ε ∧ S π ′
−−→

⋂

(P ′
1,P ′

2,ε′,σ ′)∈Ω′

(σ′T )[P
′
1,P ′

2]:ε
′

=⇒ R π ′◦π−−−→
⋂

(P1,P2,ε,σ)∈Ω
(P ′

1,P ′
2,ε′,σ ′)∈Ω′

(σσ′T )[P1∧P ′
1,P2∨P ′

2]:ε̃,
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where ε̃ := (επ ′)[P1∧P ′
1,P2∨P ′

2]
+ (ε′

σ )[P1∧P ′
1,P2∨P ′

2]
. Furthermore, we have

R π−−→
⋂

(P1,P2,ε,σ)∈Ω

(σS)[P1,P2]:ε =⇒
[
R, T

] π−−→
⋂

(P1,P2,ε,σ)∈Ω

(
σ

[
S, T

])[P1,P2]:εT
.

Proof. The proof is stated in the full version [9].

Note that this construction notion subsumes all those previously introduced
in this work. In particular, instantiating P1 = true, P2 = false, ε(D) = 0, and
σ = id, i.e., the identity converter, yields (idS)[true,false]:0 = S. As a consequence,
the above composition theorem also allows to combine constructions according
to each of the notions introduced in this work. For instance, in our example, we
can compose the construction of AuthCh from Proposition 4 (according to the
standard notion) with the interval-wise construction of SecCh from Proposition 6.

5 Application to Commitments and Coin-Tossing

In this section, we present a composable formalization of (perfectly binding) com-
mitments that can be constructed in the plain model. To this end, we formalize
the properties of commitment schemes—correctness, binding, and hiding—each
as individual specifications. Thereby, hiding is formalized using the interval-wise
guarantees introduced in the previous section. We then apply Blum’s coin-tossing
protocol on top of it. While, obviously, the resulting specifications are not suffi-
cient to be used as a CRS, we show that it is unbiased.

5.1 Information-Theoretically Binding Commitments

While UC commitments [5] provide clean and strong guarantees, unfortunately
they intrinsically require setup assumptions such as a common reference string.
Nevertheless, for many protocols, regular commitments only satisfying the clas-
sical game-based properties seem to suffice. This raises the question: can we
formalize a weaker yet composable security notion for (non-interactive) commit-
ments?

In Constructive Cryptography, the security of a commitment scheme is for-
malized using three different constructions [16], for each set of potentially dis-
honest parties (ignoring the case of both parties being dishonest). Typically,
this is presented as one construction parametrized in the set of honest parties,
where the ideal specification consists of a filtered resource. That is, for each
party P, a filter φP is specified that when connected to the resource limits the
honest party’s capabilities. However, there is no fundamental reason for those
three construction statements’ specifications to be of some unified type. As a
result, we henceforth focus on specifying each property—hiding, binding, and
correctness—individually, starting with correctness.
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Fig. 3. The commitment resources for message space M. In the basic version, Alice
has to specify the value at the time of commitment, whereas in the unfiltered version
she additionally has the ability to commit to f(c).

Definition 10. Let πcom = (πA
com, πB

com) denote a non-interactive commitment
protocol where A commits a value m ∈ M towards B. The scheme is said to be
(perfectly) correct if

[
ChA→B

1 ,ChA→B
2

] πcom−−−→ ComA→B
M ,

where ComA→B
M denotes the commitment resource defined in Fig. 3, and ChA→B

1

and ChA→B
2 denote two single-message communications channels3 from A to B.

Now we proceed to formalize the hiding property. On an intuitive level, (com-
putational) hiding of a non-interactive commitment scheme requires that the
commitment string must not reveal any information about the committed value
to the receiver B, until the commitment is opened. Clearly, we can directly apply
our notion from Sect. 4 and formalize this using an interval-wise relaxation.

Definition 11. Let πcom = (πA
com, πB

com) denote a non-interactive commitment
protocol. Then, the scheme is said to be (computationally) hiding if

[
ChA→B

1 ,ChA→B
2

] πA
com−−→

(
σB
comCom

A→B
M

)[true,Eopened]:ε
,

for some simulator σB
com and some computational assumption encoded in ε.

3 That is, a channel that allows the sender to input a single message once. For sim-
plicity, assume that the channel has guaranteed immediate delivery, i.e., whenever
the sender has input a message, the receiver can fetch it.
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The situation is more challenging with binding. The UC formalization, and
analogously ComA→B

M , requires that the adversary inputs the value to which it
commits to in the initial phase, in order to formalize that it then cannot be
altered anymore. This, however implies that the simulator must be able to extract
the value from the commitment string, fundamentally contradicting the hiding
property in the plain model. Since such a formalization is just one (albeit con-
venient) manner to specify that the value is fixed at the end of the commitment
phase, we circumvent this impossibility in another manner. To this end, we con-
sider perfect (or information-theoretically secure) commitments only, where the
commitment string uniquely determines the committed value. We leverage this
considering a resource ComA→B

M,f , depicted in Fig. 3, which allows the dishonest A
to input an arbitrary string x in order to commit to the value v = f(x). Here,
f : {0, 1}∗ → M∪{⊥} denotes an arbitrary function that maps the commitment
string either to a message m, or to ⊥ indicating that it is malformed.

Definition 12. Let πcom = (πA
com, πB

com) denote a non-interactive commitment
protocol where A commits a value m ∈ M towards B. Then, the scheme is said
to be perfectly binding if there exists an efficient simulator σA

com such that

[
ChA→B

1 ,ChA→B
2

] πB
com−−→

{
σA
comCom

A→B
M,f

∣
∣ f : {0, 1}∗ → M ∪ {⊥}

}
,

where ComA→B
M,f denotes the extended commitment resource defined in Fig. 3.

As a side note, note that the resource ComA→B
M can trivially be expressed as a

filtered version of ComA→B
M,f , where the filter φA removes access to the commitRaw

oracle. That is, we obviously have φACom
A→B
M,f = ComA→B

M for every function f .

Remark 1. Observe that the function f is not necessary efficiently computable.
Actually, for a hiding scheme, f cannot be efficiently computable. This, however,
does not imply that the overall specification has to contain resources that are not
efficiently implementable, as clearly the real-world resource is efficient, and yet
corresponds to σAComA→B

M,f for an inefficient f . In other words, the decomposition,
containing the inefficient resource, is just one way of describing an overall efficient
resource. The specification could, thus, be restricted to consist of only efficient
resources, which we did not make explicit here focusing only on the security
properties. This is somewhat reminiscent of the solution proposed by Broadnax
et al. [3] to deal with inefficient simulators in a manner that retains the expected
composition guarantees.

ElGamal commitments. We briefly consider a variant of ElGamal commit-
ments as a concrete instantiation of the above formalized notion. Let G = 〈g〉
denote a cyclic group of order n with generator g.

– To commit to a message m ∈ G, ((ga, gb,m · gab), (a, b)) ← Commit(m) for
a, b ∈ Zn uniformly at random. That is, the commitment string is (ga, gb,m ·
gab) and the opening value (a, b).
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– Open((c,A,B), (a, b)) := c · g−ab if A = ga and B = gb, and ⊥ otherwise.

Proposition 7. Let πElG-com denote the protocol, i.e., the pair of converters,
implementing the aforementioned ElGamal commitment scheme. Then, πElG-com

satisfies correctness, hiding (under the DDH assumption), and binding according
to Definitions 10 to 12, respectively.

Proof (Sketch). It is easy to see that the our correctness condition holds. Fur-
thermore, with the simulator σB

com outputting a random triple of group elements
as commitment string, hiding holds under the DDH assumption, i.e., for ε encod-
ing an appropriate reduction to the DDH problem. Finally, consider the function
f that maps (U, V,W ) ∈ G

3 to W · g−DLg(U)·DLg(V ) and all other bit-strings to
⊥. For this function, it is easy to see that a simulator σA

com exists such that the
construction that formalizes binding holds. 
�

5.2 Coin-Tossing

In this section, we consider Blum’s simple coin-tossing protocol [2]. The protocol
assumes to have a commitment resource from Alice to Bob, and a communication
channel in the reverse direction, at its disposal. It then proceeds as follows: Alice
chooses X ∈ {0, 1} uniformly at random and commits to it. Once Bob is sure
that Alice committed, he chooses Y ∈ {0, 1} uniformly at random and sends it
over to Alice (in clear). Finally, Alice opens the commitment and both parties
output Z = X ⊕ Y .

Clearly, this protocol does not provide fairness—even when instantiated with
a UC-secure commitment. This is due to the fact that both parties can always
choose to abort the protocol by not responding, and in particular Alice can do
so after she has seen the result. When instantiating the commitment with the
resource constructed in the last section, one even obtains a weaker resource. Note
that this is inherent for our construction being in the plain model, as otherwise
it could be used as the bit of a CRS, contradicting well-known impossibility
results.

In a nutshell, the resource obtained by our construction guarantees that the
output is not biased, but does not exclude that during the opening phase, one of
the parties learns some trapdoor allowing it to distinguish it from a uniformly
random value. For example, our formalization would allow the resulting bit to be
the first bit of a PRG’s output, while leaking the seed during the opening phase.
Note that such a coin toss resource is still useful, for instance for lotteries. First,
if the resulting bit is just used to determine which party gets some good, then
bias-resistance is obviously good enough irrespective of the fact that the parties
might be aware that the result is only pseudo-random. Second, in a simple lottery
where people’s preferences are obvious, fairness can be achieved by declaring the
party that caused the abort to have lost.

The coin-toss resource. The ideal specification is expressed in terms of the
resources CTA,B

M and CTA,B
M,f , where the former denotes a restricted version of
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Fig. 4. The coin-toss resources for coin space M. In the unfiltered version, Alice addi-
tionally has the capability to once obtain a leakage to f(c), where f is a parameter of
the resource. Note that neither version provides fairness, as Alice can always chooses
to not release the value after having seen it.

the latter. The resource CTA,B
M initially draws an element Z ∈ M uniformly

at random. In order for the coin-toss Z to become available to the parties, A
has to initiate it, and B has to respond afterwards. From this point on, A can
obtain Z and then decide whether the value should also be released to B. In the
resource CTA,B

M,f , A furthermore can query once a leakage f(c), of some potentially
inefficient function f . A formal definition of the resources can be found in Fig. 4.

The constructions. First, consider correctness. It is easy to see that the fol-
lowing construction holds, i.e., two honest parties actually get to agree on a
uniform random bit.

Proposition 8. Let πCT := (πA
CT, πB

CT) denote the pair of converters implement-
ing Blum’s protocol. Then, we have

[
ComA→B

{0,1},Ch
B→A

] πCT−−→ CTA,B
{0,1},

and thus [
ChA→B

1 ,ChA→B
2 ,ChB→A

] πCT◦πcom−−−−−−→ CTA,B
{0,1},

for any commitment scheme πcom satisfying Definition 10 (correctness).

Second, consider the guarantee for an honest initiator A.
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Proposition 9. Let πCT := (πA
CT, πB

CT) denote the pair of converters implement-
ing Blum’s protocol. Then, there exists an efficient simulator σB

CT such that

[
ComA→B

{0,1},Ch
B→A

] πA
CT−−→ σB

CTCT
A,B
{0,1},

and thus, for any commitment scheme πcom satisfying Definition 11 (hiding), we
have

[
ChA→B

1 ,ChA→B
2 ,ChB→A

] πA
CT◦πA

com−−−−−→
(
σB
comσB

CTCT
A,B
{0,1}

)[true,Eopened]:ε̃
,

with ε̃ :=
(
εσB

CT

)
[true,Eopened]

.

Proof. Recall that ComA→B
{0,1} only reveals the value X to Bob after he sent his

value Y . Hence, X and Y are independent and with X chosen uniform at random
by Alice, implying that Z = X ⊕Y is a uniform random value. Hence, using the
simple simulator σB

CT that simulates the output of the commitment resource as
X := Z ⊕Y , it is easy to see that the construction actually achieves the coin-toss
resource perfectly. 
�

Note that this implies that the output Z that Alice obtains looks indistinguish-
able from a uniform random value until the value is released for the dishonest
party. Hence, while it is not guaranteed that the dishonest party does not learn
some trapdoor afterwards, the value Z is at least unbiased.

Finally, consider the security guarantees for an honest party B against a
potentially dishonest party A. To this end, we turn to the unfiltered resources
ComA→B

{0,1},f and CTA,B
{0,1},f , where the latter once allows Alice to obtain f(c) for a

c of her choice.

Proposition 10. Let πCT := (πA
CT, πB

CT) denote the pair of converters imple-
menting Blum’s protocol. Then, there exists an efficient simulator σA

CT such that
{[
ComA→B

{0,1},f ,ChB→A
] ∣

∣ f : {0, 1}∗ → {0, 1,⊥}
}

πB
CT−−→

{
σA
CTCT

A,B
{0,1},f

∣
∣ f : {0, 1}∗ → {0, 1,⊥}

}
,

and thus, for any commitment scheme πcom satisfying Definition 12 (binding),
we have
[
ChA→B

1 ,ChA→B
2 ,ChB→A

] πB
CT◦πB

com−−−−−→
{
σA
comσA

CTCT
A,B
{0,1},f

∣
∣ f : {0, 1}∗ → {0, 1,⊥}

}
.

Proof. Consider the real-world system resulting from attaching Bob’s converter
only, for some function f . Interacting with this resource, the environment can
input a commitment string C at Alice’s interface, then see Bob’s bit Y at Alice’s
channel interface, and finally see the resulting bit Z = f(C)⊕Y as the output of
Bob’s converter. In the following, consider the ideal-world system with the same
function f as in the real world. It is now easy to see that a simulator can easily
replicate the real-world behavior by getting Z from the resource, querying the
leakage-oracle on C getting f(C), and then setting Y = Z ⊕ f(C). 
�
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As a final note, observe that formalizing Bob’s security guarantees for the
commitment resource in terms of an interval-wise relaxation, rather than intro-
ducing the unfiltered resource CTA,B

{0,1},f , would not work. This is due to the
fact that in the real world Y (requiring the additional capabilities to simulate)
is output at Alice’s interface before Bob sees Z. Hence, simulating only until
Alice sends Y would not give any guarantees on Bob’s output. In summary, this
demonstrates Constructive Cryptography’s advantage of being able to consider
different types of statements within one (meta-)framework.

6 Conclusion and Future Work

We have demonstrated that considering new types of resource specifications can
lead to security notions that are composable, yet do not suffer the artificial
impossibilities exhibited by the classical simulation-based definitions. We have
introduced a type of specification that formalizes guarantees that hold in a cer-
tain time-interval (between two events), which has clean semantics, comes with
a natural syntactical composition theorem, and integrates well with the existing
Constructive Cryptography framework.

While our novel type of relaxation does not resolve every issue of composable
security, we ultimately believe that all (meaningful) security statements can be
expressed as an as assumed specification being contained in an ideal one. Further
work is, hence, needed to identify additional types of specifications that allow
to express more properties—while retaining strong syntactical composition rules
and clear semantics.
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