
Topology-Hiding Computation on All Graphs

Adi Akavia1(B), Rio LaVigne2(B), and Tal Moran3(B)

1 The Academic College of Tel-Aviv Jaffa, Tel Aviv-Yafo, Israel
akavia@mta.ac.il

2 MIT, Cambridge, USA
rio@mit.edu

3 IDC Herzliya, Herzliya, Israel
talm@idc.ac.il

Abstract. A distributed computation in which nodes are connected by a par-
tial communication graph is called topology-hiding if it does not reveal infor-
mation about the graph beyond what is revealed by the output of the func-
tion. Previous results have shown that topology-hiding computation protocols
exist for graphs of constant degree and logarithmic diameter in the number
of nodes [Moran-Orlov-Richelson, TCC’15; Hirt et al., Crypto’16] as well as
for other graph families, such as cycles, trees, and low circumference graphs
[Akavia-Moran, Eurocrypt’17], but the feasibility question for general graphs was
open.

In this work we positively resolve the above open problem: we prove that
topology-hiding MPC is feasible for all graphs under the Decisional Diffie-
Hellman assumption.

Our techniques employ random-walks to generate paths covering the graph,
upon which we apply the Akavia-Moran topology-hiding broadcast for chain-
graphs (paths). To prevent topology information revealed by the random-walk,
we design multiple random-walks that, together, are locally identical to receiv-
ing at each round a message from each neighbors and sending back processed
messages in a randomly permuted order.

1 Introduction

The beautiful theory of secure multiparty computation (MPC) enables multiple par-
ties to compute an arbitrary function of their inputs without revealing anything but the
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function’s output [10,11,24]. In the original definitions and constructions of MPC, the
participants were connected by a full communication graph (a broadcast channel and/or
point-to-point channels between every pair of parties). In real-world settings, however,
the actual communication graph between parties is usually not complete, and parties
may be able to communicate directly with only a subset of the other parties. Moreover,
in some cases the graph itself is sensitive information (e.g., if you communicate directly
only with your friends in a social network).

A natural question is whether we can successfully perform a joint computation over
a partial communication graph while revealing no (or very little) information about the
graph itself. In the information-theoretic setting, in which a variant of this question was
studied by Hinkelman and Jakoby [15], the answer is mostly negative. The situation is
better in the computational setting. Moran et al. showed that topology-hiding computa-
tion is possible against static, semi-honest adversaries [21]; followed by constructions
with improved efficiency that make only black-box use of underlying primitives [16].
However, all these protocol are restricted to communication graphs with small diameter.
Specifically, these protocols address networks with diameter D = O(log n), logarithmic
in the number of nodes n (where the diameter is the maximal distance between two
nodes in the graph). Akavia and Moran [1] showed that topology hiding computation is
feasible also for large diameter networks of certain forms, most notably, cycles, trees,
and low circumference graphs.

However, there are natural network topologies not addressed by the above protocols
[1,16,21]. They include, for example, wireless and ad-hoc sensor networks, as in [8,23].
The topology in these graphs is modeled by random geometric graphs [22], where,
with high probability, the diameter and the circumference are simultaneously large [3,
9]. These qualities exclude the use of all aforementioned protocols. So, the question
remained:

Is topology hiding MPC feasible for every network topology?

1.1 Our Results

In this work we prove that topology hiding MPC is feasible for every network topol-
ogy under the Decisional Diffie-Hellman (DDH) assumption, thus positively resolving
the above open problem. The adversary is static and semi-honest as in the prior works
[1,16,21].1 Our protocol also fits a stronger definition of security than that from prior
works: instead of allowing the adversary to know who his neighbors are, he only gets
pseudonyms; importantly, an adversary cannot tell if two nodes he controls share an hon-
est neighbor. This stronger definition is elaborated on in the full version of this paper.

Theorem 1 (Topology-hiding broadcast for all network topologies – informal).
There exists a topology-hiding protocol realizing the broadcast functionality on every
network topology (under DDH assumption and provided the parties are given an upper-
bound n on the number of nodes).

The formal theorem is stated and proved in Sect. 3.3.

1 Moran et al. [21] consider also a fail-stop adversary for proving an impossibility result.
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As in [1,16,21], given a topology-hiding broadcast for a point-to-point chan-
nels network, we can execute on top of it any MPC protocol from the literature
that is designed for networks with broadcast channels; the resulting protocol remains
topology-hiding. Put together with the existence of secure MPC for all efficiently com-
putable functionalities (assuming parties have access to a broadcast channel and that
public key encryption exist) [10,11,24], we conclude that topology-hiding MPC for
all efficiently computable functionality and all networks topologies (assuming a certain
type of public key encryption exists).

1.2 High-Level Overview of Our Techniques

Our main innovation is the use of random walks on the network graph for specifying a
path, and then viewing this path as a chain-graph and employing the topology-hiding
broadcast for chains of Akavia and Moran [1].

A challenge we face is that the walk itself may reveal topology information. For
example, a party can deduce the graph commute-time from the number of rounds before
a returning visit by the walk. We therefore hide the random-walk by using multiple
simultaneous random-walks (details below). The combination of all our random-walks
obeys a simple communication structure: at every round each node receives an incoming
message from each of its neighbors, randomly permutes the messages, and sends them
back.

To give more details on our protocol, let us first recall the Akavia-Moran protocol
for chain-graphs. The Akavia-Moran protocol proceeds in two phases, a forward and
a backward phase. In the forward phase, messages are passed forward on the chain,
where each node adds its own encryption layer and computes the OR of the received
message with its bit using homomorphic multiplication (with proper re-randomizing).
In the backward phase, the messages are passed backward along the same path, where
each node deletes its encryption layer. At the end of the protocol, the starting node
receives the plaintext value for the OR of all input bits. This protocol is augmented to
run n instances simultaneously; each node initiates an execution of the protocol while
playing the role of the first node. So, by the end of the protocol, each node has the OR
of all bits, which will be equal to the broadcast bit. Intuitively, this achieves topology-
hiding because at each step, every node receives an encrypted message and public key.
An encryption of zero is indistinguishable from an encryption of 1, and so each node’s
view is indistinguishable from every other view.

We next elaborate on how we define our multiple random walks, focusing on two
viewpoints: the viewpoint of a node, and the viewpoint of a message. We use the former
to argue security, and the latter to argue correctness.

From the point of view of a node v with d neighbors, the random walks on the
forward-phase are specified by choosing a sequence of independent random permu-
tations πt : [d] → [d], where in each forward-phase round t, the node forwards mes-
sages received from neighbor i to neighbor πt(i) (after appropriate processing of the
message, as discussed above). The backward-phase follows the reverse path, sending
incoming message from neighbor j to neighbor i = π−1

t ( j), where t is the correspond-
ing round in the forward-phase. Furthermore, recall that all messages are encrypted
under semantically-secure encryption. This fixed communication pattern together with
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the semantic security of the messages content leads to the topology-hiding property of
our protocol.

From the point of view of a message, at each round of the forward-phase the mes-
sage is sent to a uniformly random neighbor. Thus, the path the message goes through is
a random-walk on the graph.2 A sufficiently long random walk covers the entire graph
with overwhelming probability. In this case, the output is the OR of the inputs bits of
all graph nodes, and correctness is guaranteed.

1.3 Related Work

Topology Hiding in Computational Settings. Figure 1 compares our results to the previ-
ous results on topology hiding computation and specifies, for each protocol, the classes
of graphs for which it is guaranteed to run in polynomial time.

The first result was a feasibility result and was the work of Moran et al. [21] from
2015. Their result was a broadcast protocol secure against static, semi-honest adver-
saries, and a protocol against failstop adversaries that do not disconnect the graph. How-
ever, their protocol is restricted to communication graphs with diameter logarithmic in
the total number of parties.

Fig. 1. Rows correspond to graph families; columns corresponds to prior works in the first two
columns and to this work in last the column. A +/− mark for graph x and work y indicates that a
topology hiding protocol is given/not-given in work y for graph x.

The main idea behind their protocol is a series of nested multiparty computations,
in which each node is replaced by a secure computation in its local neighborhood that
simulates that node. The drawback is that in order to get full security, this virtualization
needs to extend to the entire graph, but the complexity of the MPC grows exponentially
with the size of the neighborhood.

Our work is also a feasibility result, but instead builds on a protocol much more
similar to the recent Akavia-Moran paper [1], which takes a different approach. They
employ ideas from cryptographic voting literature, hiding the order of nodes in the cycle
by “mixing” encrypted inputs before decrypting them and adding layers of public keys
to the encryption at each step. In this work, we take this layer-adding approach and

2 We remark that the multiple random-walks are not independent; we take this into account in
our analysis.
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apply it to random walks over all kinds of graphs instead of deterministically figuring
out the path beforehand.

Other related works include a work by Hirt et al. [16], which describes a protocol
that acheives better efficiency than [21], but as it uses similar tactics, is still restricted
to network graphs with logarithmic diameter. Addressing a problem different from
topology-hiding, the work by Chandran et al. [7] reduces communication complexity
of secure MPC by allowing each party to communicate with a small (sublinear in the
number of parties) number of its neighbors.

Topology Hiding in Information Theoretic Settings. Hinkelmann and Jakoby [15] con-
sidered the question of topology-hiding secure computation, but focused on the infor-
mation theoretic setting. Their main result was negative: any MPC protocol in the
information-theoretic setting inherently leaks information about the network graph to
an adversary. However, they also show that the only information we need to leak is the
routing table: if we leak the routing table beforehand, then one can construct an MPC
protocol which leaks no further information.

Secure Multiparty Computation with General Interaction Patterns. Halevi et al. [13]
presented a unified framework for studying secure MPC with arbitrary restricted inter-
action patterns, generalizing models for MPC with specific restricted interaction pat-
terns [4,12,14]. Their goal is not topology hiding, however. Instead, they ask the ques-
tion of when is it possible to prevent an adversary from learning the output to a function
on several inputs. They started by observing that an adversary controlling the final play-
ers Pi, · · · , Pn in the interaction pattern can learn the output of the computed function
on several inputs because the adversary can rewind and execute the protocol on any pos-
sible party values xi, · · · , xn. This model allows complete knowledge on the underlying
interaction pattern (or as in our case, the graph).

1.4 Organization of Paper

In Sect. 2 we describe our adversarial model and introduce some notation. In Sect. 2.5
we detail the special properties we require from the encryption scheme that we use
in our cycle protocol, and show how it can be instantiated based on DDH. In Sect. 3,
we explain our protocol for topology-hiding broadcast on general graphs and prove
its completeness and security. Then, in Sect. 4, we go over a time and communication
tradeoff, and explain how we can optimize our protocol with respect to certain classes
of graphs. Finally, in Sect. 5, we conclude and discuss future work.

2 Preliminaries

2.1 Computation and Adversarial Models

We model a network by an undirected graph G = (V, E) that is not fully connected.
We consider a system with n parties denoted P1, . . . , Pn, where n is upper bounded by
poly(κ) and κ is the security parameter. We identify V with the set of parties {P1, . . . , Pn}.
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We consider a static and computationally bounded (PPT) adversary that controls
some subset of parties (any number of parties). That is, at the beginning of the protocol,
the adversary corrupts a subset of the parties and may instruct them to deviate from the
protocol according to the corruption model. Throughout this work, we consider only
semi-honest adversaries. In addition, we assume that the adversary is rushing; that is, in
each round the adversary sees the messages sent by the honest parties before sending the
messages of the corrupted parties for this round. For general MPC definitions including
in-depth descriptions of the adversarial models we consider, see [10].

2.2 Notation

In this section, we describe our common notation conventions for both graphs and for
our protocol.

Graph Notation

Let G = (V, E) be an undirected graph. For every v ∈ V , we define the neighbors of v as
N(v) = {w : (v,w) ∈ E} and will refer to the degree of v as dv = |N(v)|.
Protocol Notation

Our protocol will rely on generating many public-secret key pairs, and ciphertexts at
each round. In fact, each node will produce a public-secret key pair for each of its
neighbors at every timestep. To keep track of all these, we introduce the following
notation. Let pk(t)

i→d represent the public key created by node i to be used for neighbor

d at round t; sk(t)
i→d is the corresponding secret key. Ciphertexts are labeled similarly:

c(t)
d→i, is from neighbor d to node i.

2.3 UC Security

As in [21], we prove security in the UC model [5]. If a protocol is secure in the UC
model, it can be composed with other protocols without compromising security, so
we can use it as a subprotocol in other constructions. This is critical for constructing
topology-hiding MPC based on broadcast—broadcast is used as a sub-protocol.

A downside of the UC model is that, against general adversaries, it requires setup.
However, setup is not necessary against semi-honest adversaries that must play accord-
ing to the rules of the protocol. Thus, we get a protocol that is secure in the plain model,
without setup. For details about the UC framework, we refer the reader to [5].

2.4 Simulation-Based Topology Hiding Security

Here we will review the model for defining simulation-based topology hiding compu-
tation, as proposed by [21], in the UC framework.

The UC model usually assumes all parties can communicate directly with all other
parties. To model the restricted communication setting, [21] define the Fgraph-hybrid
model, which employs a special “graph party,” Pgraph. Figure 2 shows Fgraph’s function-
ality: at the start of the functionality, Fgraph receives the network graph from Pgraph,
and then outputs, to each party, that party’s neighbors. Then, Fgraph acts as an “ideal
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channel” for parties to communicate with their neighbors, restricting communications
to those allowed by the graph.

Since the graph structure is an input to one of the parties in the computation, the
standard security guarantees of the UC model ensure that the graph structure remains
hidden (since the only information revealed about parties’ inputs is what can be com-
puted from the output). Note that the Pgraph party serves only to specify the communi-
cation graph, and does not otherwise participate in the protocol.

Fig. 2. The functionality Fgraph.

The initialization phase of Fgraph provides local information about the graph to
every corrupted party, and so both ideal-world and real-world adversaries get access
to this information. This information is independent of the functionality we are trying
to implement, but always present. So we will isolate it in the functionality FgraphInfo

which contains only the initialization phase of Fgraph, and then, for any functionality F ,
we compose F with FgraphInfo, writing (FgraphInfo||F ) as the “composed functionality.”
Now we can define topology-hiding MPC in the UC framework:

Definition 2. We say that a protocol Π securely realizes a functionality F hiding topol-
ogy if it UC-realizes (FgraphInfo||F ) in the Fgraph-hybrid model.
This definition also captures functionalities that depend on the structure of the graph,
like shortest path or determining the length of the longest cycle.

Broadcast Functionality, FBroadcast

In accordance with this definition, we need to define an ideal functionality of broadcast,
denoted FBroadcast, shown in Fig. 3. We will prove that a simulator only with knowledge

Fig. 3. The functionality FBroadcast.
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of the output of FBroadcast and knowledge of the local topology of the adversarially
chosen nodes Q can produce a transcript to nodes in Q indistinguishable from running
our protocol.

2.5 Privately Key-Commutative and Rerandomizable Encryption

As in [1], we require a public key encryption scheme with the properties of being
homomorphic (with respect to OR in our case), privately key-commutative, and re-
randomizable. In this section we first formally define the properties we require, and
then show how they can be achieved based on the Decisional Diffie-Hellman assump-
tion.

We call an encryption scheme satisfying the latter two properties, i.e., privately key-
commutative and re-randomizable, a PKCR-enc;

Required Properties

Let KeyGen : {0, 1}∗ �→ PK × SK ,Enc : PK ×M × {0, 1}∗ �→ C,Dec : SK × C �→
M be the encryption scheme’s key generation, encryption and decryption functions,
respectively, where PK is the space of public keys, SK the space of secret keys,M the
space of plaintext messages and C the space of ciphertexts.

We will use the shorthand [m]k to denote an encryption of the message m under
public-key k. We assume that for every secret key sk ∈ SK there is associated a single
public key pk ∈ PK such that (pk, sk) are in the range of KeyGen. We slightly abuse
notation and denote the public key corresponding to sk by pk(sk).

Privately Key-Commutative

The set of public keys PK form an abelian (commutative) group. We denote the group
operation �. Given any k1, k2 ∈ PK , there exists an efficient algorithm to compute k1 �
k2. We denote the inverse of k by k−1 (i.e., k−1 � k is the identity element of the group).
Given a secret key sk, there must be an efficient algorithm to compute the inverse of its
public key (pk(sk))−1.

There exist a pair of algorithms AddLayer : C×SK �→ C and DelLayer : C×SK �→
C that satisfy:

1. For every public key k ∈ PK , every message m ∈ M and every ciphertext c = [m]k,

AddLayer (c, sk) = [m]k�pk(sk) .

2. For every public key k ∈ PK , every message m ∈ M and every ciphertext c = [m]k,

DelLayer (c, sk) = [m]k�(pk(sk))−1 .

We call this privately key-commutative since adding and deleting layers both require
knowledge of the secret key.

Note that since the group PK is commutative, adding and deleting layers can be
done in any order.

Rerandomizable

We require that there exists a ciphertexts “re-randomizing” algorithm Rand : C×PK ×
{0, 1}∗ �→ C satisfying the following:
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1. Randomization: For every message m ∈ M, every public key pk ∈ PK
and ciphertext c = [m]pk, the distributions (m, pk, c,Rand (c, pk,U∗)) and
(m, pk, c,Encpk(m;U∗)) are computationally indistinguishable.

2. Neutrality: For every ciphertext c ∈ C, every secret key sk ∈ SK and every r ∈
{0, 1}∗,

Decsk(c) = Decsk(Rand (c, pk(sk), r)).

Furthermore, we require that public-keys are “re-randomizable” in the sense that the
product k� k′ of an arbitrary public key k with a public-key k′ generated using KeyGen
is computationally indistinguishable from a fresh public-key generated by KeyGen.

Homomorphism

We require that the message space M forms a group with operation denoted ·, and
require that the encryption scheme is homomorphic with respect this operation · in
the sense that there exists an efficient algorithm hMult : C × C �→ C that, given two
ciphertexts c = [m]pk and c′ = [m′]pk, returns a ciphertext c′′ ← hMult (c, c′) s.t.
Decsk(c′′) = m · m′ (for sk the secret-key associated with public-key pk).

Notice that with this operation, we can homomorphically raise any ciphertext to any
power via repeated squaring. We will call this operation hPower.

Homomorphic OR

This feature is built up from the re-randomizing and the homomorphism features. One
of the necessary parts of our protocol for broadcast functionality is to have a homo-
morphic OR. We need this operation not to reveal if it is ORing two 1’s or one 1 at
decryption. So, following [1], first we define an encryption of 0 to be an encryption
of the identity element in M and an encryption of 1 to be an encryption of any other
element. Then, we define HomOR so that it re-randomizes encryptions of 0 and 1 by
raising ciphertexts to a random power with hPower.

function HomOR(c, c′, pk, r = (r, r′)) // r is randomness.
ĉ← hPower (c, r, pk) and ĉ′ ← hPower (c′, r′, pk)
return Rand (hMult (ĉ, ĉ′′) , pk)

end function

Claim. LetM have prime order p, where 1/p is negligible in the security parameter,
and M,M′ ∈ {0, 1} be messages with corresponding ciphertexts c and c′ under pub-
lic key pk. The distribution (c, c′, pk,M,M′,Enc(M ∨ M′, pk;U∗)) is computationally
indistinguishable from (c, c′, pk,M,M′,HomOR(c, c′, pk;U∗)).

Proof. We will go through three cases for values of M and M′: first, when M = M′ = 0;
second when M = 1 and M′ = 0; and third when M = 1 and M′ = 1. The case M = 0
and M′ = 1 is handled by the second case.

– Consider when M = M′ = 0. Note that 1M is the group element inM that encodes
0, so an encryption of 0 is represented by an encryption of the identity element,
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m = m′ = 1M, ofM. Consider c0 and c′0 both encryptions of 1M. After hPower, both
ĉ0 and ĉ′0 are still encryptions of 1M. hMult then produces an encryption of 1M·1M =
1M, and Rand makes that ciphertext indistinguishable to a fresh encryption of 1M.
We have proved our first case.

– Next, let c0 be an encryption of 0 and c′1 be an encryption of 1. In this case, 0 is

represented again by 1M, but c′1 is represented by some m′
$← M (with all but

negligible probability m′ � 1). After hPower, ĉ0 still encrypts 1M, but ĉ′1 encrypts

m̂ = m′r′ for some r′
$← Zp. hMult yeilds an encryption of m̂ and Rand makes a

ciphertext computationally indistinguishable from a fresh encryption of m̂. SinceM
has prime order p and r′

$← Zp, as long as m′ � 1, m′r is uniformly distributed over
M, and so computationally has a distribution indistinguishable to a fresh encryption
of the boolean message 1.

– Finally, let c1 and c′1 both be encryptions of 1: c1 encrypts m
$←M and c′1 encrypts

m′
$← M. We will go through the same steps to have at the end, a ciphertext com-

putationally indistinguishable3 from a fresh encryption of mr · m′r′ for r, r′
$← Zp.

Again because the order ofM is prime, mr · m′r′ is uniformly distributed over Zp,
and so the resulting ciphertext looks like a fresh encryption of 1. �

This claim means that we cannot tell how many times 1 or 0 has been OR’d together
during an or-and-forward type of protocol. This will be critical in our proof of security.

Instantiation of OR-Homomorphic PKCR-enc Under DDH

We use standard ElGamal, augmented by the additional required functions. The
KeyGen, Dec and Enc functions are the standard ElGamal functions, except that to
obtain a one-to-one mapping between public keys and secret keys, we fix the group G
and the generator g, and different public keys vary only in the element h = gx. Below, g
is always the group generator. The Rand function is also the standard rerandomization
function for ElGamal:

function Rand(c = (c1, c2), pk, r)
return (c1 · gr, pkr · c2)

end function
We use the shorthand notation of writing Rand (c, pk) when the random coins r are
chosen independently at random during the execution of Rand. We note that the dis-
tribution of public-keys outputted by KeyGen is uniform, and thus the requirement for
“public-key rerandomization” indeed holds. ElGamal public keys are already defined
over an abelian group, and the operation is efficient. For adding and removing layers,
we define:

3 In our definition of a PKCR encryption scheme, Rand is only required to be computation-
ally randomizing, which carries over in our distribution of homomorphically-OR’d cipher-
texts. However, ElGamal’s re-randomization function is distributed statistically close to a fresh
ciphertext, and so our construction will end up having HomOR be identically distributed to a
fresh encryption of the OR of the bits.
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function AddLayer(c = (c1, c2), sk)
return (c1, c2 · csk1 )

end function
function DelLayer(c = (c1, c2), sk)

return (c1, c2/csk1 )
end function

Every ciphertext [m]pk has the form (gr, pkr · m) for some element r ∈ Zord(g). So

AddLayer
(
[m]pk , sk

′) = (gr , pkr · m · gr·sk′ ) = (gr , pkr · (pk′)r · m) = (gr , (pk · pk′)r · m) = [m]pk·pk′ .

It is easy to verify that the corresponding requirement is satisfied for DelLayer as well.
ElGamal message space already defined over an abelian group with homomorphic

multiplication, specifically:

function hMult(c = (c1, c2), c′ = (c′1, c
′
2))

return c′′ = (c1 · c′1, c2 · c′2)
end function

Recalling that the input ciphertext have the form c = (gr, pkr ·m) and c′ = (gr
′
, pkr

′ ·m′)
for messages m,m′ ∈ Zord(g), it is easy to verify that decrypting the ciphertext c′′ =
(gr+r

′
, pkr+r

′ ·m ·m′) returned from hMult yields the product message Decsk(c′′) = m ·m′.
Finally, to obtain a negligible error probability in our broadcast protocols, we takeG

a prime order group of size satisfying that 1/ |G| is negligible in the security parameter κ.
With this property and valid Rand and hMult operations, we get hPower and hence
HomOR with ElGamal.

3 Topology Hiding Broadcast Protocol for General
Graphs

In this section, we describe how our protocol works and prove that it is complete and
secure.

The protocol (see Protocol 1) is composed of two phases: an aggregate (forward)
phase and a decrypt (backward) phase. In the aggregate phase messages traverse a ran-
dom walk on the graph where each of the passed-through nodes adds a fresh encryption
layer and homomorphically ORs the passed message with its bit. In the decrypt phase,
the random-walk is traced back where each node deletes the encryption layer it pre-
viously added. At the end of the backward phase, the node obtains the plaintext value
of the OR of all input bits. The protocol executes simultaneous random walks, locally
defined at each node v with d neighbors by a sequence of permutations πt : [d]→ [d] for
each round t, so that at round t of the forward phase messages received from neighbor
i are forwarded to neighbor πt(i), and at the backward phase messages received from
neighbor j are sent back to neighbor π−1

t ( j).

3.1 Proof of Completeness

The main idea of the protocol is that we take a random walk around the graph, or-ing
bits as we go, and hopefully by the time we start walking backwards along that path
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Protocol 1. Topology-hiding broadcast for general graphs. Inputs parameters: n is the
number of nodes; 2−τ the failure probability; di the degree of node i; and bi the input bit
of node i. See Sect. 2.2 for an explanation of notation.
1: procedure broadcast((n, τ, di, bi))
2: // The number of steps we take in our random walk will be T .
3: T ← τ · 8n3

4: Generate T · di key pairs: for t ∈ [T ] and d ∈ [di], generate pair (pk(t)
i→d, sk

(t)
i→d) ←

KeyGen(1κ).
5: Generate T −1 random permutations on di elements {π1, · · · , πT−1}. Let πT be the identity

permutation.
6: // Aggregate phase.
7: For all d ∈ [di], send to neighbor d the ciphertext [bi]pk(1)

i→d
and the public key pk(1)

i→d.

8: for t = 1 to T − 1 do
9: for Neighbors d ∈ [di] do

10: Wait to receive ciphertext c(t)
d→i and public key k(t)

d→i.
11: Let d′ ← πt(d).
12: Compute k(t+1)

i→d′ = k(t)
d→i � pk(t+1)

i→d′ .

13: Compute ĉ(t+1)
i→d ← AddLayer

(
c(t)
d→i, sk

(t+1)
i→d′
)

and [bi]k(t+1)
i→d′

.

14: Compute c(t+1)
i→d′ ← HomOR

(
[bi]k(t+1)

i→d′
, ĉ(t+1)

i→d′

)
.

15: Send c(t+1)
i→d′ and k(t+1)

i→d′ to neighbor d′.
16: end for
17: end for
18: Wait to receive c(T )

d→i and k(T )
d→i from each neighbor d ∈ [di].

19: Compute [bi]k(T )
d→i

and let e(T )
d→i ← HomOR

(
c(T )
d→i, [bi]k(T )

d→i

)

20: // Decrypt phase.
21: for t = T to 1 do
22: For each d ∈ [di], send e(t)

i→d′ to d′ = π−1
t (d). // Passing back.

23: for d ∈ [di] do
24: Wait to receive e(t)

d→i from neighbor d.
25: Compute d′ ← π−1

t (d).
26: e(t−1)

i→d′ ← DelLayer
(
e(t)
d→i, sk

(t)
i→d′
)
// If t = 1, DelLayer decrypts..

27: end for
28: end for
29: // Produce output bit.
30: b← ∨d∈[di] e

(0)
i→d.

31: Output b.
32: end procedure

we have reached all of the nodes. We will rely on the following definition and theorem
from Mitzenmacher and Upfal’s book (see Chap. 5) [20].

Definition 3 (Cover time). The cover time of a graph G = (V, E) is the maximum over
all vertices v ∈ V of the expected time to visit all of the nodes in the graph by a random
walk starting from v.
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Theorem 4 (Cover time bound). The cover time of any connected, undirected graph
G = (u, v) is bounded above by 4nm ≤ 4n3.

Corollary 5. LetW(u, τ) be a random variable whose value is the set of nodes covered
by a random walk starting from u and taking τ · (8n3) steps. We have

Pr
W

[W(u, τ) = V] ≥ 1 − 1
2τ
.

Proof. First, consider a random walk that takes t steps to traverse a graph. Theorem 4
tells us that we expect t ≤ 4n3, and so by a Markov bound, we have

Pr
[
t ≥ 2 · (4n3)

]
≤ 1

2

Translating this into our notation, for any node u ∈ G, Pr[W(u, 1) = V] ≥ 1
2 .

We can representW(u, τ) as a union of τ random walks, each of length 8n3:W(u1 =

u, 1) ∪W(u2, 1) ∪ · · · ∪W(uτ, 1), where ui is the node we have reached at step i · 8n3

(technically, ui is a random variable, but the specific node at which we start each walk
will not matter).W(u, τ) will succeed in covering all nodes in G if anyW(ui, 1) covers
all nodes.

So, we will bound the probability that allW(ui, 1) � V . Note that eachW(ui, 1) is
independent of all other walks except for the node it starts on, but our upper bound is
independent of the starting node. This means

Pr [W(ui, 1) � V, ∀i ∈ [τ]] =
∏

i∈[τ]
Pr [W(ui, 1) � V] ≤ 1

2τ
.

Therefore,

Pr [W(u, τ) = V] = 1 − Pr [W(u, τ) � V] ≥ 1 − Pr [W(u, 1) � V]τ ≥ 1 − 1
2τ
.

�

Theorem 6 (Completeness). At the end of Protocol 1, which takes 2 · τ · 8n3 rounds,
every node will have b =

∨
i∈[n] bi with probability at least 1 − n/2τ.

Proof. First, we will prove that by the end of our protocol, every node along the walk
OR’s its bit and the resulting bit is decrypted. Then, we will prove that with all but
probability n/2τ, every node has some walk that gets the output bit, meaning that with
high probability, b at the end of the protocol is the output bit received by each node.

So, consider a single node, u0, with bit b0. Recall that T = τ · 8n3. We will follow
one walk that starts at u0 with bit b0. In the protocol, u0’s neighbors are ordered 1
to du0 and referred to by their number. Since this ordering is arbitrary, we will let u1

identify the neighbor chosen by the protocol to send the encryption of b0 in the first
round, and, generalizing this notation, ui will identify the ith node in the walk. For the
sake of notation, pki will denote the public key generated by node ui at step i + 1 for
node ui+1 (so pki = pk(i+1)

ui→ui+1
), and ki will be the aggregate key-product at step i (so

ki = pk0 � . . . � pki).
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– On the first step, u0 encrypts b0 with pk0 into c1 and sends it and public key pk0 to
one of its neighbors, u1. We will follow c1 on its random walk through T nodes.

– At step i ∈ [T − 1], ci was just sent to ui from ui−1 and is encrypted under the
product ki−1 = pk0 � pk1 � · · · � pki−1, also sent to ui. ui computes the new public
key pk0 � · · · � pki = ki, adding its own public key to the product, encrypts bi under
ki, and re-encrypts ci under ki via AddLayer. Then, using the homomorphic OR, ui
computes ci+1 encrypted under ki. ui sends ci+1 and ki to ui+1 = π

(ui)
i (ui−1).

– At step T , node uT receives cT , which is the encryption of b0 ∨ b1 ∨ · · · bT−1 under
key pk0� · · ·� pkT−1 = kT−1. uT encrypts and then OR’s his own bit to get ciphertext
eT = HomOR(cT , [bT ]kT−1 ). uT sends eT back to uT−1.

– Now, on its way back in the decrypt phase, for each step i ∈ [T − 1], ui has just
received ei from node ui+1 encrypted under pk1 � · · · � pki = ki. ui deletes the key
layer pki to get ki−1 and then using DelLayer, removes that key from encrypting ei
to get ei−1. ui sends ei−1 and ki−1 to ui−1 = (π(ui)

i )−1(ui+1).
– Finally, node u0 receives e0 encrypted only under public key pk0 on step 1. u0 deletes

that layer pk0, revealing e0 = b0 ∨ · · · ∨ bT .

Now notice that each of these “messages” sent from every node to every neighbor
takes a random walk on the graph when viewed on their own (these are correlated
random walks when viewed as a whole, but independently, they can be analyzed as
random walks). LetWu represent some walk of the message starting at node u—even
though u starts deg(u) different walks, we will only consider one walk per node.

By Corollary 5, for each Wu, their set of traversed nodes covers the graph with
probability 1 − 1

2τ where τ = T/(8n3). A union bound yields

Pr [∃u ∈ V, Wu � V] ≤
∑

u∈V
Pr [Wu � V] ≤ n · 1

2n
≤ n

2τ
.

This means that all walks cover the graph with at least the following probability

Pr [∀u ∈ V, Wu = V] ≥ 1 − n
2τ
,

and every walk will traverse the entire graph with all but negligible probability in our
parameter τ. �

3.2 Proof of Soundness

We now turn to analyzing the security of our protocol, with respect to the topology-
hiding security from Definition 2.

Theorem 7. If the underlying encryption OR-homomorhpic PKCR scheme is CPA-
secure, then Protocol 1 realizes the functionality of FBroadcast in a topology-hiding way
against a statically corrupting, semi-honest adversary.

Proof. First, we will describe an ideal-world simulator S: S lives in a world where all
honest parties are dummy parties and has no information on the topology of the graph
other than what a potential adversary knows. More formally, S works as follows
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1. Let Q be the set of parties corrupted by A. A is a static adversary, so Q and the
inputs of parties in Q must be fixed by the start of the protocol.

2. S sends the input for all parties in Q to the broadcast function Fbroadcast. Fbroadcast
outputs bit bout and sends it to S. Note S only requires knowledge of Q’s inputs and
the output of FBroadcast.

3. S gets the local neighborhood for each P ∈ Q: S knows how many neighbors each
P has and if that neighbor is also in Q, but doesn’t need to know anything else about
the topology4.

4. Consider every party P ∈ Q suchN(P) � Q. S will need to simulate these neighbors
not in Q.

– Simulating messages from honest parties in Aggregate phase. For every Q ∈
N(P) and Q � Q, S simulates Q as follows. At the start of the algorithm, S
creates T key pairs:

(pk(1)
Q→P, sk

(1)
Q→P), · · · , (pk(T )

Q→P, sk
(T )
Q→P)← Gen(1κ)

At step t = i in the for loop on line 8, S simulates Q sending a message to P by
sending ([0]pk(i)

Q→P
, pk(i)

Q→P). S receives the pair (c(i)
P→Q, k

(i)
P→Q) from P at this step.

– Simulating messages from honest parties in the Decrypt phase. Again, for
every P ∈ Q, Q ∈ N(P) and Q � Q, S simulates Q. At t = i in the for loop on
line 21, S sends [bout]k(i)

Q→P
to P. S receives e(i)

P→Q from P.

We will prove that any PPT adversary cannot distinguish whether he is interacting
with the simulator S or with the real network except with negligible probability.

1. Hybrid 1. S simulates the real world exactly and has information on the entire topol-
ogy of the graph, each party’s input, and can simulate each random walk identically
to how the walk would take place in the real world (Fig. 4, top).

2. Hybrid 2. S replaces the real keys with simulated public keys, but still knows every-
thing about the graph (as in Hybrid 1). Formally, for every honest Q that is a neighbor
to P ∈ Q, S generates

(pk(1)
Q→P, sk

(1)
Q→P), · · · , (pk(T )

Q→P, sk
(T )
Q→P)← Gen(1κ)

and instead of adding a layer to the encrypted [b]pk∗ that P has at step t, as done in
line 12 and 13, S computes b′ ← bQ∨b and sends [b′]pk(t)

Q→P
to P during the aggregate

phase; it is the same message encrypted in Hybrid 1, but it is now encrypted under
an unlayered, fresh public key. In the decrypt phase, each honest Q neighbor to P
will get back the bit we get from the sequence of OR’s encrypted under that new
public key as well; the way all nodes in Q peel off layers of keys guarantees this.

3. Hybrid 3. S now simulates the ideal functionality during the aggregate phase, send-
ing encryptions of 0. Formally, during the aggregate phase, every honest Q that is

4 Recall that from Definition 2, FgraphInfo reveals if nodes in Q have neighbors in common, how-
ever all S needs to know is which neighbors are also in Q; S does not use all of the available
graph information (in the full version of the paper, we describe a stronger definition capturing
this quality).
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Fig. 4. An example of how the simulator works. The top shows how the graph normally looks. The
bottom shows the graph topology that the simulator generates. Black nodes are nodes inQ. Notice
that the simulator doesn’t require knowing if nodes in Q have a common neighbor—neighbors
can identify themselves with pseudonyms or edge-labels.

a neighbor to P ∈ Q S sends [0]pk(t)
Q→P

to P instead of sending [b′]pk(t)
Q→P

. Nothing

changes during the decrypt phase; the simulator still sends the resulting bit from
each walk back and is not yet simulating the ideal functionality.

4. Hybrid 4. S finally simulates the ideal functionality at the during the decrypt phase,
sending encryptions of bout, the output of FBroadcast, under the simulated public keys.
This is instead of simulating random walks through the graph and ORing only spe-
cific bits together. Notice that this hybrid is equivalent to our original description of
S and requires no knowledge of other parties’ values or of the graph topology other
than local information about Q (as specified by the FgraphInfo functionality).

Now, let’s say we have an adversary A that can distinguish between the real world
and the simulator. This means A can distinguish between Hybrids 1 and 4. So, A can
distinguish, with non-negligible probability, between two consecutive hybrids. We will
argue that given the security of our public key scheme and the high probability of suc-
cess of the algorithm, that this should be impossible.

1. First, we claim no adversary can distinguish between Hybrid 1 and 2. The difference
between these Hybrids is distinguishing between AddLayer and computing a fresh
encryption key. In Hybrid 1, we compute a public key sequence, multiplying pub-
lic key k by a freshly generated public key. In Hybrid 2, we just use a fresh public
key. Recall that the public keys in our scheme form a group. Since the key sequence
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k � pknew has a new public key that has not been included anywhere else in the
transcript, k � pknew can be thought of as choosing a new public key indepen-
dently at random from k. This is the same distribution as just choosing a new public
key: {k � pknew} ≡ {pknew}. Therefore, any tuple of multiplied keys and fresh keys
are indistinguishable from each other. So, no adversary A can distinguish between
Hybrids 1 and 2.

2. Now we will show that no PPT adversary can distinguish between Hybrids 2 and 3.
The only difference between these two hybrids is that A sees encryptions of the
broadcast bit as it is being transmitted as opposed to seeing only encryptions of 0
from the simulator. Note that the simulator chooses a key independent of any key
chosen by parties in Q in each of the aggregate rounds, and so the bit is encrypted
under a key that A does not know. This means that if A can distinguish between
these two hybrids, thenA can break semantic security of the scheme, distinguishing
between encryptions of 0 and 1.

3. For this last case, we will show that there should not exist a PPT adversary A that
can distinguish between Hybrids 3 and 4.
There are two differences between Hybrids 3 and 4. The first is that, during the
decrypt phase, we send bout =

∨
i∈[n] bi, the OR of all of the node’s bits, instead of

bW =
∨

u∈W bu, the OR of all node’s bits in a specific length-T walk.
Corollary 5 tells us that a walkW taken during the course of the algorithm covers
the graph with probability 1− 1/2τ. There are two walks starting at each edge in the
graph, which is at most 2n2 walks. So, the probability that bout � bW at most 2n2/2τ,
which is negligible in τ, and therefore is undetectable.
The second difference is that our simulated encryption of bout is generated by mak-
ing a fresh encryption of bout. But, if bout = bW (which it will with overwhelm-
ing probability), by the claim in Sect. 2.5, the encryption generated by ORing
many times in the graph is computationally indistinguishable to a fresh encryp-
tion of bout. Therefore, computationally, it is impossible to distinguish between
Hybrids 3 and 4. �

3.3 Proof of Main Theorem

In this section, we put the pieces together: we formally state and prove Theorem 1 using
Protocol 1.

Theorem 8 (Topology-hiding broadcast for all network topologies). If there exists
an OR-homomorphic PKCR, then for any network topology graph G on n nodes, there
exists a polynomial-time protocol Π that is a topology-hiding realization of broadcast
functionality Fbroadcast.
Proof. Will will show that Protocol 1 is the topology-hiding realization of Fbroadcast.
Since we assume existence of an OR-homomorphic PKCR, we are able to run our
protocol. The rest of this proof is simply combining the results of Theorems 6 and 7.
Now, for a security parameter κ, we let τ = κ + log(n).

To show Protocol 1 is complete, Theorem 6 states that for our parameter τ, Proto-
col 1 outputs the correct bit for every node with probability at least 1− n/2τ = 1− 1/2κ.
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This means, our protocol is correct with overwhelming probability with respect to the
security parameter κ.

To show our protocol is sound, Theorem 7 states that for our input parameter τ, an
adversary can distinguish a simulated transcript from a real transcript with probability
negligible in τ. Since τ is strictly greater than κ, our protocol is secure with respect to
κ as well. Therefore, Protocol 1 is sound against all PPT adversaries: they have only a
negligible chance with respect to κ of distinguishing the simulation versus a real instan-
tiation of the protocol. �

Corollary 9. Under the DDH assumption, there exists polynomial-time executable,
topology-hiding broadcast for any graph G.

Proof. ElGamal, which is secure under the DDH assumption, is an OR-homomorphic
PKCR by Sect. 2.5. So, applying Theorem 8, we get that there exists a protocol which
is a topology-hiding realization of Fbroadcast. �

Because we now have topology-hiding broadcast on any graph, we can use the exis-
tence of secure MPC for all efficiently computable functionalities F , we get topology-
hiding MPC for all efficiently computable F (assuming we have an OR-homomorphic
PKCR, or DDH).

4 Complexity and Optimizations

In this section we give an upper bound on the communication complexity of Proto-
col 1 and discuss optimizations for graph families where tighter cover time bounds are
known.

In the following n,m are upper bounds on the number of nodes and edges; B an
upper bound on the cover time; and τ an input parameter controlling the probability of
incorrect output to be at most n/2τ. We point out that while in Protocol 1 we set the
number of rounds to be T = 2τB for B = 4n3; our completeness and soundness proofs
hold for every upper bound B on the cover time.

4.1 Communication Complexity

We show that the communication complexity is Θ(Bτm) group elements, where B is an
upper bound on the cover time of the graph (for our protocol on general graphs, we have
B = 4n3). We measure the communication complexity in terms of the overall number of
group elements transmitted throughout the protocol (where the group elements are for
the ciphertext and public-key pairs of the underlying DDH-based encryption scheme,
and their size is polynomial in the security parameter).

Claim (Communication complexity). The communication complexity of Protocol 1
with T = 2τB is Θ(Bτm) group elements.

Proof. The random-walks in Protocol 1 are of length T = 2Bτ, yielding 2T total rounds
of communication including both the forward and backwards phases. At each round,
every node v sends out deg(v) messages. Summing over all v ∈ V , all of the nodes



Topology-Hiding Computation on All Graphs 465

communicate 2m messages every round – one for each direction of each edge (for m
denoting the number of edges in the network graph). By the end of the protocol, the
total communication is 4Tm = Θ(Bτm). �

We conclude the communication complexity of Protocol 1 on input n, τ is Θ(τn5)
group elements.

Corollary 10. On input n, τ, the communication complexity of Protocol 1 is Θ(τn5)
group elements.

Proof. For a graph with at most n nodes, B = 4n3 is an upper bound on the cover
time (see Theorem 4), and m = n2 is an upper bound on the number of edges.
Assigning those B,m in the bound from Sect. 4.1, the proof follows: Θ(Bτm) =
Θ(τ · n3 · n2) = Θ(τn5). �

4.2 Better Bounds on Cover Time for Some Graphs

Now that we have seen how the cover time bound B controls both the communication
and the round complexity, we will look at how to get a better bound than O(n3).

Cover time has been studied for various kinds of graphs, and so if we leak the kind
of graph we are in (e.g. expanders), then we can use a better upper bound on the cover
time, shown in Fig. 5.

For example on expander graphs (arising for example in natural applications on
random regular graphs), it is known that the cover times CG = O(n log n), much less
than O(n3) [6]. This means that for expanders, we can run in CG = O(n log n) round
complexity, and O(CGτm) = O(τmn log n) communication complexity. Even assigning
the worst case bound m ≤ n2, we get round and communication complexity O(n log n)
and O(τn3 log n) respectively—much better than the general case that has O(τn5) com-
munication complexity.

Fig. 5. Cover times for specific graphs.

5 Conclusion and Future Work

This work showed that topology-hiding computation is feasible for every network topol-
ogy (in the computational setting, assuming DDH), using random walks. This resolu-
tion completes a line of works on the feasibility of topology hiding computation against
a static semi-honest adversary [1,16,21]. Yet, it leaves open the feasibility question
against a malicious or adaptive adversary. Another intriguing question is whether our
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random walks could be derandomized, perhaps using universal-traversal [2,19] that
is a deterministic walk guaranteed to cover all d-regular n-nodes graph, with explicit
constructions known under some restrictions such as consistent labeling [17].
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Combinatorics, Paul Erdős is Eighty, vol. 2, pp. 353–398. János Bolyai Mathematical Soci-
ety, Budapest (1996)

20. Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

21. Moran, T., Orlov, I., Richelson, S.: Topology-hiding computation. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9014, pp. 169–198. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46494-6 8

22. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003). no. 5
23. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43(5), 51–58

(2000)
24. Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual

Symposium on Foundations of Computer Science, SFCS 1986, pp. 162–167. IEEE Computer
Society, Washington, D.C. (1986)

http://dx.doi.org/10.1007/978-3-662-53008-5_12
http://dx.doi.org/10.1007/978-3-662-46494-6_8
http://dx.doi.org/10.1007/978-3-662-46494-6_8

	Topology-Hiding Computation on All Graphs
	1 Introduction
	1.1 Our Results
	1.2 High-Level Overview of Our Techniques
	1.3 Related Work
	1.4 Organization of Paper

	2 Preliminaries
	2.1 Computation and Adversarial Models
	2.2 Notation
	2.3 UC Security
	2.4 Simulation-Based Topology Hiding Security
	2.5 Privately Key-Commutative and Rerandomizable Encryption

	3 Topology Hiding Broadcast Protocol for General Graphs
	3.1 Proof of Completeness
	3.2 Proof of Soundness
	3.3 Proof of Main Theorem

	4 Complexity and Optimizations
	4.1 Communication Complexity
	4.2 Better Bounds on Cover Time for Some Graphs

	5 Conclusion and Future Work
	References


