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Abstract. We initiate the study of indifferentiability for public key
encryption and other public key primitives. Our main results are def-
initions and constructions of public key cryptosystems that are indiffer-
entiable from ideal cryptosystems, in the random oracle model. Cryp-
tosystems include:

– Public key encryption;
– Digital signatures;
– Non-interactive key agreement.

Our schemes are based on relatively standard public key assumptions.
By being indifferentiable from an ideal object, our schemes automati-
cally satisfy a wide range of security properties, including any property
representable as a single-stage game, and can be composed to operate in
higher-level protocols.

Keywords: Indifferentiability · Composition · Public key encryption ·
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1 Introduction

When designing a cryptographic system, it is difficult to predict how it will be
used in practice and what security properties will be required of it. For exam-
ple, if the larger system produces certain error messages, this can lead to chosen
ciphertext attacks [6]. Perhaps a message is encrypted using random coins which
themselves are derived from the message, as is used for de-duplication [28].
Maybe the secret key itself will be encrypted by the system, as is sometimes
used in disk encryption. Or perhaps there was bad randomness generation on
the hardware device, leading to secret keys or encryption randomness that is
low-entropy or correlated across many instances.

Cryptographers have devised different security models to capture each of the
scenarios above and more, each requiring different constructions to satisfy. How-
ever, seldom are these different security models considered in tandem, meaning
that each application scenario may require a different scheme. Even worse, there
are many potential security models that have yet to be considered; after all, it is
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difficult to predict the various applications devised by software developers that
may deviate from the existing provably secure uses.

With the above in mind, our goal is to develop a single construction for a
given cryptographic concept that simultaneously captures any reasonable secu-
rity property and can be composed to work in any reasonable larger protocol.
As such, only a single instance of the scheme needs to be developed and then
deployed in a variety of use cases, even those that have not yet been discovered.

Ideal Hash Functions: The Random Oracle Model. Our inspiration will be the
random oracle model (ROM) [4], a common heuristic used in cryptography. Here,
a hash function is assumed to be so well designed that the only reasonable attacks
simply evaluate the hash function as a black box and gain nothing by trying to
exploit the particular design. To capture this, the hash function is modeled as a
truly random function, accessible by making queries to the function.

A random oracle truly is the “ideal” hash function: it is trivially one-way
and collision resistant, the standard security notions for hash functions. But it
is also much stronger: it is correlation intractable [7], a good extractor even for
computational sources, and much more. When used in a larger system, random
oracles can yield provably secure schemes even when standard security properties
for hash functions are insufficient. In fact, the most efficient schemes in practice
are often only known to be secure using random oracles. As such, the ROM is
ubiquitous in cryptography.

Other idealized models have been studied before. Examples include the ideal
cipher model [25], the generic group model [26], and more recently ideal sym-
metric key encryption [2]. However, no prior work considers idealized models for
public key cryptosystems.

Ideal Public Key Cryptosystems. In this work, we define and construct the first
ideal public key cryptosystems such as public key encryption and digital sig-
natures. By being ideal, our schemes will immediately satisfy a wide class of
security properties, including most studied in the literature. Our schemes will
be proven to be ideal in the random oracle model using Maurer’s indifferentia-
bility framework [20], under general computational assumptions. We also show
that certain classic relations among cryptographic objects also hold in the ideal
setting, while discussing cases where such relations fail.

Our goal comes with interesting challenges: on one hand, public key schemes
tend to require number-theoretic structure in order to attain the necessary func-
tionality. On the other hand, ideal schemes by definition have essentially no
structure. Therefore, our results require novel techniques, including bringing
indifferentiability into the public key setting.

1.1 What Is an Ideal Public Key Scheme?

Now, we turn to our results. Our first result is to define, precisely, what an
“ideal” public key cryptosystem is. For simplicity, in the following discussion,
we will consider the case of two-party non-interactive key exchange (NIKE). Such
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a scheme consists of two algorithms. KEYGEN is a key generation algorithm run
by each of two users. We will adopt the convention that the input to KEYGEN
is the user’s secret key SK, and the output is the corresponding public key PK.
The two users then exchange their public keys. They then run SHAREDKEY to
extract a common shared key. SHAREDKEY will take as input the public key
for one user and the secret key for the other, and output a shared key K. The
correctness requirement is that both users arrive at the same key:

SHAREDKEY(PK1,SK2) = SHAREDKEY(PK2,SK1),

whenever PK1 = KEYGEN(SK1) and PK2 = KEYGEN(SK2).
Any NIKE scheme will have the syntax above and the same correctness

requirement. On the other hand, any given NIKE scheme may have additional
structural properties that make it insecure in certain settings. For example, if
multiple shared keys are generated using the same public key PK for a given user,
the resulting shared keys may be correlated in some algebraic way. In order to be
secure in the widest variety of settings, an ideal NIKE scheme should therefore
not have any such additional structure over the minimum needed to ensure
correctness.

In the case of existing idealized models, the idealization is simply a uniformly
random choice of procedures subject to the mandatory correctness requirements.
For example, a hash function has no correctness requirement except for deter-
minism; as such its idealization is a random oracle. Likewise, a block cipher must
be a (keyed) permutation, and the decryption functionality must be its inverse.
As such, the ideal cipher is a random keyed permutation and its inverse.

Therefore, the natural way to model an ideal NIKE scheme is to have all
algorithms be random functions. Of course, the correctness requirement means
that there will be correlations between the algorithms. We take an ideal NIKE
scheme to be two oracles KEYGEN, SHAREDKEY such that:

– KEYGEN(SK) is a random injection;
– SHAREDKEY(PK,SK) is a random function, except that SHAREDKEY(PK1,

SK2) = SHAREDKEY(PK2,SK1) whenever PK1 = KEYGEN(SK1) and PK2 =
KEYGEN(SK2)1.

We emphasize that all functions are public and visible to the attacker and the
formal definition for ideal NIKE is given in Sect. 3.1.

1.2 Indifferentiability

Of course, just like a random oracle/generic group/ideal cipher, ideal NIKE
cannot exist in the real world. This then begs the question: how do we design
and rigorously argue that a NIKE scheme is so well designed that it can be
treated as an ideal NIKE scheme in applications?

1 By the injectivity of KEYGEN, this is still a well-defined function.
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Barbosa and Farshim [2] offer one possible answer. They build a symmetric
key encryption scheme from a hash function. Then, they show, roughly, that if
the hash function is ideal (that is, a random oracle), then so is their scheme.
Our goal in this work will be to do the same for public key schemes: to build an
ideal NIKE scheme assuming that a hash function H is a random oracle.

As in [2], formal justification of ideal security requires care. Suppose we have
a construction of an ideal NIKE scheme (KEYGEN,SHAREDKEY) in the random
oracle model, meaning each of the algorithms makes queries to a random function
H. In the case where H is hidden to the adversary, such a construction is almost
trivial, and would essentially reduce to building symmetric key encryption from
a PRF. However, Maurer, Renner, and Holenstein [20] observed that this is not
enough, since H is a public function and the adversary can query H as well.

Clearly, any construction (KEYGEN,SHAREDKEY) will now be distin-
guishable from the idealized algorithms, since the adversary can evalu-
ate the algorithms for himself by making queries to H, and checking
if the results are consistent with the oracles provided. Instead, what is
needed is the stronger notion of indifferentiability, which says that when
(KEYGEN,SHAREDKEY) are ideal, it is possible to simulate H by a simula-
tor S which can make queries to (KEYGEN,SHAREDKEY). In the real world,
(KEYGEN,SHAREDKEY) are constructed from H per the specification. In the
ideal world, (KEYGEN,SHAREDKEY) are the idealized objects, and H is sim-
ulated by making queries to the ideal objects. Indifferentiability requires that
the two worlds are indistinguishable to an adversary that gets access to all the
oracles.

Maurer, Renner, and Holenstein shows that indifferentiability has many desir-
able properties: it composes well and will be as good as the ideal object in many
settings (see Sect. 1.3 below for some limitations).

Therefore, our goal will be to build NIKE which is indifferentiable from ideal
NIKE in the random oracle model. As indifferentiability has mostly been used in
the symmetric key setting, this will require new techniques to bring indifferentia-
bility into the public key world. Indeed, most works on indifferentiability build
ideal objects with minimal correctness requirements: none in the case of random
oracles, and bijectivity/injectivity in the case of ideal ciphers/symmetric key
encryption. The case of public key cryptosystems requires significantly more
structure for correctness. In fact, we face an immediate theoretical barrier:
Impagliazzo and Rudich [17] demonstrate that a random oracle is incapable
of constructing something as structured as public key encryption, even ignoring
the strong indifferentiability requirement.

Instead, we will obtain our needed structure using public key tools. However,
public key tools come with too much structure: every term has an algebraic
meaning which is not present in the idealized setting. Therefore, our goal will
actually be to employ a novel combination of public key techniques together with
random oracles in order to eliminate this extra structure. The result will be an
indifferentiable NIKE scheme.
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1.3 Discussion

Limitations. Before giving our constructions in detail, we briefly discuss limita-
tions. Most importantly, idealized cryptosystems do not exist in the real world.
Even more, Canetti, Goldreich, and Halevi [7] demonstrate that no concrete
instantiation in the standard model is “as good as” an ideal object. Therefore,
idealizations of cryptographic primitives are only heuristic evidence for security.

Nevertheless, the counter-examples are usually somewhat contrived, and do
not apply in typical real-world settings. Indeed, in the case of hash functions,
significant resources have been invested in analyzing their security, and the best
attacks typically treat the hash function as a random oracle2. As such, the
random oracle appears to be a reasonable approximation to the real world in
most settings. By building schemes from such strong hash functions and proving
security using indifferentiability, such schemes are essentially “as good as” the
ideal schemes, assuming the underlying hash function is ideal.

In fact, the random oracle model is widely used for the construction of new
cryptosystems, as it allows security to be justified where no obvious concrete
security property for hash functions would suffice. In these cases, the system is
typically proven to satisfy the single security property considered. In our case,
we are able to rely on the same heuristic treatment of hash functions, and attain
ideal security.

Now, Ristenpart, Shacham, and Shrimpton [22] demonstrate the limitations
of the indifferentiability framework. In particular, they show that indifferen-
tiability is insufficient for proving security properties defined by multi-stage
games. While this potentially precludes certain applications, indifferentiability
is still sufficient to prove many security properties such as CCA-security, key-
dependent-message and circular security in restricted settings (see [2] for dis-
cussion), bounded leakage resilience, and more. We also note that if all but one
of the stages are independent of the ideal primitives, then indifferentiability is
sufficient. This captures, for example, the usual modeling of deterministic public
key encryption in the random oracle model [3]. Even more, in the case where
multiple stages depend on the ideal primitives, Mittelbach [21] shows that indif-
ferentiability is sufficient in some settings.

We leave as an interesting direction for future work building ideal public key
schemes that can be proven secure in stronger models of indifferentiability such
as reset indifferentiability [22] or context-restricted indifferentiability [19].

1.4 Constructing Ideal NIKE

We now turn to our constructions. Our goal will be to combine a standard
model NIKE (keygen, sharedkey)—one with concrete mild security properties that
are easy to instantiate—with random oracles to obtain an ideal model NIKE
(KEYGEN,SHAREDKEY).

2 There are actually several exceptions, for instance, the length-extension attacks
against various Merkle-Damgard-based hash functions, such as MD5.
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Making KEYGEN indifferentiable. First, we will focus just on KEYGEN, which
on its own must be indifferentiable from a random injection. Of course, we could
just set KEYGEN to be a random oracle3, but we want to somehow incorporate
keygen so that it can provide the structure needed when we turn to construct
SHAREDKEY. Nevertheless, a random oracle (or some other idealized object)
is needed somewhere in the construction. As a first attempt, we could consider
defining KEYGEN(SK) = H(keygen(SK)), hashing the output of keygen to elim-
inate any structure on the public keys. This, unfortunately, does not work. For
example, keygen may not be collision resistant, and any collision for keygen will
therefore give a collision for KEYGEN. The resulting KEYGEN would then clearly
be distinguishable from a random function without even making queries to H.

Attack 1. Even if we assume keygen was collision resistant, the scheme would
still not be indifferentiable. Indeed, the attacker can query KEYGEN(SK), eval-
uate pk = keygen(SK) for itself, and then query H on pk. The simulator now
has to simulate H, and for indifferentiability to hold it must know how to set
H(pk) = KEYGEN(SK). However, the simulator only gets to see pk and some-
how must query KEYGEN on SK. Extracting SK from pk involves breaking the
original NIKE, which is presumably intractable.

A different approach would be to define KEYGEN(SK) = keygen(H(SK)).
The problem here is that keygen may output very structured public keys, which
are clearly distinguishable from random. One possibility is to assume keygen has
pseudorandom public keys; that is, that keygen applied to uniformly random
coins gives a pseudorandom output.

Attack 2. However, we still have a problem. Indeed, suppose the adversary
queries KEYGEN(SK), which in the ideal world will give a random string. Then
the adversary queries H(SK). In the ideal world, the simulator must set H(SK) =
r such that keygen(r) = KEYGEN(SK). This may be flat out impossible (in the
case where the range of keygen is sparse), and at a minimum requires inverting
keygen, again breaking the security of the NIKE scheme.

A third approach which does work is to combine the two: KEYGEN(SK) =
H1(keygen(H0(SK))). Now both H0,H1 are random oracles that are simulated by
the simulator. This actually gives indifferentiability: when the adversary queries
H0(SK), the simulator will program H0(SK) = r for a randomly chosen r. Then
it will program H1(keygen(r)) = KEYGEN(SK) by querying KEYGEN. The only
way a problem can arise is if the input keygen(r) was already programmed in
H1. All that we need to exclude such a possibility is that keygen is well-spread:
that the distribution of outputs given a uniformly random input has high min-
entropy. This follows easily from the security of the NIKE protocol.

The takeaway from the above discussion is that inputs and outputs for a
standard-model scheme must be processed by idealized objects; this is the only
way that the simulator can obtain enough information to be indifferentiable.

3 By having the random oracle be sufficiently expanding, it will be an injection with
high probability.
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Making SHAREDKEY Indifferentiable. Next, we move to define SHAREDKEY in
a way to make the joint oracles (KEYGEN,SHAREDKEY) indifferentiable from
an ideal NIKE protocol.

Unfortunately, we immediately run into problems. We somehow need to
design the shared-key algorithm SHAREDKEY to take as input one public
key PK1 = H1(keygen(H0(SK1))), as well as another secret key SK2. It will
output a shared key K. Importantly, we need to maintain the correctness
requirement that SHAREDKEY(PK1,SK2) = SHAREDKEY(PK2,SK1) whenever
PK1 = KEYGEN(SK1) and PK2 = KEYGEN(SK2).

Guided by Impagliazzo and Rudich’s [17] barrier, we cannot rely on the
functionalities of the random oracles H0,H1 for this. Instead, we must use the
functionality provided by (keygen, sharedkey). However, sharedkey expects output
from keygen, and this value has been completely scrambled by the hash func-
tion H1, which is un-invertible. Therefore, SHAREDKEY has no way to apply
sharedkey in a meaningful way.

So we need some way to preserve the structure of the output keygen while
still allowing for an indifferentiability proof. But at the same time, we cannot
just expose the output of keygen in the clear, as explained above.

Our solution is to replace H1 with a random permutation P such that both
P and P−1 are publicly accessible (we discuss instantiating the random permu-
tation below). We then have that

KEYGEN(SK) = P−1(keygen(H0(SK))).

Then we can define SHAREDKEY(PK,SK) = sharedkey(P (PK),H0(SK)).
Note that, defining SHAREDKEY in this way achieves the desired correctness
guarantee, which follows simply from the correctness of (keygen, sharedkey).

Attack 3. However, by allowing the permutation P to be invertible, we have
invalidated our indifferentiability proof above for KEYGEN. Suppose for example
that keygen’s outputs are easily distinguishable from random. Then an attacker
can compute PK = KEYGEN(SK), and then query P on either PK or a random
string r. In the case of a random string, P (r) will itself be essentially a random
string. On the other hand, P (PK) will be an output of keygen, and hence dis-
tinguishable from random. The problem is that the simulator defining P only
gets to see r and has no way to know whether r came from KEYGEN or was
just a random string. Therefore, the attacker can fool the simulator, leading to
a distinguishing attack.

To avoid this problem, we will assume the standard-model NIKE protocol
has pseudorandom public keys. In this case, the simulator will always respond to
a P using a fresh random output of keygen. In the case where the query to P was
on a random r, the result will look random to the adversary. On the other hand,
if the query was on a PK = KEYGEN(SK), the simulator is ready to program
any subsequent H0(SK) query to satisfy P (PK) = keygen(H0(SK)).

Attack 4. Many more problems still arise, similar to the problems above faced
when trying to define KEYGEN(SK) = keygen(H(SK)). Namely, the adversary
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could first call the query k = SHAREDKEY(PK′,SK), which in the ideal world
will give a random string. Then the adversary makes queries to P,H0 and com-
putes sharedkey(P (PK′),H0(SK)) for itself. In the ideal world, the simulator must
set P (PK′) = r and H0(SK) = s such that sharedkey(r, s) = k. But this involves
inverting sharedkey on k, which may be computationally infeasible. Worse yet,
the adversary could do this for PK′

1, . . . ,PK′
� and SK1, . . . ,SK�, obtaining �2

different random and independent ki,j values from SHAREDKEY by consid-
ering all possible PK′

i,SKj pairs. The simulator then needs to somehow find
r1, . . . , r�, s1, . . . , s� such that sharedkey(ri, sj) = ki,j , where ki,j are each ran-
dom independent strings. This is clearly impossible for large enough �, since it
would allow for compressing an O(�2)-bit random string into O(�) bits.

Our solution is to apply one more hash function, this time to the output
of sharedkey: SHAREDKEY(PK1,SK2) = H1(sharedkey(P (PK1),H0(SK2))). Now,
all we need is that sharedkey(ri, sj) are all distinct for different i, j pairs, which
follows with high probability from the security of the NIKE scheme. Then we
can simply program H1(sharedkey(ri, sj)) = ki,j .

Attack 5. This construction unfortunately is still insecure: the adversary first
samples sk1 and SK2, then it queries PK2 = KEYGEN(SK2), pk2 = P (PK2), then
calculates k = sharedkey(pk2, sk1) and queries H1(k). After that, the adversary
calculates pk1 = keygen(sk1), and queries PK1 = P−1(pk1). Next it calls k′ =
SHAREDKEY(PK1,SK2) and finally tests k′ ?= H1(k). In the real world, the test
always passes, while to achieve indifferentiability, the simulator has to output
a proper H1(k). Unfortunately, until the query H1(k), simulator knows nothing
of (sk1,SK2) (it only has KEYGEN(SK2)), which means that it cannot program
H1(k) to be k′. Therefore test fails with overwhelming probability in the ideal
world. To get prevent this attack, we present our final construction:

SHAREDKEY(PK1,SK2) = H1({PK1,PK2}, sharedkey(P (PK1),H0(SK2))),

where PK2 = KEYGEN(SK2) = P−1(keygen(H0(SK2)))4. How does this help?
We note that, in the final construction, by including PK1,PK2 in the H1 queries,
we force the adversary to query PK1 = P−1(pk1) before the H1 query. This allows
the simulator to program P−1 in a way that allows it to correctly answer the
later H1 query. In particular, it samples SK1 itself and responds to the P−1 query
with PK1 = KEYGEN(SK1). Afterward, when then adversary makes the query
H1({PK1,PK2}, k), the simulator will respond with SHAREDKEY(PK2,SK1),
which is always identical to SHAREDKEY(PK1,SK2).

Attack 6. Even with our final construction, we must be careful. Suppose that it
was possible for the adversary to choose a public key pk∗ such that it can guess
the value of sharedkey(pk∗, sk) for a random (hidden) sk, then there is still an
attack. Namely, the adversary queries PK∗ = P−1(pk∗) and PK = KEYGEN(SK)
for a random SK. It then guesses the value t∗0 of sharedkey(pk∗,H0(SK)), without

4 Here, {PK1,PK2} means the un-ordered set containing PK1 and PK2, so that
{PK1,PK2} = {PK2,PK1}.
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ever actually querying H0, then it randomly samples an additional string t∗1
such that the simulator fails to distinguish t∗0 from t∗1 with high probability.
Finally, it flips a coin b, and queries k = H1({PK∗,PK}, t∗b); if b = 0 it checks
that the result is equal to SHAREDKEY(PK∗,SK) and else it checks that the
result is not equal to SHAREDKEY(PK∗,SK). In the real world, if b = 0, this
check will pass as long as the guess t∗0 is correct, and if b = 1, it will pass as
long as no collision occurs. On the other hand, in the ideal world, although the
simulator can simulate k = H1({PK∗,PK}, t∗0) correctly without knowing SK
(the technique in Attack 5), it doesn’t know the query corresponds to t∗0 or t∗1.
As a result, the check would fail with a noticeable probability. Our solution is to
add another security requirement for the NIKE scheme, which we call entropic
shared keys, insisting that for any pk∗ of the adversary’s choosing, the adversary
cannot guess sharedkey(pk∗, sk) except for negligible probability.

Attack 7. One last attack strategy: the attacker could first query PK1 =
KEYGEN(SK1),PK2 = KEYGEN(SK2), k = SHAREDKEY(PK1,SK2). Then, it
could query r1 = P (PK1), r2 = P (PK2). Finally, it could treat r1, r2 as the mes-
sages in the standard-model NIKE protocol, and guess the shared key t for the
protocol. Then it could query H1 on t (and {PK1,PK2}). In the real world, the
result H1({PK1,PK2}, t) would be equal to k, so the simulator in the ideal world
needs to be able to set H1({PK1,PK2}, t) = k. At this point, the simulator has
PK1,PK2, t. But the simulator has no knowledge of SK1 or SK2. Therefore it has
no way of guessing the correct input to SHAREDKEY to obtain k, as doing so
requires recovering either SK1 or SK2 by inverting KEYGEN.

Of course, this attack requires the adversary to guess the shared key t from
the public messages r1, r2 in the standard-model NIKE scheme, which should be
impossible. One difficulty is that, in our construction, the adversary implicitly
has access to a kind of verification oracle for the standard-model NIKE, which
allows it to input r1, r2 as well as a guess k′ for k, and learn if the guess was
correct. One of the r1, r2 can even be chosen by the adversary. To see how such
an oracle arises, imagine the adversary queried KEYGEN(sk1) to get PK1 and
P (PK1) to get r1. Then for an r2 of its choice, it queries P−1(r2) to get PK2.
Next, it queries SHAREDKEY(PK2,SK1) to get K, and H1(PK2,PK1, k

′) to get
K ′. The correctness of our algorithms implies that K ′ = K if and only if k′ = k.

Thus, if our NIKE scheme is only secure against passive attacks, it might be
vulnerable to this attack vector. Concretely, if the underlying standard-model
NIKE is the isogeny-based scheme of [18], then the active attack of [16] can be
mounted against our scheme. Instead, we will require a stronger notion of NIKE
security for the standard-model scheme, which we call semi-active unpredictable
shared keys. Here, we require that the shared key is unpredictable, even if the
adversary is given the verification oracles as described above. Such NIKE can
easily be constructed under standard assumptions.

While we have protected against certain natural attacks, we need to argue
indifferentiability against all possible attacks. To do so we use a careful simula-
tion strategy for H0,H1, P, P−1, and prove indifferentiability through a careful
sequence of hybrids. In essence, each step in the hybrid argument corresponds
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roughly to one of the attack strategies discussed above, and our proof shows that
these attacks do not work, demonstrating the indistinguishability of the hybrids.

Constructing P, P−1. Our random permutation P, P−1 can easily be instantiated
using the ideal cipher model in the setting where the key space contains only
a single element. We note that indifferentiable ideal ciphers can be constructed
from random oracles [10].

Therefore, all we need for our construction is three random oracles. Multiple
random oracles can easily be built from a single random oracle by prefixing
the oracle index to the input. Finally, an indifferentiable random oracle of any
domain/range can be constructed from a fixed-size random oracle [8].

The Role of P in the Proof. It is natural to wonder what role P plays in the
actual security of our scheme. After all, since P−1 is publicly invertible using P ,
the adversary can easily undo the application of P−1 to the output of KEYGEN.
So it may seem that P is a superfluous artifact of the proof.

There are multiple ways to address this question. One answer is that with-
out P , there would be no way to have a computationally efficient simulator as
discussed above. One could consider an inefficient simulator, but this would cor-
respond to a weaker notion of indifferentiability. This notion of indifferentiability
would be useless when composing with protocols that have computational rather
than statistical security. What’s more, we would actually be unable to prove even
this weaker form. Indeed, our proof crucially relies on the computational secu-
rity of the standard-model NIKE protocol. Since the inefficient simulator would
essentially have to break the security of the NIKE protocol, it would be impos-
sible to carry out the proof.

A higher-level answer is that by including P—which is under full control of
the simulator—the simulator gets to learn extra information about what values
the adversary is interested in. In particular, in order to relate the ideal oracles to
the standard-model scheme, the adversary must always send a query to the sim-
ulator. This extra information provided by making such queries is exactly what
the simulator needs for the proof to go through. This is a common phenomenon
in random-oracle proofs, where hashing sometimes has no obvious role except to
provide a reduction/simulator with necessary information.

Yet another answer is that, if P is omitted, the scheme is actually insecure in
some settings. For example, an ideal NIKE satisfies the property that an adver-
sary, given Alice’s secret key and half of Bob’s public key, cannot compute the
shared key between Alice and Bob. Now, consider the case where the standard
model NIKE does not satisfy this requirement. Then if we do not include P , our
construction does not satisfy the requirement either. Instead, by including P , an
adversary who gets half of Bob’s ideal public key cannot invert the permutation
to recover any information about the corresponding standard-model public key.
It then follows that the adversary cannot guess the shared key.
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1.5 Extending to Other Idealized Cryptosystems

We now turn our attention to extending the above results to other cryptosys-
tems. First, we use our ideal NIKE scheme to construct ideal public key encryp-
tion (PKE). Note that ideal public key encryption is in particular CCA secure,
whereas the standard way to turn a NIKE scheme into a PKE scheme is never
CCA secure. In order to make the scheme CCA secure, a natural starting point
is the Fujisaki-Okamoto (FO) transform [15]. While this transformation applied
to our ideal NIKE certainly achieves CCA security, it unfortunately is not indif-
ferentiable when applied to our NIKE. The reasons are several-fold, and should
come as no surprise given that FO was never designed to achieve indifferentia-
bility.

For starters, recall from our NIKE discussion that all inputs and outputs of
the algorithms need to be passed through ideal objects under the simulator’s
control. In the FO transformation, this is not the case. Another reason why FO
does not give indifferentiability is that the FO transform allows for encryption
randomness to be recovered during decryption; in fact, this is a crucial feature of
the CCA security proof. On the other hand, such encryption schemes cannot be
ideal, since ideal encryption schemes guarantee that the encryption randomness
is hidden even to the decrypter5.

To overcome these issues, we first show a careful transformation from our
ideal NIKE into ideal deterministic public key encryption (DPKE). By focus-
ing first on DPKE, we side-step the randomness issue. Our transformation is
inspired by the FO transform, but in order to ensure that all inputs/outputs
are passed through oracles under the simulator’s control, we employ our random
permutation trick again.

Finally, we turn to convert ideal DPKE into ideal PKE. The usual conversion
(simply including the encryption randomness as part of the message) does not
suffice, again because the usual conversion allows the decrypter to recover the
encryption randomness. We instead essentially hide the randomness by hashing
with a random oracle. This, however, requires care in order to enable a complete
indifferentiability proof.

Ideal Signatures. Finally, we investigate constructing ideal signatures. While in
the standard model signatures can in principle be built from one-way functions
and therefore random oracles, we observe that the situation for ideal signatures
is much more challenging. For example, an ideal signature scheme will be unique,
meaning for any message/public key, only a single signature will verify. On the
other hand, constructing unique signatures even under standard security notions
is difficult, and the only known constructions require strong number-theoretic
tools such as bilinear maps.

We instead assume a building block as a standard-model signature scheme
with unique signatures, as well as some other mild security properties which can
5 One can define a different idealization of PKE where the ideal decryption function-

ality does output the encryption randomness. However, this stronger functionality
corresponds to weaker security guarantees.
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be easily instantiated using bilinear maps. We show that such a scheme can, in
fact, be turned into ideal signatures using similar ideas to the above.

1.6 Instantiations

Our NIKE schemes require a standard-model NIKE. Unfortunately, we cannot
use a truly arbitrary standard model NIKE, as in addition to the semi-active
unpredictable shared keys, we also need pseudorandom public keys and entropic
shared keys. As such, we need to make sure such a scheme can be instanti-
ated. Our other results similarly require standard-model schemes where various
outputs of the schemes are pseudorandom bit strings.

We note that the entropic shared key requirement is satisfied by all con-
structions we are aware of and the semi-active unpredictable shared keys can
be achieved on cryptographic groups or bilinear maps [14], under doubly-strong
CDH assumption. On the other hand, the requirement of pseudorandom pub-
lic keys is slightly non-trivial. Many number-theoretic constructions have public
keys that are elements in Z

k
q for some modulus k; even if the public keys are

pseudorandom in these sets, there may be no way to represent a random ele-
ment of Zk

q as a random bit string (which we need in order to apply the ideal
permutation P ), since qk = |Zk

q | may be far from a power of 2.
However, it will usually be easy to map such public keys to random strings

in {0, 1}n for some integer n. For example, in the case k = 1, suppose we are
given a (pseudo)random element pk ∈ Zq. Let n be some integer such that
n ≥ λ + log2 q for a security parameter λ. Let t = �2n/q� be the largest integer
such that tq ≤ 2n. Then we can extend pk into a random element pk′ in Ztq by
setting pk′ = pk + aq, where a is a random integer in Zt. Finally, we note that
a random integer in Ztq is distributed exponentially close (in λ) to a random
integer in Z2n .

We can similarly handle the case k > 1 by bijecting public keys into Zqk in the
standard way. Such conversions can be applied to Diffie-Hellman key agreement.
The result that we attain our NIKE results under doubly-strong-CDH, whereas
our signature scheme requires CDH in bilinear map groups. The full details can
be found in [27].

2 Background

Notation. Throughout this paper, λ ∈ N denotes the security parameter. We
let N be the set of non-negative integers, including zero and {0, 1}∗ denote the
set of all finite-length bit strings, including the empty string ε ({0, 1}0 = ε). For
two bit strings, X and Y , X||Y denotes string concatenation and (X,Y ) denotes
a uniquely decodable encoding of X and Y . The length of a string X is denoted
by |X|.

For a finite set S, we denote s ← S the process of sampling s uniformly from
S. For a probabilistic algorithm A, we denote y ← A(x;R) the process of running
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A on inputs x and randomness R, and assigning y the result. We let RA denote
the randomness space of A; we require RA to be the form RA = {0, 1}r. We
write y ← A(x) for y ← A(x,R) with uniformly chosen R ∈ RA, and we write
y1, . . . , ym ← A(x) for y1 ← A(x), . . . , ym ← A(x) with fresh randomness in each
execution. If A’s running time is polynomial in λ, then A is called probabilistic
polynomial-time (PPT). We say a function μ(n) is negligible if μ ∈ o(n−ω(1)),
and is non-negligible otherwise. We let negl(n) denote an arbitrary negligible
function. If we say some p(n) is poly, we mean that there is some polynomial
q such that for all sufficiently large n, p(n) ≤ q(n). We say a function ρ(n) is
noticeable if the inverse 1/ρ(n) is poly. We use boldface to denote vector, i.e. m ;
we denote m i as the i-th component of m and |m | as the length of m .

Random Oracle Model (ROM). Random oracle model is an idealized model
proposed by Bellare and Rogaway [4]. ROM formalizes a model (a theoretical
black box) which responds to any unique query with a truly random string,
and if the query is repeated, the response would be consistent. More concretely,
a random oracle model has a publicly accessible hash function H : {0, 1}∗ →
{0, 1}n such that:

1. for any x, every bit of H(x) is truly random;
2. for any x 	= y, H(x) and H(y) are independent.

Ideal Cipher Model (ICM). The ideal cipher model is another idealized
model which is firstly proposed by Shannon [25] and then formalized by Black [5].
This model also responds to any unique query with a truly random string. While,
instead of having a publicly accessible random function, ideal cipher model has
a publicly accessible ideal cipher E : {0, 1}k × {0, 1}n → {0, 1}n. Specifically, E
is an ideal cipher along with a k-bit key and n-bit input/output such that:

1. for any pair (k, x), every bit of E(k, x) is truly random;
2. for any fix key k, E(k, ∗) is a random permutation;
3. for any k1 	= k2 and (x, y), E(k1, x) and E(k2, y) are independent.

Moreover, any adversary interacting with an ideal cipher model would be given
access to both the cipher and its inverse. The following definitions in this part
highly rely on [2] and we roughly use its text here.

Games. An n-adversary game G is a Turing machine, denoted as GΣ,A1,...,An ,
where Σ is a system and Ai are adversarial algorithms that can keep full local
state but might only communicate with each other through G. If we say a n-
adversary game Gn is reducible to an m-adversary game Gm, we mean that, for
any (A1, . . . ,An), there are (A′

1, . . . ,A′
m) such that for any system Σ we have

that GΣ,A1,...,An
n = GΣ,A′

1,...,A′
m

m . A game G is called a n-stage game [22] if G is an
n-adversary game and it cannot be reducible to any m-adversary game, where
m < n. In particular, for any single-stage game GΣ,A, we can trivially rewrite it

as AGΣ

, where G is an oracle machine and A is an adversarial algorithm, and
A is compatible with this oracle machine G. Moreover, we say two games are
equivalent if they are reducible in both directions.
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Random Functions. Let X and Y be two finite sets, we denote F [X → Y] to
be the set of all functions that map from X to Y. If we say a function F : X → Y
is a random function, we mean that F is uniformly sampled from F [X → Y].
Moreover, if F grants oracle accesses to all parties (honest and adversarial) in a
black-box manner, then we treat F as an idealized model.

Random Injections. Similarly, let X and Y be two sets such that |X | ≤ |Y|,
we define I[X → Y] to be the set of all injections that map from X to Y. If we
say a function F : X → Y is a random injection, we mean that F is uniformly
sampled from I[X → Y].

Lazy Samplers. Lazy samplers are algorithmic procedures, to simulate various
ideal objects along with arbitrary domain and range, by lazily sampling function
at each point. Those ideal objects include: random oracle model, ideal cipher
model, random functions and random injections [24].

2.1 Public Key Primitives

In this part, we recall the definitions of the public key primitives that we consider
in our work.

Non-Interactive Key Exchange (NIKE) [11]. NIKE is a cryptographic
primitive which enables two parties, who know the public keys of each other, to
agree on a symmetric shared key without requiring any interaction. It consists
of two algorithms: NIKE.keygen and NIKE.sharedkey together with a shared key
space SHK.

– NIKE.keygen: Given input a secret key sk, the algorithm outputs a public key
pk;

– NIKE.sharedkey Given inputs a public key pk1 and a secret key sk2, the algo-
rithm outputs a shared key shk ∈ SHK.

For correctness, we require that, for any two key pairs (pk1, sk1), (pk2, sk2),
the system satisfies:

NIKE.sharedkey(pk1, sk2) = NIKE.sharedkey(pk2, sk1).

Public Key Encryption (PKE) [11]. A public-key encryption scheme con-
sists of three algorithms: PKE.keygen,PKE.enc,PKE.dec together with a message
space M. Formally,

– PKE.keygen Given input a secret key sk, the algorithm outputs a public key
pk;

– PKE.enc Given inputs a public key pk and m ∈ M, the algorithm outputs a
ciphertext c = PKE.enc(pk,m);

– PKE.dec Given inputs a secret key sk and a ciphertext c, the algorithm outputs
either a plaintext m or ⊥.
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For correctness, we require that, for any key pair (pk, sk)(pk = PKE.keygen(sk))
and m ∈ M, the scheme satisfies:

PKE.dec(sk,PKE.enc(pk,m)) = m.

Digital Signature [23]. A digital signature scheme consists of three algo-
rithms: Sig.keygen,Sig.sign,Sig.ver along with a message space M. Formally,

– Sig.keygen Given input a sign key sk, the algorithm outputs a verification key
vk;

– Sig.sign Given inputs a sign key sk and a message m ∈ M, the algorithm
outputs a signature σ = Sig.sign(sk,m);

– Sig.ver Given inputs a signature σ, a message and a verification key vk, out-
puts either 1 or 0.

For correctness, we require that, for any key pair (sk, vk)(vk = Sig.keygen(sk))
and m ← M, the signature scheme satisfies:

Sig.ver(Sig.sign(sk,m),m, vk) = 1.

2.2 Indifferentiability

For indifferentiability, significant parts of the discussion in this section is based
on [2]. In [20], Maurer, Renner and Holenstein (MRH) propose the indifferen-
tiability framework, which formalizes a set of necessary and sufficient conditions
for one system to securely be replaced with another one in a wide class of envi-
ronments. This framework has been used to prove the structural soundness of a
number of cryptographic primitives, which includes hash functions [8,12], block-
ciphers [1,10,13], domain extenders [9] and authenticated encryption with asso-
ciated data [2]. In the following, we first recall the definition of indifferentiability.

A random system Σ := (Σ.hon,Σ.adv) is accessible via two interfaces Σ.hon
and Σ.adv, where Σ.hon provides a honest interface through which the system
can be accessed by all parties and Σ.adv models the adversarial access to the
inner working part of Σ. Typically, a system implements either some ideal objects
F , or a construction CF ′

, which applies some underlying ideal objects F ′.

Definition 1 (Indifferentiability [2,20]). Let Σ1 and Σ2 be two systems and
S be a simulator. The indifferentiability advantage of a differentiator D against
(Σ1,Σ2) with respect to S is

Advindif
Σ1,Σ2,S,D(1λ) := Pr[RealΣ1,D] − Pr[IdealΣ2,S,D],

where games RealΣ1,D and IdealΣ2,S,D are defined in Fig. 1. We say Σ1 is indif-
ferentiable from Σ2, if there exists an efficient simulator S such that for any
probabilistic polynomial time differentiator D, the advantage above is negligible.
Moreover, we say Σ1 is weakly indifferentiable from Σ2, if for any probabilistic
polynomial time differentiator D, there exists an efficient simulator SD such that
the advantage above is negligible.
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RealΣ1,D:

b ← DHonestR,AdvR

Return b.

HonestR(X)

Return Σ1.hon(X).

AdvR(X)

Return Σ1.adv(X).

IdealΣ2,S,D:

b ← DHonestI,AdvI

Return b.

HonestI(X)

Return Σ2.hon(X).

AdvI(X)

Return SΣ2.hon(·)(X).

Fig. 1. Indifferentiability of Σ1 and Σ2, where S is the simulator and D is the adversary.

In the rest of the paper, we also use the notations in [2] and consider the
definition above to two systems with interfaces as:

(Σ1.hon(X),Σ1.adv(x)) := (CF1(X),F1(x));
(Σ2.hon(X),Σ2.adv(x)) := (F2(X),F2(x)),

where F1 and F2 are two ideal objects sampled from their distributions and CF1

is a construction of F2 by calling F1.
Next, we recall composition theorem for indifferentiability. In [20], MRH

give out the composition theorem for indifferentiability, and then Ristenpart,
Shacham and Shrimpton (RSS) [22] propose a game-based version for the theo-
rem.

Theorem 2 (Indifferentiability Composition [2,22]). Let Σ1 := (CF1 ,F1)
be a system that is indifferentiable from Σ2 := (F2,F2) along with simulator
S. Let G be a single-stage game. Then for any adversary A, there exists an
adversary B and a differentiator D such that

Pr[GCF1 ,AF1 ] ≤ Pr[GF2,BF2 ] + Advindif
Σ1,Σ2,S,D.

However, RSS prove that the composition theorem above does not extend to
multi-stage games as the simulator has to keep the local state for consistency.
While, Barbosa and Farshim [2] observe that if allowing some relaxations on the
games, we could rewrite some multi-stage games as equivalent to single-stage
games. Essentially, for an n-adversary game GCF ,A1,...,An

n , if only one adversary
(say A1) can call the ideal objects F directly and the rest can only call CF ,
then Gn can be rewritten as a single-stage game, because the game Gn itself,
of course, has access to CF . Then in [2], BF formalize this observation in the
following theorem.

Theorem 3 (Multi-stage Game Composition [2]). Let Σ1 := (CF1 ,F1) be
a system that is indifferentiable from Σ2 := (F2,F2) along with simulator S. Let
G be an n-adversary game and A := (A1, . . . ,An) be a n-tuple of adversaries
where A1 can access F1 but Ai (i > 1) can only access CF1 . Then there is an
n-adversary B and a differentiator D such that

Pr[GCF1 ,AF1
1 ,ACF1

2 ,...,ACF1
n ] = Pr[GF2,BF2

1 ,...,BF2
n ] + Advindif

Σ1,Σ2,S,D.
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Remark. Barbosa and Farshim [2] give a strong motivation for the relaxation
imposed on the class of games above. To our best of knowledge, the related-key
attack (key-dependent message attack) game is not known to be equivalent to
any single-stage game. As a result, it would be insufficient to prove a system
is related-key attack secure as follows: 1) there is another system, say Σ2, such
that Σ1 is indifferentiable from Σ2; 2) Σ2 is related-key attack secure. However,
if allowing the relaxation, the proof follows trivially, hence from a practical point
of view (by adding this specific relaxation on games), composition extends well
beyond 1-adversary games.

3 Indifferentiable NIKE

In this section, we propose the notion of “ideal NIKE” and then build an indif-
ferentiable non-interactive key exchange scheme from simpler ideal primitives
and a standard-model NIKE scheme.

3.1 What Is Ideal NIKE?

In this part we give the rigorous description of ideal NIKE, formally:

Definition 4 (Ideal NIKE). Let X ,Y,W be three sets such that |X | ≥
2ω(log λ), |Y| ≥ 2ω(log λ), |W| ≥ 2ω(log λ), |X | ≤ |Y| and |X | × |Y| ≤ |W|.
We denote F [X → Y] as the set of all injections that map X to Y and
G[X × Y → W] as the set of the functions that map X × Y to W. We define
T as the set of all function pairs (F,G) such that: 1) F ∈ F , G ∈ G; 2)
∀x, y ∈ X , G(x, F (y)) = G(y, F (x)); 3) G(x1, y1) = G(x2, y2) ⇒ (x1 = x2 ∧ y1 =
y2) ∨ (y1 = F (x2) ∧ y2 = F (x1)).

We say that a NIKE scheme ΠNIKE = (IKE.KEYGGEN,NIKE.SHAREDKEY),
associated with secret key space X , public key space Y and shared key space
W, is an ideal NIKE if (NIKE.KEYGEN,NIKE.SHAREDKEY) is sampled from T
uniformly.

It’s trivial to note that, due to an information-theoretic argument, an ideal
NIKE achieves related-key attack security, leakage-resiliency and so forth. Next,
we show how to construct an indifferentiable NIKE scheme from simpler primi-
tives.

3.2 Construction

In this section, we build an indifferentiable NIKE scheme from simpler ideal
primitives (namely random oracles and ideal ciphers) along with a standard-
model (that is, non-ideal) NIKE scheme.

Building Blocks. Our scheme consists of several building blocks:

– A standard-model NIKE scheme ΠSM−NIKE = (keygen, sharedkey) with secret
key space X , public key space Y, and shared key space Z;
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– H0 := {0, 1}∗ → X is a random oracle whose co-domain matches the secret
key space of Π.

– H1 := {0, 1}∗ → W is a random oracle, where |X | × |Y| ≤ |W|;
– P := Y → Y is a random permutation on the public key space of Π, and P−1

is P ’s inverse.

Note that, the random permutations typically operate on bit strings, which
means Y = {0, 1}n for some natural number n ≥ ω(log λ). Moreover, the shared
key space in the standard model NIKE Z and in our construction W might be
not equivalent, because it’s unnecessarily correct that |X | × |Y| ≤ |Z|. And if
not, then setting W = Z would give a differentiator directly, by just checking
whether |X | × |Y| ≤ |W|.
Construction. Now we are ready to build an indifferentiable NIKE scheme,
denoted as ΠNIKE = (NIKE.KEYGEN,NIKE.SHAREDKEY), from the building
blocks above. Formally,

– NIKE.KEYGEN(SK): Given input SK, the algorithm runs keygen(H0(SK)), and
outputs the public key PK = P−1(keygen(H0(SK)));

– NIKE.SHAREDKEY(PK1,SK2): Given inputs (PK1,SK2), the algorithm com-
putes PK2 = NIKE.KEYGEN(SK2) and sharedkey(P (PK1),H0(SK2)). If PK1 ≤
PK2, then it outputs the shared key as

SHK = H1(PK1,PK2, sharedkey(P (PK1),H0(SK2))),

else, it outputs

SHK = H1(PK2,PK1, sharedkey(P (PK1),H0(SK2))).

Correctness of the scheme easily follows, and what’s more interesting is its indif-
ferentiability. Next, we prove our scheme is indifferentiable from an ideal NIKE.
Before that, we first specify the security properties of the standard-model NIKE.

Property 1. Semi-active unpredictable shared key. We say the shared
key, for a NIKE scheme, is semi-active unpredictable, if there is ε1 such that for
any PPT adversary A, the advantage

AdvA := Pr[AO1,O2(pk1, pk2) = sharedkey(pk1, sk2)] ≤ ε1 = negl(λ),

where pki = keygen(ski), ski ← X and Oi is a predicate oracle such that takes
(pki, shk) as input and outputs a bit (the public key pk here might be malicious).
Concretely, the oracle Oi outputs “1” iff shk = sharedkey(ski, pk). This is the
standard security game for NIKE schemes against active adversary, except that
we relax the notion on two pieces: 1) we only require unpredictability of the
shared key, rather than indistinguishability from random; 2) the oracles take both
public key pk and shared key shk as input and tell whether shk is a valid shared
key, rather than taking the public key pk, and outputting the corresponding
shared key shk.
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The next two properties are mild additional security properties that are not
usually required for NIKE schemes, but are achieved by most natural schemes.
We require these properties in order to prove the ideal security of our construc-
tion.

Property 2. entropic shared keys. We say the shared key, for a NIKE
scheme is entropic, if there is ε2 s.t. for any PPT adversary A, the advantage

Pr[shk∗ = sharedkey(pk∗, sk) : (pk∗, shk∗) ← A, sk
$← X ] ≤ ε2 = negl(λ),

Note that the entropic shared keys property tells us that if the adversary
only knows one public key (even it’s chosen by the adversary), it cannot predict
the shared key if the other secret key is random and hidden. In other words,
this property guarantees that there is no way to make the shared key have low
min-entropy.

Property 3. pseudorandom public keys. We say the public key, for a NIKE
scheme, is pseudorandom, if there is ε3 s.t. for any PPT adversary A, the advan-
tage

AdvA := |Pr[A(keygen(sk))] − Pr[A(R)]| ≤ ε3 = negl(λ),

where sk ← X , R ← Y. We immediately observe that as Y = {0, 1}n, our
standard-model NIKE must have public keys that are pseudorandom bit strings.
And we say a NIKE scheme is Good if it satisfies the three properties above.

Theorem 5. (Indifferentiable NIKE). ΠNIKE is indifferentiable from an ideal
NIKE if ΠSM−NIKE is Good. More precisely, there exists a simulator S such that
for all (qH0 , qH0 , qH0 , qH0)-query PPT differentiator D with qH0 + qP + qP −1 +
qH1 ≤ q, we have

Advindif
ΠNIKE,S,D ≤ (8q2+9q)

√
2ε3 +

1
|X |+

4q2 + 5q

|Y| +
q2

|W|+4q2ε1+(q2+11q)ε2+9qε3.

The simulator makes at most q queries to its oracles.

Proof Sketch. According to the definition of indifferentiability, we immediately
observe that any PPT adversary has two honest interfaces (NIKE.KEYGEN,
NIKE.SHAREDKEY) (below we will denote (NKG,NSK) for ease) and four adver-
sarial interfaces (H0, P, P−1,H1). Therefore, we need to build an efficient sim-
ulator S that can simulate the four adversarial interfaces H0, P, P−1 and H1

properly, which means, for any PPT differentiator D, the view of D in the real
game is computationally close to the view in the ideal game. In the following, we
illustrate the description of our simulator (similar form as in [2]) in Fig. 2 and
then we give the high-level intuition of our proof strategy (here we only give the
proof sketch and the intuition of the simulator, and please refer to [27] for full
details).

We immediately observe that, our simulator makes at most q queries to
(NKG,NSK), and it keeps four tables and the size of each table is at most q,
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Algo.S.H0(SK):

if ∃(SK, sk, pk,PK) ∈ TH0 ,
return sk;

if ∃(∗, sk, pk,PK) ∈ TP s.t. PK = NKG(SK),
return sk;

sk � X ,
TH0 ← TH0∪(SK, sk, keygen(sk),NKG(SK)),

return sk.

Algo.S.P (PK)

if ∃(∗, sk, pk,PK) ∈ TP ,
return pk;

if ∃(SK, ∗, pk,PK) ∈ TP−1 ,
return pk;

if ∃(SK, sk, pk,PK) ∈ TH0 ,
return pk;

sk � X , TP ← TP ∪ (∗, sk, keygen(sk),PK),
return keygen(sk).

Algo.S.P−1(pk):

if ∃(SK, ∗, pk,PK) ∈ TP−1 , return PK;

if ∃(∗, sk, pk,PK) ∈ TP , return PK;

if ∃(SK, sk, pk,PK) ∈ TH0 , return PK;

SK � X , TP−1 ← TP−1 ∪ (SK, ∗, pk,NKG(SK)), return NKG(SK).

Algo.S.H1(PK1,PK2, shk):

if ∃(PK1,PK2, shk, SHK) ∈ TH1 , return SHK;
w � W,
if PK1 > PK2, TH1 ← TH1 ∪ (PK1,PK2, shk,w), return w;

else if ∃(SK1, sk1, pk1,PK1) ∈ TH0 , (SK2, sk2, pk2,PK2) ∈ TH0 ,
if shk = sharedkey(sk1, pk2), return NSK(SK1,PK2);
else TH1 ← TH1 ∪ (PK1,PK2, shk,w), return w.

if ∃(SK1, sk1, pk1,PK1) ∈ TH0 , (∗, sk2, pk2,PK2) ∈ TP ,
if shk = sharedkey(sk1, pk2), return NSK(SK1,PK2);
else TH1 ← TH1 ∪ (PK1,PK2, shk,w), return w.

if ∃(SK1, sk1, pk1,PK1) ∈ TH0 , (SK2, ∗, pk2,PK2) ∈ TP−1 ,
if shk = sharedkey(sk1, pk2), return NSK(SK1,PK2);
else TH1 ← TH1 ∪ (PK1,PK2, shk,w), return w.

if ∃(SK2, sk2, pk2,PK2) ∈ TH0 , (∗, sk1, pk1,PK1) ∈ TP ,
if shk = sharedkey(sk2, pk1), return NSK(SK2,PK1);
else TH1 ← TH1 ∪ (PK1,PK2, shk,w), return w.

if ∃(SK2, sk2, pk2,PK2) ∈ TH0 , (SK1, ∗, pk1,PK1) ∈ TP−1 ,
if shk = sharedkey(sk2, pk1), return NSK(SK2,PK1);
else, TH1 ← TH1 ∪ (PK1,PK2, shk,w), return w.

if ∃(SK1, ∗, pk1,PK1) ∈ TP−1 , (∗, sk2, pk2,PK2) ∈ TP ,
if shk = sharedkey(sk2, pk1), return NSK(SK1,PK2);
else, TH1 ← TH1 ∪ (PK1,PK2, shk,w), return w.

if ∃(SK2, ∗, pk2,PK2) ∈ TP−1 , (∗, sk1, pk1,PK1) ∈ TP ,
if shk = sharedkey(sk1, pk2), return NSK(SK2,PK1);
else, TH1 ← TH1 ∪ (PK1,PK2, shk,w), return w.

TH1 ← TH1 ∪ (PK1,PK2, shk,w), return w.

Fig. 2. Simulator for NIKE in terms of four sub-simulators associated with two oracles
(NKG,NSK). These four sub-simulators share four tables (TH0 , TP , TP−1 , TH1) as joint
state (which are initialized empty). The commands, e.g. “∃(SK, sk, pk,PK) ∈ TH0”, go
through the table in some well-defined order.
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referring to S is efficient. In the following, we present the intuitive idea that why
S works. Note that, in the real game, H0,H1 are random oracles, P is a random
permutation associated with its inverse P−1. Hence, the responses of a proper
simulator should follow the following rules:

1. The responses of H0,H1 are computational close to uniform distribution;
2. The responses of P, P−1 are computational close to a random permutation;
3. There do not exist (PK1 	= PK2), (pk1 	= pk2) such that P (PK1) = P (PK2) or

P−1(pk1) = P−1(pk2);
4. NKG(SK) = P−1(keygen(H0(SK)));
5. NSK(SK1,PK2) = NSK(SK2,PK1) = H1({PK1,PK2}6, sharedkey(sk1, pk2)).

Next, we illustrate why and how S achieves these five rules.

Rule 1. Easy to note that the response of any H0 query (H0(SK)) is well-formed.
Roughly, S responds to it using TH0 , TP (the second term of the corresponding
tuple) or with a random string sk ∈ X . Moreover, note that the second term
in every tuple from table TH0 or TP is uniformly sampled, referring to H0(SK)
is uniformly distributed. For H1 query, say H1(PK1,PK2, shk), the simulator
responds to it with either NSK(SK1,PK2) (if the tests pass) or a random string
w ∈ W. And we note that (NKG,NSK) is an ideal NIKE, which means that
NSK(SK1,PK2) is uniformly distributed.

Rule 2. For P query, say P (PK), the simulator responds to the query in four
cases: 1) using TP ; 2) using TP −1 ; 3) using TH0 ; 4) randomly sampling a secret
key and outputting the corresponding public key. Easy to note that, in case 1,
3, and 4, S always returns a random public key, and due to the pseudo-random
public keys, we have that the response is computational close to uniform. For
Case 2, note that if PK ∈ TP-1 , then we know that the adversary has made a
query P−1(pk) previously. For that P−1 query, S samples SK ∈ X and responds
to it with PK = NKG(SK). As (NKG,NSK) is an ideal NIKE, we have that PK
is close to uniform in Y and the response of P−1(pk) is well distributed. As a
result, when making a query P (PK), pk is the proper answer. Moreover, P−1 is
P ’s inverse, which means the responses of P−1 are also well-distributed.

Rule 3. This rule indicates that P and P−1 must be bijective. For S, note that
there are four bad cases that break the rule:

1. pk-collision: A makes a query P (pk∗) with response PK∗
1 , and then it makes

another query P−1(PK∗
2) with response pk∗;

2. PK-collision: A makes a query P (PK∗) with response pk∗
1 , and then it makes

another query P (pk∗
2) with response NKG(SK∗) = PK∗;

3. Guessed-H0(SK)-on-pk∗: adversary makes a query P−1(PK∗) with response
keygen(sk∗), and A also makes a query H0(SK) such that keygen(H0(SK∗)) =
keygen(sk∗) and NKG(SK) 	= PK∗;

4. Guessed-SK∗-on-PK∗: A makes a query P (pk∗) with response NKG(SK∗), and
A also makes a query H0(SK∗) such that keygen(H0(SK∗)) 	= pk∗.

6 If PK1 ≤ PK2, {PK1,PK2} = (PK1,PK2), and else PK1 ≤ PK2 = (PK2,PK1).
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For case 1, due to pseudorandom random public keys, it occurs with negligible
probability. For case 2, as NKG is ideal NIKE oracle, collision never happens
except with negligible probability.

For case 3, as the simulator samples sk∗, which is independent of A’s view,
the probability of A outputs a proper SK (H0(SK) = sk∗) is bounded by pseudo-
random public keys. Analogously, in case 4 A cannot guess SK∗ correctly except
for negligible probability.

Rule 4. Note that if the adversary first makes a query H0(SK), then the equation
holds for certain when it requests P−1. Hence, the only chance that A violates
this rule is case 3 in Rule 3 occurs, referring to Rule 4 holds as long as Rule 3
holds.

Rule 5. Firstly, we note that the responses of H1 queries are independent of
the ones of H0, P, P−1 queries, and the only consistency S has to preserve is
the equation in this rule. Immediately observe that, if and only if, the inputs
of the H1 are in a good form (say, PK1 = PK2 and shk is a valid shared key of
pk1 and pk2), the response should be consistent to NSK-oracle (if the inputs are
not in a good form, then the response is independent of NSK-oracle with high
probability).

Easy note that, except for the last case (associated with underline), S
responds to H1 queries properly: S calls NSK-oracle when the input is within
good form and otherwise returns a string w ∈ W. While, for the last one, the
simulator just responds with w without checking whether the inputs are good or
not. Hence, we hope that, for the last case, either the inputs are not in a good
form or NSK(SK1,PK2) is independent of A’s view. In fact, there are three bad
cases that might break it:

1. A known secret key and another random public key: A chooses sk1 and makes
a query P−1(keygen(sk1)) with response PK1 = NKG(SK1), while PK2 /∈ TP ∪
TP −1 ∪ TH0 ;

2. Two known secret keys in TP −1 : Adversary chooses sk1, sk2 and makes queries
P−1(keygen(sk1)), P−1(keygen(sk2)) with responses NKG(SK1),NKG(SK2);

3. Two known public keys without secret key keys: A chooses SK1,SK2

and makes queries P (NKG(SK1)), P (NKG(SK2)) with responses pk1 =
keygen(sk1), pk2 = keygen(sk2).

For case 1, we note that PK2 never appears in tables TP , TP −1 and TH0 , which
means P (PK2) is independent of A’s view. Hence, the probability that shk is a
valid shared key is bounded by the entropic shared keys (illustrated in Attack
6), which is negligible.

For case 2, we observe that A chooses the two secret keys itself; hence shk
would be a valid shared key if A wants. However, SK1 and SK2 are independent
of A’s view, which refers to that NSK(SK1,PK2) is also independent of A’s view.

For case 3, A knows pk1 and pk2 while the corresponding secret keys sk1 and
sk2 are independent of A’s view. Meanwhile, the adversary might implement
(NKG,NSK) into oracles and use those oracles as an additional helper to predict
the shared key (illustrated in Attack 7). Fortunately, (NKG,NSK) is an ideal
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NIKE; thus the only thing the adversary can do is equality test, which means
the oracles adversary implements is the best helper it can count on. Hence,
the probability that shk is a valid shared key is bounded by the semi-active
unpredictable shared keys.

4 Indifferentiable Public Key Encryption

In this section, we propose the notion of “ideal PKE” and then build an indif-
ferentiable public key encryption scheme from ideal NIKE and random oracles.
Roughly, our strategy consists of two steps: first, we construct an indifferentiable
deterministic public key encryption (DPKE) from an ideal NIKE, and then build
an indifferentiable PKE from an ideal DPKE.

4.1 What Is Ideal PKE?

In this part, we give the rigorous description of ideal PKE, formally:

Definition 6 (Ideal PKE). Let X ,Y,M,R, C be five sets such that: 1) |X | ≥
2ω(log λ), |Y| ≥ 2ω(log λ), |R| ≥ 2ω(log λ) and |C| ≥ 2ω(log λ); 2) |X | ≤ |Y|; 3)
|Y|× |M|×|R| ≤ |C|. We denote F [X → Y] as the set of all injections that map
X to Y; E [Y × M × R → C] as the set of all injections that map Y × M × R to
C and D[C × X → M∪ ⊥] as the set of all functions that map X × C to M∪ ⊥.
We define T as the set of all function tuples (F,E,D) such that:

– F ∈ F , E ∈ E and D ∈ D;
– ∀x ∈ X ,m ∈ M and r ∈ R, D(x,E(F (x),m, r)) = m;
– ∀x ∈ X , c ∈ C, if there is no (m, r) ∈ M × R such that E(F (x),m, r) = c,

then D(x, c) =⊥.

We say that a PKE scheme ΠPKE = (PKE.KEYGEN,PKE.ENC,PKE.DEC),
associated with secret key space X , public space Y, message space M, nonce
space space R, and ciphertext space C, is an ideal PKE if ΠPKE is sampled from
T uniformly. Moreover, if the nonce space is empty, then we say such a scheme
is an ideal DPKE.

4.2 Construction for Deterministic PKE

In this section, we build an indifferentiable deterministic PKE (DPKE) from
simpler ideal primitives (namely random oracles and ideal ciphers) along with
an ideal NIKE. We firstly present our first attempt of the construction and
then illustrate a differentiator to break it (this attack also indicates a difficulty
of building indifferentiable PKE). Next, we give our solution to get rid of the
attack and establish the proof.

First Attempt to Build an Indifferentiable DPKE. Given an ideal NIKE
ΠNIKE, a natural way to build an indifferentiable DPKE is the following: 1)
convert this ideal NIKE into a PKE scheme; 2) apply the Fujisaki-Okamoto
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transformation [15], which combines with a random oracle to give at least CCA-
2 security. The hope is that this transformation would give us an indifferentiable
DPKE. Specifically, let ΠNIKE = (NKG,NSK) be an ideal NIKE, associated with
secret key space X , public key space Y and shared key space Z, and we denote
sk, pk, shk to be the secret key, public key and shared key of ΠNIKE, respectively.
For an easy exposition, we always denote the inputs of component primitives
(for instance, in the standard model NIKE in Sect. 3 or the ideal NIKE in this
section) as the lower-case and inputs of the target primitives as the upper-
case. Let H0,H1 := {0, 1}∗ → X ;H2 := {0, 1}∗ → Z;H3 := {0, 1}∗ → M,
then applying FO-transform, we have the following DPKE scheme: ΠDPKE =
(DPKE.KEYGEN,DPKE.ENC,DPKE.DEC).

– DPKE.KEYGEN(SK): On inputs secret key SK, the algorithm outputs public
key PK = NKG(H0(SK));

– DPKE.ENC(PK,M): On inputs public key PK and message M, the algorithm
computes δ = H2(PK||M), and outputs ciphertext C as

C = (C1,C2,C3) = (NKG(H1(PK||M)), δ ⊕ NSK(PK, H1(PK||M)), H3(PK, δ) ⊕ M);

– DPKE.DEC(SK,C): On inputs secret key SK and ciphertext C = (C1,C2,C3),
the algorithm computes:

PK = DPKE.KEYGEN(SK);A1 = NSK(C1,H0(SK));
A2 = C2 ⊕ A1;A3 = C3 ⊕ H3(PK||A2).

Then it tests whether C
?= DPKE.ENC(PK||M). If yes, then outputs A3, else

aborts.

Correctness easily follows, but this scheme is not indifferentiable. Next we present
a differentiator to break it.

Differentiator for FO Transform. Due to definition, D has three hon-
est interfaces (DPKE.KEYGEN,DPKE.ENC,DPKE.DEC) (below, we will denote
(DKG,DE,DD) for short) and six adversarial interfaces (H0,H1,H2,H3,
NKG,NSK), and we build D as in Fig. 3:

Differentiator D:

SK
$← X ,M

$← M;A ← DKG(SK), (B1,B2,B3) ← DE(A,M);
Q1 ← H0(SK),Q2 ← NSK(B1,Q1),Q3 = H3(A,Q2 ⊕ B2);
Return 1(Q3 = B3 ⊕ M)

Fig. 3. Differentiator for FO-transform.

We immediately observe that, in the real game, A and (B1,B2,B3) are the
corresponding public key and ciphertext, respectively. Moreover, due to ΠNIKE’s
correctness, we have

NSK(PK,H1(PK||M)) = NSK(C1,H0(sk)) = NSK(B1,Q1).
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which means that D always outputs 1. However, in the ideal game, the simula-
tor knows nothing of queries to the honest interfaces, and the only information
it has is: (SK,A,B1,B2) (other information such like H0(SK),NSK(B1,Q1) and
H3(A,Q2 ⊕ B2) are simulated by S itself). Therefore, without decryption ora-
cle, M is independent of simulator’s view. And the decryption oracle always
aborts except S hands in a valid ciphertext, which consists of three elements
(B1,B2,B3). Moreover, in the ideal world, the honest interface DPKE.ENC is a
random injection, hence Pr[S outputs a valid B3] ≤ poly(λ)

|M| .

Our Solution. To prevent the attack above, the only hope is S can always
output a valid ciphertext itself. Our trick is, instead of using random oracles,
we use an ideal cipher model P , with inverse. Specifically, let Z = Y × M
(we specify the shared key space of ΠNIKE to be Y × M and |X | ≤ |M|), and
P := Z → Z. Now, we denote δ = P (PK||M), and modify the ciphertext as
C = (NKG(H1(PK||M)), δ ⊕ NSK(PK,H1(PK||M)))). Formally:

– DPKE.KEYGEN(SK): On inputs secret key SK, the algorithm outputs public
key PK = NKG(H0(SK));

– DPKE.ENC(PK,M): On inputs public key PK and message M, the algorithm
computes δ = P (PK||M), and outputs ciphertext C as

C = (C1,C2) = (NKG(H1(PK||M)), δ ⊕ NSK(PK,H1(PK,M)));

– DPKE.DEC(SK,C): On inputs secret key SK and ciphertext C = (C1,C2), the
algorithm computes:

PK = DPKE.KEYGEN(SK);A1 = NSK(C1,H0(SK));

A2 = C2 ⊕ A1;A3 = P−1(A2),A4 = A3/PK.

Then it tests whether C
?= DPKE.ENC(A3). If yes, then outputs A4

7, else
aborts.

In our new setting, we immediately observe that the ciphertext only consists
of two elements, which means S can always hand in the valid ciphertext to
the decryption oracle. As a result, our new scheme prevents the attack above.
Apparently, this is only an evidence that our new scheme prevents this specific
differentiator. And to prove it’s an indifferentiable DPKE, we need to show that
our scheme can prevent all kind of efficient differentiators.

Theorem 7 (Indifferentiable DPKE). ΠDPKE is indifferentiable from an
ideal DPKE if ΠNIKE = (NKG,NSK) is an ideal NIKE. More precisely, there
exists a simulator S such that for all (qH0 , qH1 , qP , qP −1 , qNKG, qNSK)-query PPT
differentiator D with qH0 + qH1 + qP + qP −1 + qNKG + qNSK ≤ q, we have

Advindif
ΠDPKE,S,D ≤ 11q2

|X | +
20q2

|Y| .

The simulator makes at most q2 queries to its oracles.
7 We note that A3 = PK||M, and by A3/PK, we mean removing PK from A3.



88 M. Zhandry and C. Zhang

4.3 Construction for PKE

In this section, we complete the construction by building an indifferentiable PKE
from ideal DPKE and random oracles. Similarly as in Sect. 4.2, we firstly present
two attempts and then illustrate the corresponding differentiators to break the
schemes. Then we give the modified solution to get rid of those attacks and
complete the proof.

First Attempt to Build an Indifferentiable PKE. Immediately to observe
that we cannot build our scheme in the trivial way, say, treating the random
nonce as part of the message and discarding it in the decryption procedure,
because this construction loss the information of the randomness and that would
induce a differentiator which trivially tests the validity of the randomness. To
prevent it, we again apply the hash technique (H0 := {0, 1}∗ → R); we first
hash the nonce and then use the hashed value as the randomness. Specifically,

– PKE.KEYGEN(SK) = DKG(SK);
– PKE.ENC(PK,M,R) = DE(PK,M||H0(PK,M,R));
– PKE.DEC(SK,C): On inputs a secret key SK and a ciphertext C, the algorithm

runs DD(SK,C). If DD aborts then the algorithm aborts, else let (M||str) =
DD(C,SK), it outputs M.

However, the scheme would not achieve indifferentiability if the random oracle
is not well-designed, and the following we give out a differentiator to break our
first attempt in Fig. 4:

Differentiator D:

SK
$← X ,M

$← M; r
$← R;A ← PKG(SK),B ← DE(A,M||r), Q1 ← PD(sk,B),

Return 1(Q1 �=⊥)

Fig. 4. Differentiator for non-well-designed random oracle.

Easy to note that, in real game, Pr[D = 1] = 1. Meanwhile, in ideal game, we
claim that, with noticeable probability, the decryption would abort. In fact, the
decryption procedure outputs M if and only if there exists a nonce R ∈ R such
that H0(PK,M,R) = r. Moreover, R, r ∈ R, and H0 is a random oracle, we have
that Pr[∀R ∈ R,H0(PK,M,R) 	= r] ≈ 1/e, referring to Pr[D = 1] ≤ 1−1/e ≈ 0.6.

Our Solution. To prevent this attack, we have to shorten the size of H0’s
range, to make sure that every element in H0’s range has pre-image with high
probability. Meanwhile, to make sure the ciphertext space is sufficiently large, we
also need to pad some dummy strings. Specifically, let ΠDPKE be an ideal DPKE,
associated with secret key space X , public key space Y = {0, 1}n1 , message space
M = {0, 1}n2+2n3 , and ciphertext space C, and let H0 := {0, 1}∗ → {0, 1}n3 ,
where n2 > 0 and n1, n3 ≥ ω(log λ), then we build our scheme as:
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– PKE.KEYGEN(SK) = DKG(SK):
– PKE.ENC(PK,M,R): On inputs public key PK, message M ∈ {0, 1}n2 and

nonce R ∈ {0, 1}2n3 , the algorithm outputs ciphertext:

C = DE(PK,M||H0(PK,M,R)|| 0 . . . 0︸ ︷︷ ︸
n3

);

– PKE.DEC(SK,C): On inputs secret key SK and ciphertext C, the algorithm
runs A = DDPKE(SK,C). If A =⊥ or the last n3 bits are not 0n3 , then it aborts,
else the algorithm outputs the first n2 bits.

Correctness follows easily, and the rest is to show its indifferentiability.

Theorem 8 (Indifferentiable PKE). ΠPKE is indifferentiable from an ideal
PKE if ΠDPKE = (DKG,DE,DD) is an ideal DPKE. More precisely, there exists
a simulator such that for all (qH0 , qDKG, qDE, qDD)-query PPT differentiator D
with qH0 + qDKG + qDE + qDD ≤ q, we have

Advindif
ΠPKE,S,D ≤ 3q(

1
e
)2

n3 +
6q2

2n3
+

3q2

|C| +
q

|Y| × |M| .

The simulator makes at most q2 queries to its oracles.

5 Indifferentiable Digital Signatures

In this section, we extend our result to the digital signature scheme. We propose
the notion of “Ideal Signature”, and then build an indifferentiable signature
scheme from simpler ideal primitives (random oracle model and ideal cipher
model) and a stand-model signature scheme.

5.1 What Is “Ideal Signature”?

In this part, we give the rigorous description of ideal signature, formally:

Definition 9 (Ideal Signature). Let X ,Y,M, Σ be four sets such that: 1)
|X | ≥ 2ω(log λ), |Y| ≥ 2ω(log λ), |M| ≥ 2ω(log λ) and |Σ| ≥ 2ω(log λ); 2) |X | ≤ |Y|;
3) |X | × |M| ≤ |Σ|. We denote F [X → Y] as the set of all injections that map
X to Y; S[X × M → Σ] as the set of all injections that map X × M to Σ and
V[Y × M × Σ → {0, 1}] as the set of all functions that map Y × M × Σ to a
bit. We define T as the set of all function tuples (F, S, V ) such that:

– F ∈ F , S ∈ S and V ∈ V;
– ∀x ∈ X ,m ∈ M, V (F (x),m, S(x,m)) = 1;
– ∀x ∈ X ,m ∈ M and σ ∈ Σ, if σ 	= sign(x,m), then V (F (x),m, σ) = 0;
– ∀x ∈ X ,m ∈ M and σ1, σ2 ∈ Σ, V (F (x),m, σ1) = V (F (x),m, σ2) = 1 ⇒

σ1 = σ2.

We say that a digital signature scheme ΠSig = (Sig.KEYGEN,Sig.SIGN,Sig.VER),
associated with secret key space X , public key space Y, message space M and
signature space Σ, is an ideal digital signature, if ΠSig is sampled from T uni-
formly.
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5.2 Construction

In this section, we build our indifferentiable signature scheme from random oracle
model and a standard-model signature scheme.

Difficulty of Building an Indifferentiable Signature. To achieve indifferen-
tiability, we note that the signature σ would be masked by an idealized primitive,
say Σ = P−1(σ) as above. In the verification algorithm, the scheme inverts Σ
and uses σ to proceed. Unfortunately, this P -technique is insufficient here. In
fact, given Σ (it is either a valid signature or a random string), the simulator
cannot call Ver (the ideal signature) for help, as it does not know the public key
and message. So the simulator cannot respond to P (Σ) properly. To get rid of
this difficulty, we would apply an ideal cipher model (E,E−1) instead, where we
set (PK,M) as its secret key. How does it help? We note that we force the adver-
sary to hand it the public key and message to the simulator when inverting Σ;
as a result, the simulator can call Ver and simulate E(Σ) properly. Concretely,

Building Blocks. Our scheme will consist of several building blocks:

– A standard-model signature scheme ΠSM−Sig = (keygen, sign, ver) with secret
key space X , public key space Y = {0, 1}n1 , message space M = {0, 1}n2 and
signature space Z ⊂ {0, 1}n3 ;

– H0 := {0, 1}∗ → X ;H1 := {0, 1}∗ → M;
– P := {0, 1}n1 → {0, 1}n1 is a random permutation and P−1 is P’s inverse,
– E := {0, 1}n1+n2 × {0, 1}n3 → {0, 1}n3 is an ideal cipher model, where

{0, 1}n1+n2 is its key space and E−1 is its inverse.

Construction. Now we are ready to build an indifferentiable signature scheme,
denoted as ΠSig = (Sig.KEYGEN,Sig.SIGN,Sig.VER), from the building blocks
above. Formally,

– Sig.KEYGEN(SK): On inputs secret key SK, the algorithm outputs public key
PK = P−1(keygen(H0(SK)));

– Sig.SIGN(SK,M): On inputs secret key SK and message M, the algorithm
computes PK = Sig.KEYGEN(SK) and outputs the signature

Σ = E−1((PK||M), sign(H0(SK),H1(M))),

– Sig.VER(PK,M, Σ): On inputs public key PK, message M and the signature
σ, the algorithm outputs a bit b = ver(P (PK),H1(M), E((PK||M), Σ)).

Correctness easily follows, and the rest is to prove its indifferentiability. Before
that, we specify several security properties of the standard-model signature.

Property 1 uniqueness. We say a signature achieves uniqueness, if ∀(pk, sk)
← keygen,m ∈ M, σ1, σ2 ∈ Σ, we have,

ver(pk,m, σ1) = ver(pk,m, σ2) = 1 ⇒ σ1 = σ2.
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Property 2 random-message attack (RMA). We say a signature scheme
is RMA-secure if there is ε1 such that for any PPT adversary A, the advantage

AdvA := Pr[ver(pk,m∗, σ∗) = 1 : σ∗ ← Asign(sk,m1,...,mq)(pk,m∗)] ≤ ε1 = negl(λ),

where (pk, sk) ← keygen, (m∗,m1, . . . ,mq)
$← M and m∗ was not previously

signed.

Property 3 pseudorandom public key. We say the public key is pseudo-
random, if there is ε2 such that for any PPT adversary A, r ← X , R ← Y.

AdvA := |Pr[A(keygen(r))] − Pr[A(R)]| ≤ ε2 = negl(λ).

We say a signature scheme is Good if it satisfies the three properties above.

Theorem 10 (Indifferentiable Signatures). ΠSig is indifferentiable from an
ideal digital signature if ΠSM−Sig is Good. More preciously, there exists a simu-
lator S such that for all (qH0 , qH1 , qP , qP −1 , qE , qE−1)-query PPT differentiator
D with qH0 + qH1 + qP + qP −1 + qE + qE−1 ≤ q, we have

Advindif
ΠSig,S,D ≤ 15q2

√
2ε2 +

1
|X | +

6q2

|Y| +
8q

|Z| +
2q2

|M| + 6q2ε1 + 3q2√ε2.

The simulator makes at most q2 queries to its oracles.
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