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Abstract. We consider the question of finding the lowest degree L
for which L-linear maps suffice to obtain 10. The current state of the
art (Lin, EUROCRYPT’16, CRYPTO ’17; Lin and Vaikunthanathan,
FOCS’16; Ananth and Sahai, EUROCRYPT ’17) is that L-linear maps
(under suitable security assumptions) suffice for 10, assuming the exis-
tence of pseudo-random generators (PRGs) with output locality L. How-
ever, these works cannot answer the question of whether L < 5 suffices,
as no polynomial-stretch PRG with locality lower than 5 exists.

In this work, we present a new approach that relies on the existence
of PRGs with block-wise locality L, i.e., every output bit depends on at
most L (disjoint) input blocks, each consisting of up to log A input bits.
We show that the existence of PRGs with block-wise locality is plausible

for any L > 3, and also provide:

— A construction of a general-purpose indistinguishability obfuscator
from L-linear maps and a subexponentially-secure PRG with block-
wise locality L and polynomial stretch.

— A construction of general-purpose functional encryption from
L-linear maps and any slightly super-polynomially secure PRG with
block-wise locality L and polynomial stretch.

All our constructions are based on the SXDH assumption on L-linear

maps and subexponential Learning With Errors (LWE) assumption, and
follow by instantiating our new generic bootstrapping theorems with
Lin’s recently proposed FE scheme (CRYPTO ’17). Inherited from Lin’s
work, our security proof requires algebraic multilinear maps (Boneh and
Silverberg, Contemporary Mathematics), whereas security when using
noisy multilinear maps is based on a family of more complex assump-
tions that hold in the generic model.

Our candidate PRGs with block-wise locality are based on Goldre-
ich’s local functions, and we show that the security of instantiations with
block-wise locality L > 3 is backed by similar validation as constructions
with (conventional) locality 5. We further complement this with hard-
ness amplification techniques that further weaken the pseudorandomness
requirements.

1 Introduction

Indistinguishability obfuscation (IO), first defined in the seminal work of Barak
et al. [16], aims to obfuscate functionally equivalent programs into indistinguish-
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able ones while preserving functionality. IO is an extraordinarily powerful object
that has been shown to enable a large set of new cryptographic applications.
All existing IO constructions [4,5,10,15,24,36,39,41,45,52,53,56,63,65] rely on
multilinear maps or graded encodings. In particular, the power of an L-linear
map — first made explicit by Boneh and Silverberg [23] — stems from the fact
that it essentially allows to evaluate degree-L polynomials on secret encoded
values, and to test whether the output of such polynomials is zero or not.

The case L = 2 corresponds to bilinear maps, which can be efficiently instan-
tiated from elliptic curves. In contrast, the instantiation of L-linear maps with
L > 3 has turned to be a far more challenging problem. Garg et al. [3§]
proposed in particular noisy (i.e., approximate) versions of L-linear maps for
L > 3, and gave the first candidate construction. Unfortunately, vulnerabili-
ties [6,27,28,31,59] were later demonstrated against this and subsequent candi-
dates [32,33,44,51]. Of course, this does not mean that the resulting construc-
tions are insecure. In fact, this has motivated the search for 10 constructions
which withstand all existing attacks [41].

IO from Low-Degree Multilinear Maps. This paper addresses the problem
of finding the smallest L such that degree-L mutlilinear maps are sufficient for
constructing I0. This fits within the more general goal of ultimately assessing
whether bilinear maps are sufficient. While first-generation IO constructions all
required polynomial-degree multilinear maps, a series of recent works [4,52,53,
56] reduced the required degree to L = 5, assuming the existence of PRGs
with output locality 5 and subexponential LWE, and under suitable assumption
on the 5-linear maps. However, these works left open the question of whether
multilinear maps with degree L < 5 are sufficient.

Further reducing the degree is important. On the one hand, if IO can be
achieved from bilinear maps, this is going to take us one step closer. On the
other hand, even if bilinear maps would not suffice, it is potentially easier to
find secure algebraic instantiations for low degree multilinear maps. Moreover,
we want to understand the precise power these maps would enable.

Our Contributions, in a Nutshell. This paper presents a new paradigm
for IO constructions which admits instantiations with L-linear maps for L > 3,
provided the SXDH assumption holds for the L-linear map. While this falls short
of achieving IO from bilinear maps, our result shifts the focus on the fact that the
gap between two- and three-linear maps is a seemingly fundamental barrier to
be overcome. In particular, under the assumptions needed for our construction
be secure, this shows that building three-linear maps is as difficult as getting
full-blown IO.

We fundamentally rely on the recent line of works on building IO from
constant-degree multilinear maps [4,52,53,56], which all rely on so-called local
pseudo-random generators (PRGs) — a PRG with locality L has every output bit
depend on L input bits. It is known that if PRGs with locality L and polynomial
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stretch exist, then IO can be constructed from L-linear maps [4,53]. Unfortu-
nately, we do not even have locality-4 (polynomial stretch) PRGs [34,60], and
candidate PRGs only exist starting from locality 5 [47,60,61]. To circumvent
the lower bound on PRG locality, we propose a new, relaxed, notion of locality,
called block-wise locality. We build upon Lin’s [53] recent IO construction, but
show that in order to obtain IO from L-linear maps, it suffices to use PRGs with
block-wise locality L. As we will discuss below, such PRGs can exist for L as
low as three.

Block-Wise Locality and I0. We say that a PRG mapping n x £ input bits
to m output bits has block-wise locality L and block-size ¢, if when viewing its
input (i.e., the seed) as a matrix of n x £ bits, every output bit depends on at
most L columns in the matrix (as opposed to L input bits), as depicted in Fig. 1.
Observe that that the actual locality of such PRGs can go up to L x ¢, yet,
it has the special structure that all these input bits come from merely L input
columns. This special structure is the key feature that allows for replacing local
PRGs with block-wise-local PRGs, in the following applications.

— Application I: If there exists a subexponentially-secure PRG with block-wise-
locality L, and any block-size £ = O(log \), then we can construct general-
purpose 10 from L-linear maps.

— Application II: If the block-wise local PRG is only slightly superpolynomially
secure, we can still build special-purpose IO for circuits with super-logarithmic
length inputs, which implies full-fledged Functional Encryption (FE), from
L-linear maps.

All our constructions come with security reductions to (1) the security of block-
wise-local PRGs, (2) the SXDH assumption on L-linear maps, and (3) the subex-
ponential Learning With Errors (LWE), where (2) and (3) have the same level
of hardness as that of the PRG.

Concurrently, we investigate the existence of block-wise local PRGs. In par-
ticular, we propose candidates following the common paradigm for candidate

Fig. 1. Left: PRG with locality L = 3. Right: PRG with block-wise locality L = 3 and
block size ¢.
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local PRGs [7,12,34,60,61], which are variants of Goldreich’s functions [46]. We
simply replace every PRG input bit with a column of ¢ input bits. Such a block-
wise local PRG is parameterized by a bipartite expander graph and a predicate
(or potentially a set of predicates) over L x £ input bits. We discuss the security
of these candidates, against known attacks, in relation to the choice of graph
and predicate. Furthermore, aiming at weakening the assumption on our candi-
dates, we present two hardness amplification techniques that amplify respectively
the weaker next-bit-unpredictability property and pseudo-min-entropy generation
property to different levels of pseudorandomness guarantees.

Instantiating the Underlying Multilinear Maps. We note that the results
of this paper, per se, are merely new bootstrapping theorems, which do not rely,
by themselves, on multilinear maps. More specifically, we show how to boostrap
a FE scheme for computing degree-L polynomials to an 10 scheme, using a PRG
with block-wise-locality L, and then rely on Lin’s [53] FE construction. Some
remarks on instantiations of the underlying multilinear maps are in order.
Concretely, the FE scheme from [53] relies on algebraic L-linear maps, for
which to date no candidate for L > 3 is known to exist. The alternative approach
would be to instantiate them with existing noisy multilinear-map candidates. As
discussed in [53, Sect. 2.6], the existing proof would however fail in this case, in
addition to the SXDH assumption itself being false on exiting noisy multilinear-
map candidates. Still, a proof for ideal multilinear maps would be valid, but it is
not known whether (1) existing cryptanalytic attacks can be adapted to break a
construction, or (2) whether a proof in a weak ideal model as in [41] is possible.

Background on Previous Versions of This Work. In a previous version of
this paper, we incorrectly claimed that our approach can be extended to bilinear
maps. Two subsequent works, one by Barak et al. [14], the other by Lombardi
and Vaikuntanathan [57], have presented attacks against PRGs with block-wise
locality two. Strictly speaking, these results leave a narrow window of expansion
factors open where block-wise PRGs could exist, but we are not aware whether
our approach could be modified to use such low-stretch PRGs, or whether the
attacks can be extended. We discuss these results more in detail further below
in Sect. 1.3.

In contrast, attacks for L > 3 appear out of reach, as our assumption is
implied by that made by recent works in the area of local PRGs and PRFs, c.f.
e.g. the pseudorandomness assumptions from the recent work by Applebaum and
Raykov [13]—and in fact, our amplification results show that even less needs to
be achieved by the local function.

1.1 Block-Wise Locality

A (n x £,m)-PRG maps n x £ input bits to m output bits. As introduced above,
a PRG has block-wise locality L and block-size ¢, if when viewing the input as a
n X £ matrix, every output bits depend on input bits in at most L columns. Such
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a function is fully specified by the input-output dependency graph G describing
which input columns each output bit depends on, and the set of predicates
{P;j}je[m) that each output bit is evaluated through.

In all our applications, we consider block-wise local PRGs with sufficiently
large polynomial input- and output-lengths, n and m (in the security parame-
ter A) and logarithmic block-size £ = O(log())). In this setting, a PRG has
polynomial-stretch if m = n'*< for some positive constant o > 0. For conve-
nience, below we assume such parameters are fixed in our discussion.

When compared with traditional local PRGs (which can be thought as the
special case with block size £ = 1), the advantage of block-wise local PRGs is that
while they will still permit instantiations with L-linear maps in our applications,
their output bits depend on L x £ input bits, and hence we can use more complex,
say logarithmic-degree, predicates. For this reason, known lower bounds on the
locality of PRGs do not apply to block-wise locality, even when L < 5, when
the block size satisfies ¢ = (2(log())). Effectively, such PRGs can be seen as
operating on input symbols with polynomial alphabet size. Moreover, the lower
bounds in [34,60] show that for conventional locality, PRGs with polynomial
stretch require L > 5, but they crucially rely on the fact that any locality-
4 predicate is correlated with two of its input bits to rule out the existence of
locality-4 PRGs. In contrast, a PRG with block-wise locality L can use predicates
that depend on Llog A input bits; setting the predicate to be uncorrelated with
any subset of log A input bits circumvents the lower bound argument in [34,60].

Block-Wise Local PRGs via Local PRGs. Every function with block-wise
locality L and block size £ is a function with locality L¢. Therefore, the rich
literature on the security of Goldreich’s local functions (see Applebaum’s sur-
vey [8]) provides guidelines on how to choose candidate block-wise local PRGs,
more specifically, the dependency graph G and predicates {P;}. In particular,
the graph G should be (k, ¢)-expanding, i.e., every subset of k' < k output bits
depends on at least ¢x k' input columns, for appropriately large k and c. We show
that for L > 3, a large 1 —o(1) fraction of graphs G is (n!~", (1—n)L)-expanding.
This in turn means that we can think of this as an instance of Goldreich’s func-
tion with locality L¢ built from a graph which is (n'=", (1 — 5)L{)-expanding,
thus taking us back to the classical setting studied in the literature.

Using this analogy, we can show for example that for block-wise locality
3 and block size 2, for most graphs G, the resulting function withstands all
linear attacks with sub-exponential bias € when using the predicate outputting
29 @ 2 & 2% & (21 A xd) on input three columns (29, z1), (29, x3), (2, #1). This
is a criterion that has been adopted so far to validate PRG security of local
functions.

Moving even one step further, Applebaum and Raykov [13] recently postu-
lated the following (even stronger) pseudorandomness assumption on functions
with logarithmic locality:

Assumption 1 (Informal). For locality D = O(log\), and arbitrarily poly-
nomial output length m = n'te, there exist a suitable predicate, P’, such that,
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or any dependency graph G' that is (n'~", (1 — n)D)-expanding for some 0 <
y Yy g n g

n < 1/2, the locality-D function specified by P’ and G’ is 27" _pseudorandom

again 27" time distinguishers.

In our setting, for block-wise locality L > 3 and block-size log A, we show
that when choosing the dependency graph G at random, the obtained block-wise
local function can be thought as a function with locality D = Llog A satisfying
the properties specified by the Applebaum-Raykov assumption, with 1 — o(1)
probability. In particular, such functions withstand myopic inversion attacks
(cf. e.g. [30]). In fact, our applications only need pseudorandomness to hold
for output length m = n'*® for some arbitrarily small constant o > 0, and
against polynomial time attackers, thus a much weaker requirement than what
is guaranteed by the Applebaum-Raykov assumption.

For the case L = 2, the assumption that a block-wise local PRG exists is
not backed by any of the past results, and indeed, recent works (following up on
an earlier version of this paper) show that blockwise-local PRGs with sufficient
stretch do not exist. We discuss this further below in Sect. 1.3.

Amplification. In order to validate our assumptions even further, we present
two transformations meant to enhance security of functions with block-wise local-
ity. We consider two different techniques:

— Amplification Technique I: produces a PRG construction with quasi-
polynomial indistinguishability-gap (to polynomial-time distinguishers), from
any unpredictable generator satisfying just polynomial next-bit unpredictabil-
ity (i.e., the probability of predicting any output bit given previous output
bits is at most % + m, albeit for predictors in quasi-polynomial time).
Though such PRGs are not strong enough for constructing IO, it suffices for
constructing FE from L-linear maps; see the next section.

— Amplification Technique II: produces a PRG construction with sub-
exponential indistinguishability-gap, from certain special pseudo-min-entropy-

generator whose output has sufficiently-high pseudo-min-entropy.

1.2 From Block-Wise Locality to IO and FE

We now move to an overview of our constructions from block-wise local PRGs.

IO from Subexponentially Secure Block-Wise-Local PRGs. Recent 10
constructions from low-degree multilinear maps [4,53,56] follow a common two-
step approach: They first implement appropriate FE schemes, and then trans-
form them into an IO scheme; we refer to the second step as the (FE-to-10)
bootstrapping step. In more detail, they use locality-L PRGs in the bootstrap-
ping step in order to start with FE schemes that support only computation of
degree-L polynomials; they then show that such FE schemes can be constructed
from L-linear maps. In this work, following the blueprint and technique in [53],
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we show how to replace the use of local PRGs with block-wise local PRGs within
the bootstrapping step.

Theorem 1 (Bootstrapping using block-wise local PRGs). Let L be any
positive integer. There is a construction of IO for P/poly from the following
primitives:

— Public-key fully-selectively-secure (collusion-resistant) FE for degree-L poly-
nomials whose encryption time is linear in the input length (i.e., poly(A\)N );
or with a secret-key FE scheme with the same properties, assuming addition-
ally the subexponential hardness of LWE with subexponential modulus-to-noise
ratio.

— a PRG with block-wise locality L, block-size log \, and n't*-stretch for some
positive constant o.

where both FE and PRG need to have subexponential security.

The type of secret-key FE schemes for degree-L polynomials needed above was
constructed by Lin [53] assuming the SXDH assumption on L-linear maps.

Theorem 2 [53]. Let L be any positive integer. Assuming the SXDH assump-
tion on asymmetric L-linear maps, there is a construction of secret-key fully-
selectively-secure (collusion-resistant) FE schemes for degree-L polynomials
whose encryption time is linear in the input length (i.e., poly(A\)N ). Moreover,
the security reduction has a polynomial security loss.

Therefore, combining our new bootstrapping theorem with Lin’s FE construc-
tion, we obtain IO from the subexponential SXDH assumption on L-linear maps,
subexponentially-secure PRG with block-wise locality L, and subexponential
LWE.

The Power of Super-Polynomially Secure Block-Wise Local PRGs.
While constructing full-fledged IO for all polynomial-sized programs requires
block-wise local PRGs with subexponentially-security, we ask what can be built
from PRGs with weaker (slightly) superpolynomial-security. In particular, such
PRGs can be obtained using the aforementioned amplification technique I, from
unpredictable generator satisfying just polynomial next-bit unpredictability. To
this end, we first give a parameterized version of Theorem 1 showing that if the
PRG and L-linear maps are (2~ negl)-secure, then we can build IO schemes for
circuits with i/-bit inputs.

Theorem 3 (Parameterized version of Theorem 1). Let L be any positive
integer. Then, there is a construction of 10 for the class of polynomial-sized
circuits with i0-bit inputs from the same primitives as in Theorem 1, and if FE
and PRG are (2~ H+*)negl)-secure, the resulting IO scheme is (2~ "negl)-secure.

Therefore, as discussed above, from slightly superpolynomially secure L-linear
maps, a PRG with block-wise locality L, and subexponential LWE, we obtain 10
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for circuits with super-logarithmic, w(log A), length inputs, and if the primitives
are quasi-polynomially secure, we obtain IO for circuits with poly-logarithmic
10g1+5()\) length inputs. Such IO schemes are already sufficient for two types of
natural applications of 10:

— Type 1: Applications where 10 is used to obfuscate a circuit with short inputs.
For instance, for building FHE without relying on circular security [25],
and constructing succinct randomized encoding for bounded space Turning
machines [17]. In these applications, IO is used to obfuscate a circuit that
receive as input an index from an arbitrary polynomial range.

— Type 2: Applications where the input length of the obfuscated circuit is deter-
mined by the security parameter of some other primitive. Then, by assuming
exponential security of the other primitive, the input length can be made
poly-logarithmic. For instance, as observed in [18,50], in the construction of
public key encryption from one-way functions via 10, if assuming exponen-
tially secure one-way functions, then IO for circuits with w(log A) bit inputs
suffices for the application.

We further show that IO for circuits with super-logarithmic length inputs
implies full-fledged functional encryption.

Theorem 4 (Functional Encryption from w(log\)-Input I0). Let i¢ be
any super-logarithmic polynomial, that is, il = w(log A). Assume IO for the class
of polynomial-sized circuits with il-bit inputs and public key encryption, both
with (27 ¥negl)-security. Then, there exist collusion resistant (compact) public-
key functional encryption for P/poly, satisfying adaptive-security.

Combining the above two theorems, we immediately have that the existence
of a PRG with block-wise locality L and L-linear maps, both with slighly
super-polynomial security (and assuming subexponential LWE), implies the exis-
tence of full-fledged functional encryption, and all its applications, including, for
instance, non-interactive key exchange (NIKE) for unbounded users [43], trap-
door permutations [43], PPAD hardness [19,42], publicly-verifiable delegation
schemes in the CRS model [62], and secure traitor tracing scheme [22,29,39],
which further implies hardness results in differential privacy [37,64].

1.3 Subsequent Works

Two recent works by Lombardi and Vaikuntanathan (LV) [57], and Barak,
Brakerski, Komargodski, and Kothari (BBKK) [14] essentially rule out the exis-
tence of PRGs with block-wise locality L = 2, except for a very narrow window
of expansion, as we explain next.

The LV Attack. The LV attack considers generators whose output bits are
evaluated using the same predidate P, and whose dependency graph G is chosen
at random. LV show that for any predicate P and a 1 — o(1) fraction of the
graphs, the output can be efficiently distinguished from random, if its length



638 H. Lin and S. Tessaro

reaches 2(n2%), where recall that ¢ = O(log\) is the block size. Their attack
relies on two important ingredient. The first ingredient consists of techniques
for refuting random L-CSPs over large g-ary alphabets, which corresponds to
PRGs with block-wise locality-L and block-size ¢ = log q. Allen, O’Donnell, and
Witmer [1] presented an efficient algorithm for this, which succeeds when the
number of constraints is roughly f)(nL/ Zpoly(q)/e?), where € controls the “qual-
ity” of refutation. The second ingredient is a novel structural lemma showing that
any locality-2 balanced predicate P over alphabet Z, must be (1/2+0(1)//q)-
correlated with a locality-2 predicate @Q over the constant-sized alphabet Zig.
Roughly speaking, to distinguish the output of a PRG with predicate P, they
apply the refutation technique on CSPs w.r.t. the predicate @ correlated with
P. This allows them to rule out PRGs with output length as short as 2(n2¢).

The BBKK Attack. BBKK considered the more general case where the gen-
erators use an arbitrary set of predicates {P;} and arbitrary dependency graph
G. They show that PRGs with block-wise locality 2 and output length fZ(nZW)
do not exist. The bound on the output length can be improved to 2(n2¢) for
the case where G is randomly chosen, and so is the predicate (in particular, the
predicate is the same for all output bits). In fact, they proved a more general
lower bound: There is no PRG whose outputs are evaluated using polynomials of
degree at most d involving at most s monomials, and of output length é(sn[d/ 2] ).
Note that every block-wise locality L PRG can be written as such a generator,
with n2¢ input bits, and using polynomials of degree L and at most 2/¢ mono-
mials. Their result is based on semidefinite programming and in particular the
sum of squares (SOS) hierarchy.

BV and BBKK essentially rule out the existence of PRGs with block-wise
locality 2, except for the corner case where the generator can use a set of dif-
ferent predicates {P;}, a specific or random graph, and the output length is
O(n2(1+5)5), for some 0 < € < 1. However, it is unclear to us whether PRGs with
such small expansion is sufficient for constructing IO, or whether the attacks can
be extended to cover this case.

Outline of This Paper

Section 2 discusses candidate constructions of block-wise local PRGs. Section 3

discusses our bootstrapping method using block-wise local PRGs. Finally, in

Sect. 4, we discuss constructions of functional-encryption schemes in Sect. 4.
Further, the paper employs standard notation and terminology on functional

encryption and I0. We refer the reader to the full version for the complete

formalism [55].

2 Block-Wise Local PRGs

In this section, we introduce the notion of a block-wise local PRG. We start
with formal definitions, in Sect. 2.1, which we refer to throughout the rest of the
paper. Then, the remaining sub-sections will discuss a graph-based framework
for block-wise local functions, and discuss candidates.
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2.1 Pseudorandom Generators, Locality, and Block-Wise Locality
We review the notion of a PRG family, and its locality.

Definition 1 (Family of Pseudo-Random Generators (PRGs)). Let n
and m be polynomials. A family of (n(A), m(\))-PRG is an ensemble of distrib-
utions PRG = {PRG} salisfying the following properties:

Syntax: For every A € N, every PRG in the support of PRG) defines a func-
tion mapping n(X) bits to m(\) bits.

Efficiency: There is a uniform Turning machine M satisfying that for every
A € N, every PRG in the support of PRGy, and every xz € {0,1}"V,
M (PRG, z) = PRG(z).

p-Indistinguishability: The following ensembles are u-indistinguishable

{PRG & PRG,; s & {0,1}"™ : (PRG, PRG(s)}rex
~, {PRG £ PRG,; r & {0,1}™™ . (PRG,7)}ren

Definition 2 (Block-Wise Locality of PRGs). Let n, m, L, and ¢ be poly-
nomials. We say that a family of (n(A)€(X), m(N))-PRGs has block-wise locality-
(L(X),L(N) if for every X and every PRG in the support of PRG), inputs of
PRG are viewed as n(\) x £(\) matrices of bits, and every output bit of PRG
depends on input bits contained in at most L(\) columns.

2.2 Graph-Based Block-Wise Local Functions

In this section, we discuss candidate PRGs with block-wise locality d, where d
can be as small as two. Here, we start with the notational framework and then
move on to discussing concrete assumptions on them in Sect. 2.3.

Goldreich’s Function. We will consider local functions based on Goldreich’s
construction [46], which have been the subject for extensive study (cf. e.g. Apple-
baum’s survey [8]).

Recall first that an [n,m,d]-hypergraph is a collection G = (S1,...,S5n)
where the hyerpedges S; are elements of [n]?, i.e., S; = (i1,...,i4), where i; € [n]
(note that we allow for potential repetitions, merely for notational convenience).
We use hypergraphs to build functions as follows.

Definition 3 (Goldreich’s function). Let G = {G}ren be an ensemble such
that Gy is a distribution on [n(\), m(X), d(\)]-hypergraphs, for polynomial func-
tions m,n,d. Also let P = {Px}xeng be a family of predicates, where Py operates
on d(\)-bit strings. Then, define the function ensemble GF9 T = {GFf’P})\eN,
where GF%P samples first a graph G = (S1,...,5m) & G, and then outputs
the function GFg p : {0,1}" — {0,1}™ such that for all n-bit x,

GFG7P(m) = (yla .. -aym)v Yi = P(x[SlD7
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where x[S] denotes the d-bit sub-string obtained by concatenating the bits at
positions indexed by S.

Functions with Block-Wise Locality. We want to extend the notation used
above to consider the case where an edge of G does not solely give a pointer
to individual bits to be injected in the computation, but rather, to “chunks”
consisting of ¢-bit strings, and the predicate is applied to the concatenation of
these bits. The resulting function clearly then satisfies block-wise locality d with
block size £.

Definition 4 (Block-wise local graph-based function). Let G = {G}en
be such that G is a distribution on [n(\), m(X), d(\)]-hypergraphs, for polyno-
mial functions m,n,d. Also let £(\) be a polynomial function, and P = {Py}xen
a family of predicates, where Py operates on (d(\) x £(X))-bit strings. Then,
define the function ensamble GF9 T = {GF?’P’K}XGN, where GF?’P’Z samples

first a graph G = (S1,...,Sm) & G, and then outputs the function GFg py :
{0,1}™% — {0,1}™ such that for all (n x £)-bit inputs x = (x[1],...,x[n]), where
x[1],...,x[n] € {0,1}¢,

GFg pe(z) = (y1,-- - Ym), ¥ = P(x[Si]),

where x[S] denotes the d - (-bit sub-string obtained by concatenating £-bit input
chunks indexed by S.

We typically refer to the graph G describing GFg,p¢ as the base graph. This
is because GF g, p¢ can be seen as a special case of Goldreich’s function defined
above, for a suitable graph. Namely, the base graph G can be extended to an
[n - £,m, df]-hypergraph G naturally, where each edge S; = (i1,...,iq) from G is
mapped into a new hyper-edge S; with d - £ elements such that

Si=((iy—1)L41,.. iyl (g —1)- L+ 1, ig-0),

then clearly GFg ps = GFa p1 = GFa p- This view will be convenient to
connect back to the body of work on studying the security of Goldreich’s function
on suitable graphs, for which our block-wise local designs serve as a special case.

Expansion Properties. In general, we will want to instantiate our framework
with functions where the base graph G is a good expander graph. Recall the
following.

Definition 5. G = (S1,...,Sn) is a (k,c)-expander (or, equivalently, is (k,c)-

expanding) if for all sets J C [m] with [J| < k, we have |, ; ;| = ¢ |J].

! The notion could be block-wise to the cases where predicates are drawn by a distri-
bution, and possibly differ from each output bit. We are going to dispense with such
extensions, which are straightforward but easily lead to notational overhead.
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Ideally, we will want in fact G to be a good expander (in order to resort to
large body of analyses for such functions). This will follow by making the base
graph a good expander. In particular, the following simple fact stems from the
observation that when going from G to G, we have |S;| = £|S;|, and hence the
(relative) expansion factors of G and G are identical.

Lemma 1. Let G be an [n,m,d]-hypergraph which is (k, (1 — 7)d)-ezpanding.
Then, for any block-size ¢, the resulting [n-¢, m, dl]-hypergraph G is (k, (1—~)df)-
expanding.

In general, if we have high degree (say O(log \)), we can prove the existence
(at least probabilistically) of very good expanders with expansion rate very close
to the degree. Unfortunately, our construction of G imposes some structure, and
the actual expansion factor is dictated by the graph G with much lower degree d.
The following lemma establishes the existence of good expander graphs, which
we summarize below in a corollary with more useful parameters. While the proof
of the lemma is folklore (we take notational inspiration from the one in [9]), we
give it for completeness in the full version [55].

Lemma 2 (Strong expansion lemma). Let d > 2, and let v € (0,1) and
B € (0,1/2) be such that dy = 1+ 3. Further, let 1 < A < nP/log(n). Then,
there exists a constant o > 0 such that a random [n,m = An,d]-hypergraph G
is a (k = an/AYP d(1 — ~))-expander with probability 1 — o(1).

Corollary 1. For every v and d such that 1 < vd < 1.5, and every n € (0,1),
there exists a [n,n**¢, d)-hypergraph (for some ¢ > 0) which is a (n*~", (1—~)d)-
expander.

2.3 Pseudorandom and Unpredictability Generators

We are interested in the question of finding [n, m, d]-hypergraphs for m = n'*e
and a constant d > 2 such that GFg py is a good PRG, for £ = O(log ).
We consider a parameterized assumption on such functions (in terms of unpre-
dictability), and discuss it briefly. Below, we are then going to show how strong
indistinguishability follows from (potentially) weaker versions of this assump-
tion.

Unpredictability Generator and Assumptions. Let UG = {UG} ey be
a function ensemble, where UG, is a distribution on functions from n(\) to
m(A) bits, for some polynomial functions m and n.

Definition 6 (Unpredictability generator). We say that UG is an (s, §)-
unpredictability generator (or (s,8)-UG, for short) if for all (non-uniform)
adversaries A = {Ax}ren with size at most s(\) and all sequences of indices
i(A) €{0,...,i(\) — 1}, we have

e

P $
UG <~ UG)\

1
: AN(UG, UG (2) = UGy 41 () | < 5t 5(A),
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where UG<;(z) and UG;(z) denote the first j bits and the j-th bit of UG(x),
respectively.

Note that by a standard argument, being a (s, §)-UG implies being a (family of)
(s,0(m - 6))-PRGs. We now consider the following assumption, which parame-
trizes the fact that GFg p¢ is a good PRG.

Definition 7 (BLUG-assumption). Let n,{,s : N — N, and let d > 2 and
a > 0 be constants. Also, let § : N — [0,1]. Then, the (d,¢)-BLUG(n, a,s,0)
assumption is the assumption that there exists a family G = {Gx}ren of
[n(\),n(A\)+e d] hypergraphs, and a family P = {P\}xen of predicates on
(d(X) x £(X))-bit strings such that GFSP* is an (s,0)-UG.

We are being a bit informal here, in the sense that obviously we would like
GF%P* to additionally be efficiently computable in a uniform sense. Our can-
didates will not have this property, as we are only able to infer the existence of
suitable G’s probabilistically. There are two ways of thinking about the resulting
ensemble: Either non-uniformly — the graph G is given as advice for security
parameter A — but usually we actually show that a 1 — o(1) fraction of the
[n,n'T< d]-hypergraphs are good choices. In that case, we replace G' with G
where G chooses a random [n()\),n(A\)!T d()\)]-hypergraph G, which is bad
with vanishing probability o(1). This is of course not good enough, yet the prob-
lem can often be by-passed in an application-dependent way, by considering the
fact that the end scheme using GF& " will also be insecure with probability
0(1). One can then consider w(1)-instances of this scheme, each using an inde-
pendent instance from GF&T" ,e’ and then combine them with a combiner, if it
exists.

Our constructions below require (d, O(log())))-BLUG(n, av, poly (), 27« (108 2)
to be true for some n(\) = poly(A) and @ > 0. For stronger results, we are
going to replace 27008 with 22" for some € > 0. Below, we will discuss
whether this assumption can be implied by (qualitatively) weaker properties.
We will show in particular that (d, O(log'™¢())))-BLUG(n, a;, 2008 ) 1 /X2(1)
implies (d, O(log(\)))-BLUG(n, a, poly(\), 27« (e V),

Here, we briefly discuss what can be expected to start with.

The case d > 3. For the case d > 3, a good candidate to study is the case
where £ = O(log(\)) and G = {Gx}ren is such that Gy is an [n()\),n(A\)Te, d-
hypergraph which is a good (n'=7, (1 —)d)-expander where v < %, which exists
(for some suitable a > 0) by Corollary 1. The corresponding G, are then in turn
also (n'=7, (1 — v)df)-expanders by Lemma 1.

Applebaum and Raykov [13] recently justify the assumption that for suit-
able predicates, P, the function family GF97" is one way and a PRG against
adversary running in time 2"177, which cannot succeed with probability larger
than 27" 7. In the same paper, they also give a decision-to-search reduction
for such functions, which however applies only for degrees where we can accom-
modate some v with 3y < 1. In particular, such functions withstand existing
attacks, such as myopic inversion attacks [30]. Also, the degree of P can be high,
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e.g., O(log())), and this prevents a number of attacks exploiting weakness of the
predicate [21,34].

Also, as we show in the next section, it is possible to adopt the techniques
from [9] to show that we can get good e-biased generators (for a sub-exponential
€) with block-wise locality (3,2). This has been the main technique in validating
PRG assumptions on graph-based local functions [9,60,61].

The special case d = 2. The case d = 2 is particularly important, as it does
allow instantiations from bilinear maps in our applications. Note that algebraic
attacks are mitigated here — in contrast to the case of plain locality, i.e., £ = 1,
we can set £ = O(log\) and achieve sufficiently high algebraic degree of the
predicate P. Unfortunately, this is not sufficient to prove pseudorandomness, as
shown by recent attacks [14,57], which we have discussed above in Sect. 1.3.

2.4 Block-Wise Local Small-Bias Generators

Several works [9,12,34,60] have focused on studying weaker properties achieved
by local generators. In particular, a standard statement towards validating their
security is that of showing that the meet the definition of being a small-bias
generator.

Definition 8. We say SB : {0,1}" — {0,1}™ is an e-small biased generator

if max ;e ), 20| Priz & {0,1}" + D, SBj(x) = 1] - 3| < e, where SB;(x)
denotes the j-th bit of SB(x).

We show that GFg g2 is a good small-biased generator for a sub-exponential
€, where G is an [n,m, 3]-hypergraph, and @ is the predicate which given three
2-bit blocks X1, X2, x5 where x; = (x!, 2), outputs

Q(x1,%x2,x3) = 2} @ b @ 2k @ (2 A 2h).
Another convenient way to think about GFg g 2 is as
GFG,Q,Q(('rllv x?)v ey (xiw Z‘Z)) = GFG,Ql ('/Ella oo ,l‘%n) D GFG,Qh (.13?, v 7]’{1)5

where Q' (21,72, 73) = 21 © 22 © x3 and Q" (21, ¥, 73) = 21 A z2. To show that
GFg,g,2 has small bias, the main idea is fairly straightforward. Indeed, current
analyses of local small-biased generators give two separate analyses for so called
“light tests” and “heavy tests”, where the “weight” of a test amounts to the
cardinality of |J|. For standard locality, withstanding both at the same time
forces the graph degree to be at least five, since the predicate needs to be “non-
degenerate” for the construction to withstand tests (and the theorem of [9] to
apply), and all predicates up to d = 4 are degenerate (cf. e.g. [34]). This will not
be a problem here, as we only target block-wise locality, and thus effectively the
predicate can be non-degenerate. The proof is in the full version [55].

Lemma 3. For all § > 0 and a < %, for a fraction of 1 — o(1) of all
5

[n,n* 3]-hypergraphs G, and Q as defined above, GFg g 2 is an (e_nT) -biased
generator.
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2.5 Hardness Amplification via the XOR Construction

In this paper, we rely on the assumption that GF9 Pt s a good PRG for an
appropriate family G of expanders. However, we want to add additional justi-
fication to our assumptions. Here, in particular, we discuss how weak unpre-
dictability for graph-based block-wise local functions can be amplified to super-
polynomially small unpredictability generically. This means in particular that
block-wise local PRGs have strong self-amplifying properties, and that for any
G and P, in order to invalidate our assumption, we need to find an attack which
succeeds in predicting the next bit with large (i.e., polynomial) advantage over
%. For otherwise, the lack of such an attack would imply that for the same G

and (a related) P’ and ¢/, GF&"' is a strong PRG.

To this end, we use a simple construction xoring the outputs of generators,
which has already been studied to amplify PRG security [35,58]. Our analysis
resembles the one from [35], but is given for completeness. Also, a more general
construction, with xoring replaced by a general extractor, was considered by
Applebaum [7]. The use of xor, however, is instrumental to preserve block-wise
locality. The main drawback of this construction is that it can at best ensure
2-2008""" X)) qigtinguishing gap for some 6 € (0,1] while retaining block size
¢ = O(log ). In the full version [55], we explain a different approach which relies
on a different assumption. and potentially guarantees 9—Aw distinguishing gap.

The XOR Construction. Let UG = {UG)}xen be an (s,0)-UG, where
UG, is a distribution on functions {0,1}" — {0,1}™). For an additional
parameter k = k(\) > 1, we define the ensemble UG* = {UG%} ey, where

UG]; samples functions UGy, ..., UGy & UG, and output the description of a
function UG* : {0,1}"** — {0,1}™ which, on input = = z' || --- | =¥, where
z' € {0,1}*™ | outputs

UGF(z) = UG (2z") @ - @ UG, (zF).

We prove the following in the full version [55].

Theorem 5 (Security of the XOR Construction). If UG is a (s,0)-UG
and k = k(\) is polynomial in \, then UG* is a (s',€)-PRG, where

2k . g(p
) < (28, s =e (M > '

Block-Wise Local Instantiation. We instantiate the construction with para-
meter k when UG = GF“™! for a family of [n,m,d]-hypergraphs G =
{Gxr}xen, some £ = £()\), and a family P of (d x £)-bit predicates. Since the
resulting function UGY uses k instances of the same function GFq, p, ¢, it can
equivalently be thought as having the form (up to re-arranging the order of the
input bits) GFg, pr (x)-k(x), Where the predicate P* on input d (k- £)-bit blocks
X1,...,Xq, it interprets each of them as k ¢-bit blocks x; =x;1 || --- || x;,% and
outputs
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Pk(xl,...,xd) =Px11,--,Xq1) B B P(Xp 1, Xpd)-

To instantiate our transformation, we assume that for some £(\) = 2(log' ~()))
and a family of [n(X), m()),d]-hypergraphs G = {Gx}en, the function family
UG = GF%P is a (s(\) = 2°8°™ §(1) = A~2MW)-UG. Now, set k(\) =
log?(\). Then, UG* is by the above (d, O(log())))-block-wise local, and it is also
(s',€)-UG for s'(\) = poly(}N), and

e(\) = (26(\)FN) = 9—2(log"*?(N))
In other words, we have just established the following corollary.

Corollary 2. For any B > 0, d > 2, and 6 € (0,1], if
the (d,0(log"~?(\)))-BLUG(n, 3,2°8° M) 1/X2M)) assumption holds, then the
assumption (d, O(log())))-BLUG(n, 3, poly(X), 2’”(109;“0()‘))) also holds true.

3 10 from Block-Wise Locality-(L,logA) PRG and
L-Linear Maps

In this section, we prove the following bootstrapping theorem.

Theorem 6 (Bootstrapping via block-wise local PRGs). Let R = {R,}
be any family of rings, € be any positive constant, L any positive integer, n any
sufficiently large polynomial, and il and k any polynomials. There is a construc-
tion of 1(X)-bit-input IO for P/poly, from the following primitives:

— A family of (n(\) x log \,n(\)1T¢)-PRGs with block-wise locality (L,log\).

— A public-key FE for degree-L polynomials in R, with linear efficiency and
Full-Sel-security; or with a secret-key FE with the same properties, assuming
additionally LWE with subexponential modulo-to-noise ratio.

The 10 scheme is (27*Mnegl(\))-secure, if the PRG and FE schemes are
(27NN negl(N))-secure, and LWE is (27 #*MN++MNnegl(N))-hard.

Theorem 6 follows the same approach as Lin’s recent bootstrapping theo-
rem [53], but modifies it in two ways. First, it uses block-wise local PRGs to
replace local PRGs. Second, it makes explicit the relation between the security
level (more precisely, the maximal distinguishing gap) of the underlying PRG and
FE, and the input-length and security level of the resulting IO—if the underlying
primitives are 27 ¥+ *negl-secure, then the resulting 10 scheme is for if-bit-input
circuits and 2%negl-security. Such relations are implicit in previous works, and
not as tight as shown here.

Overview of Proof of Theorem 6. To show the theorem, similar to previous
works [53,56], we take two steps:
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Step 1. Construct a single-key public-key (or secret-key) FE schemes CFE =

{CFEN"5} for P/poly, with (1 — ¢)-sublinear compactness and 2~ *+*negl-
Full-Sel-security, starting from a public-key (or secret-key) FE for degree-L poly-
nomials in R, with linear efficiency and Full-Sel-security.

Previously, the work of [56] showed how to achieve this transformation from
a locality-L PRGs and FE for computing degree 3L + 2 polynomials. Following
that, the two recent works of [4,53] used a pre-processing technique to relax
the requirement on the underlying FE to supporting only degree-L polynomials.
In this work, we extend their pre-processing technique even further, in order to
relax the requirement on the underlying PRGs from having locality L to having
block-wise locality (L,log \). We describe this step in full detail in Sect. 3.1.

In the case that the obtained FE scheme CFE is a secret-key one, we invoke
the result of [18] to transform it into a public key FE scheme with the same
properties, assuming LWE with subexponential modulus-to-noise ratio.

Since our transformation from FE for low-degree computations to weakly-
compact FE for P/poly in Sect. 3.1 incurs only a polynoimal security loss, and so
does the transformation of [18], the resulting weakly-compact FE has essentially
the same level of security as that of underlying primitives.

Step 2. Apply an FE-to-10 transformation to obtain i¢-bit-input IO for P/poly,
with 27 "negl-security.

The literature already offers three FE-to-IO transformations [2,20,54] that
start from a public key FE scheme CFE = {CFE™"5} as described above
w.r.t. any positive constant €. In this work, we reduce the security loss incurred

in the transformation so as to start with 27***negl-secure FE (as opposed to
2—O(iéz)+rc Vil+k

negl-secure or 200X negl-secure FE as in previous works). To
do so, we present a new FE-to-IO transformation inspired by that of [54] and
present a tight analysis. We describe this step in the full version [55].

3.1 Step 1: Constructing Weakly-Compact FE

Proposition 1. Let R, €, L, and n be defined as in Theorem 6, and K be any
polynomial. There is a construction of 1-key weakly-compact public-key FE for
P/poly from the following primitives:

— A family of (n(\) x log A\, n(A\)}*¢)-PRGs with block-wise locality (L,log\).

— Public-key FE for degree-L polynomials in R, with linear efficiency and
Full-Sel-security; or secret-key FE with the same properties, assuming addi-
tionally LWE with subexponential modolus-to-noise ratio.

The weakly-compact FE is (2~ *Mnegl(\))-Full-Sel-secure, if the underlying PRG
and FE are (27*Mnegl(\))-secure and LWE is (2-*Mnegl(\))-hard.

It was shown in [53] that 1-key weakly-compact FE for P/poly can be con-
structed from locality-L PRG and (unbounded collusion) FE for degree-L poly-
nomials. Their construction of weakly-compact FE follows from the blue-print
of previous works [52,56], which uses FE for low degree polynomials to compute
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a randomized encoding of a computation in P/poly, with pseudo-randomness
generated through a local PRG. The locality of RE and PRG ensures that their
composition can be computed in low degree. However, the straightforward com-
position of RE and PRG leads to a computation with degree 3L + 2. The key
idea in [53] and the concurrent work of [4] is that part of the RE computation
can already be done at encryption time, that is, by asking the encryptor to
pre-process the inputs (of the computation in P/poly) and seeds of PRG, and
encrypt the pre-processed values, the composition of RE and PRG can be com-
puted in just degree L from the pre-processed values, at decryption time—This
is called the preprocessing technique. We take this technique one step further:
By also performing part of the PRG computation at encryption time, we can
replace local PRG with block-wise local PRG (with appropriate parameters) at
“no cost”.

Below, we first briefly review the blueprint of [56], then describe the pre-
processing idea of [53] and how to use it to accommodate PRG with block-wise
locality.

The General Blueprint of [56]. To construct 1-key weakly-compact FE for
P/poly, Lin and Vaikuntanathan [56] (LV) first observed that, using the Trojan
Method [26], it suffices to construct 1-key weakly-compact FE for NC! functions
with some fixed depth D(\) = O(log \); denote this class of functions as NC},.

Next, to bootstrap a low-degree FE scheme to FE for NC}D, the idea is using
randomized encoding to “compress” any function h(x) € NC}D into a function
g(x,8) = REnc(f,x; PRG(s)) with small degree in R. The reason that local
PRG is used is that the locality of a Boolean function bounds the degree of
computing this function in any ring. Then, plugging-in randomized encodings
with small locality like that of [11] the overall degree of g is small. For the
security proof to work out, the actual functions used in the LV construction are
more complicated and has form

g(x,s,8',b) = (1 — b)(REnc(f,x; PRG(s))) + b(CT & PRG(s")),

where CT is a ciphertext hardwired in the secret key, and serves as “space” to
hide values in the secret key in the security proof.

A formal description of the LV public key FE scheme CFEY?% for NC!
circuits with input-length N = N(A), depth D = D(\) = O(log ), and size
S = S(A) is in Fig.2. (The secret-key case has almost identical construction.)
The scheme uses the following tools:

— Full-Sel-secure (collusion resistant) FE schemes for degree-(3L +2) polynomi-
als in some R, {FEN, = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec)}, with linear
efficiency.

— A (n,n'*t)-pseudorandom generator PRG with locality L, for a sufficiently
large polynomial input length n = n()\) and any positive constant c.

— The AIK randomized encoding scheme in NC” [11]; denote the encoding algo-
rithm as AIK(f,x; r).
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We refer the reader to [56] for the correctness and security of the scheme.
The compactness of the scheme CFE follows from the following two facts:

1. The length of the input (x,s,s’,0) encrypted using FE is N + 2" + 1 =
N + S(\)Y I+ poly(N).
2. FE has linear efficiency.

Putting them together, we have,

TimeCFE,Enc(l\/IPK, X) = TimeFE,Enc(MPK, (X7 S, S/, 0))
= poly(A)|(x,s,5",0)| = S(A)/ ¥ poly(A, N)

which is sublinear in the function size as desired. Furthermore, to see why degree-
(3L + 2) FE suffices for the construction, note that the construction uses the
underlying FE to generate keys computing the function g in Fig. 2, and hence
it suffices to argue that g can be computed in degree 3L + 2. By definition of
g, when b = 1, the output can be computed in degree L as the PRG can be
computed in degree L in R (XOR with CT does not incur additional degree
as CT are constants hardwired in the function g); when b = 0, the output can
be computed in degree 3L + 1, since the AIK randomized encoding has degree
3 in the random bits (i.e. PRG output) and 1 in the input x. Therefore, g has
exactly degree 3L + 2, as selection by b can be done with one multiplication.

The Idea of Preprocessing in [53]. Towards reducing the degree of the under-
lying FE and accommodating PRGs with block-wise locality-(L,log \), the idea
is letting the encryptor pre-process the input (x,s,s’, b) to produce certain inter-
mediate values, from which the output of function g can be computed in exactly
degree L. To see this, the output of g is viewed as corresponding to S AIK ran-
domized encodings for functions {h; };e[s). If the I'" output bit belongs to the i*®
randomized encoding for h; with random tape r[é], the function g; computing it
can be written as a sum of monomials as follows:

g1(x,8,8",b) = (1 — b)gio(x,8) + bgi1(s)

= (1 - b) Z Cio,il,iz,isxior[i]ilr[i}izr[i]ia + bZCjI‘; (1)
J

10,21,12,13

where r[i] is the i*® portion in r = PRG(s), and v’ = PRG(s’). This is because
in the case of b = 0, the output is a bit in the AIK encoding of h; and hence
has degree 1 in the input x and degree 3 in r[i], while in the case of b = 1, the
output has degree 1 in r’.

When PRG has locality L, the straightforward way of computing a degree-3
monomial r[i];, r[i];,r[i];, from the seed s requires degree 3L. The works of [4,53]
showed how to reduce the degree to just L. First, they use a different way to
compute each r[i]. View the seed s as a @ x I'" matrix with Q@ = Q(\) = poly(X)
rows and I = S'/1+* columns; apply PRG on each row of s to expand the seed
matrix into a Q x S matrix r of pseudo-random bits. That is, denote the ¢*"



Indistinguishability Obfuscation from Trilinear Maps 649

Single-key Compact FE Scheme CFE by [56]

SETUP: CFE.Setup(1*) samples (MPK, MSK) < FE.Setup(1*).

ENCRYPTION: CFE.Enc(MPK,x) samples s, s’ & {0,1} for I' = Gi/ite poly(A),
and generates
CT & FE.Enc(MPK, (x,s,s’,0))

KEY GENERATION: CFE.KeyGen(MSK, h) does the following:

— Sample CT & {0,1}*, where ¢ is set below.
— Define function g as follows: On input x of length N, two PRG seeds s, s’ each
of length I'; and a bit b,

g(x,s,s’,b) does the following:

e For every i € [S], let h;(x) denote the function that computes the i*"
output bit of h(x). Since h € NCh, h; has depth D(\) = O(log \) and size
2P = poly(N).

e Ifb = 0, compute r = PRG(s), whose output has length I'*** = S poly(\);
divide the output into S equally long portions and denote by r[i] the i*!
portion.

For every i € [S], compute the AIK encoding I7[i] of computation (h;,x)
as follows:

VielS, I =AK(h, x; rli]).

Output IT = {II[i]};; set £ = |II|.
e If b =1, output I = CT ® PRG(s').
— For every | € [(], generate a secret key SK; <~ FE.KeyGen(MSK, g;) for g; that
computes the I™ output bit of g.

Output SK = {SKl}le[l]-

DECRYPTION: CFE.Dec(SK,CT) computes II = {FE.Dec(SK;,CT)}icjq, parses
II = {I[i]}, and decodes every II[i] using the AIK decoding algorithm to ob-
tain the output h(x).

Fig. 2. Single-key compact FE CFE by [56]

row of s and r as s, and ry; ry, = PRG(s,). Finally, set the random tape for
computing the i*" ATK encoding to be the i*® column r[i] of r.

In [53], they used PRGs with locality L. Let PRGJi] denote the function
computing the i*" output bit of PRG, and let Nbr(i) = {y1,---,vz} be the
indexes of the L seed bits that the i*" output bit depends on. Therefore,

PRGIi](s;,) PRG[i](si,) PRGi](ss,)

r(i]s, r[ili, [,

X(sil,'ylv R 3i1,’YL)
= Z x Y(5i2"‘{17 T siQ,"/L) : (2)
Monomials X Z(Sig,’\{17 Ty S’i3,’YL)

X,Y,Z in PRG][i]
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Suppose that one has pre-computed all degree < 3 monomials over bits in each
column s[7] of s.

Define Mnml=*(A) := {a;a;ay, | ai,aj,a, € AU{1}}

Given Mnml=?(s[y]) for every v € Nbr(i), one can compute r[i];, r[i];,r[i];, in
Eq. (2) using just degree L. Similarly, given Mnm|§3(s[v]) for all v € [I"], one
can compute any degree 3 monomials over bits in r[é] for any ¢, sufficient for the
computation of g.

Furthermore, the size of each set MnmlI=?(s[4]) is bounded by (Q + 1)® =
poly(\), and thus the size of their union for all v is bounded by Ipoly(\) =
St/1+epoly(A)—only a polynomial factor (in A) larger than the original seed s
itself. Therefore the encryptor can afford to precompute all these monomials and
encrypt them, without compromising the weak-compactness of the resulting FE
for NC}, scheme.

This Work: Handling Block-Wise Local PRG. Our new observation is that
the above technique naturally extends to accommodate block-wise local PRGs.
Consider a family of (n()\) x logA,n(A\)!T%)-PRGs with block-wise locality-
(L,log A). As before, we think of the seed of such PRGs as a vector t of length
n, where every element ¢; is a block of log A bits, and each output bit PRGIi](t)
depends on at most L blocks.

Correspondingly, think of the seed matrix s described above as consisting of
Q x I'" blocks of log A bits. When r[i] is computed using block-wise local PRGs,
the degree-3 monomial r[é];, r[i];,r[i]:, in Eq. (2) now depends on a set of blocks
{8i, 7. }te[3),se[z)- Though the actual locality of the PRG is Llog A, due to its
special structure, we can still pre-process the seed s to enable computing any
degree-3 monomial over r[i] for any ¢ using degree L, in the following two steps.

1. Precompute all multilinear monomials over bits in each block s, ., in s.
Define Mnml(A) := {as,a:, ---as, | ¢ < |A| and Vj, k a;; # a;, € A}

More precisely, precompute Mnml(s, ) for all ¢ € [Q] and v € [I"']. Note that
each set Mnml(s, ) has exactly size A.

2. For every column v € [I"], take the union of monomials over blocks in column
7y, that is, UsMnml(s, ). Then, precompute all degree-< 3 monomials over
this union, that is, MnmI=?*(U,Mnml(s,,)), for each . Observe that from
{Mnm|§3(UqMnml(sq,y))}nye[p]7 one can again compute any degree-3 mono-
mial in r[i] for any i in just degree L.

Furthermore, since [Mnml(sq )| = A for any ¢,~, the number of monomials
in MnmlI=3(U,Mnml(s,~)) is bounded by (QX + 1) = poly(\). Therefore, the
total size of pre-computed monomials is

{MnmISS(UanmI(sqw))}ye[pl] < I'poly(X) = SY1F%poly(N), (3)

which is still sublinear in the circuit size S and does not compromise the weak-
compactness of the resulting FE for NC}, scheme.
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Putting Things Together. So far, we showed how to “compress” the compu-
tation of degree 3 monomials over r[i], for any 7, into a degree-L computation. To
compute function g in Eq. (1) in degree L, we need to additionally pre-compute
multiplications with x and b. As described in [53], this can be done easily by
pre-computing the following:

Vi = {MamlI=? (U,;Mnml(s¢,)) }yerr @ (x][B]]1)

(where the sets of monomials are first interpreted as a vector before taking tensor
product). Given the tensor product, one can compute any monomial with degree
< 3in r[i] for any 4, degree < 1 in x, and degree < 1 in b, in just degree L, which
is sufficient for computing the first additive term in g; in Eq. (1). Similarly, to
compute the second additive term in g;, it suffices to precompute all multilinear
monomials over every block in s’ (of length I"), and compute their tensor product
with b||1, that is,

Vo = {Mnmli(s)} e @ (b]]1)

In summary, for every I € [{], there exists a degree-L polynomial P, that on
input (V1, Va) outputs g;(x,s,s’,b).

Define P, := the degree-L polynomial s.t. P,(V1,Va) = gi(x,s,8',b) (4)

Moreover, we show that both V; and V3 have length sublinear in the circuit
size. First, combining Eq. (3) with the fact that |(x||b||1)| = N +2, we have that

V1] < Y poly(A) x (N +2) = §/M*poly(A, N). (5)
The size of V3 is
[Vy| = A x I' x 2 < S Fp0ly (). (6)

Finally, to construct a 1-key weakly-compact FE scheme for NC}, from FE for
just degree L polynomials. We modify the LV construction as follows: (1) Instead
of encrypting (x,s,s’,b), the encryptor pre-computes and encrypts V||V as
described above, and (2) instead of generating secret keys for functions {g;};c[g
which have degree 3L+-2, generate secret keys for { P, };cq which have only degree
L. This way, at decryption time, the decryptor computes the correct output
{P(V1||V2) = gi(x,s,s',b)}. The resulting new compact FE scheme CFE is
described in Fig.3 (with key difference from the LV scheme highlighted). The
compactness of the new scheme follows directly from the fact that the encrypted
input V1, Vy have length sublinear in S()), and that the degree-L FE scheme
has linear efficiency. Moreover, its correctness and security follows from the same
proof as that in [56]; since their security proof incur only a polynomial security
loss, we conclude Proposition 1.
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4 FE from w(log A)-Bit-Input IO for P/poly

In this section, we show Theorem4, i.e., we prove via a new transformation
that adaptively-secure collusion-resistant public-key functional encryption for
P/poly is implied by IO for circuits with short, w(log A)-bit, inputs and public
key encryption, both with slightly super-polynomial security. Note that, in con-
trast, previous constructions of collusion-resistant FE for P/poly either rely on
multilinear maps [40], or require IO for all P/poly, including circuits with long
(polynomial) inputs [39].

Our proof generically transforms any I-key (public key) FE scheme for any
circuit class C into a collusion-resistant (public key) FE scheme for the same
circuit class, using IO for circuits with w(log A)-bit inputs. The encryption time
of the resulting FE schemes is polynomial in the encryption time of the original
schemes, and hence if the original scheme is (non-)compact, so is the resulting FE
scheme. The transformation also preserves the same type of security—namely
Full-Sel- or Adap-security—and incurs a 2¢(°8 ) security loss.

More precisely, we prove the following below in Sect.4.1.

Proposition 2. Let C be any circuit class, 7 be any polynomial, and il be any
polynomial such that i€(\) = w(log \) < A. Assume the existence of an i€(\)-bit-
input indistinguishability obfuscator 1O for P/poly. Then, any 1-key public-key
FE schemes OFE for C can be generically transformed into collusion-resistant
FE schemes CRFE for C, with the following properties:

~ The encryption time of CRFE is polynomial in the encryption time of OFE.
— If 90 is 27NN negl(\)-secure and OFE is 2~ ()47 (M) negl(\)-(Adap
or Full-Sel)-secure, then CRFE is 27 "Mnegl(\)-(Adap or Full-Sel )-secure.

It is known that adaptively-secure 1-key non-compact public-key FE for
P/poly can be constructed from just public key encryption [48].

Theorem 7 (1-Key Adap-Secure Public-Key FE for P/poly [48]). Let i1 be
any function from N to [0,1]. Assuming public key encryption with p(\)negl(\)-
security, there exist p(\)negl(\)-Adap-secure 1-key non-compact public-key FE
schemes for P/poly.

Now, applying the transformation of Proposition2 to the unegl-Adap-secure
1-key FE schemes for P/poly with p = 2= (47 yields 2~ "negl-Adap-secure
collusion-resistant (non-compact public-key) FE for P/poly. Finally, note that
it follows from [3] that collusion-resistant non-compact FE schemes implies
collusion-resistant compact FE schemes with the same level of security, which
yields Theorem 4.

4.1 From 1-Key to Collusion-Resistant FE, Generically

In this section, we prove Proposition 2. Let us fix any circuit class C, and any i¢
such that i£(A) = w(log A) < A. The resulting collusion-resistant FE scheme for
C, denoted CRFE = (CRFE.Setup, CRFE.KeyGen, CRFE.Enc, CRFE.Dec), relies
on the following building blocks:
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Our Single-key Compact FE Scheme CFE

SETUP: CFE.Setup(1*) samples (MPK, MSK) < FE.Setup(1*), and PRG < PRG,.

ENCRYPTION: CFE.Enc(MPK, x) samples

— a PRG seed s viewed as a Q x I” matrix for Q = poly(\) and " = S/
where each element s, ~ in s is a block of log A bits, and

— another PRG seed s’ viewed as a vector of length I = §'/1+e poly(\), where
again each element s/, in s is a block of log A bits.

Pre-Compute the following for b = 0:
Vj::{Mnm§3@thmK%ﬁD} ® (x][b]]1) )
YE[]

Vo = {Mnml(s)} , ® (blI1) (8)

Ve
Finally generate:
CT & FE.Enc(MPK, (V1,V5))

KEY GENERATION: CFE.KeyGen(MSK, h) does the following:

— Sample CT < {0,1}, where £ is set below.
— Define function g as follows: On input x of length N, PRG seeds s and s’ of
dimensions described above, and a bit b.

g(x,s,s’,b) does the following:

e For every i € [S], let h;(x) denote the function that computes the i'®
output bit of h(x). Since h € NCh, h; has depth D(\) = O(log \) and size
2P = poly(N).

e If b=0, do:

Expand each row of s using PRG to obtain a @ x S matrix r of pseudo-
random bits. That is, let s; denote the i row of s; the it row r; of r
is PRG(s;). Denote by r[i] the i*" column of matrix r, which has length
Q = poly(A).

For every i € [S], compute the AIK encoding IT[i] of computation (h;,x)
as follows:

VielS), I =AlK(hi, x; rli]) .

Output IT = {I1[i]}s; set £ = |II].
e If b =1, output IT = CT @ PRG(s).
— For every | € [{], let P, be the degree-L polynomial that on input (V1, V3) in
Equations (7) and (8) computes the I*® output bit of g(x,s,s’,b).
For every I, generate a secret key SK; < FE.KeyGen(MSK, P,) for P,.

Output SK = {SKi }i¢(q.

DECRYPTION: CFE.Dec(SK,CT) computes IT = {FE.Dec(SK;, CT)}icy, parses
IT = {II[i]}, and decodes every II[i] using the AIK decoding algorithm to ob-
tain the output h(x).

Fig. 3. Single-key compact FE CFE from block-wise locality-L PRG and degree-L FE
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— An il-bit-input indistinguishability obfuscator O for P/poly.

— A l-key FE scheme OFE = (OFE.Setup, OFE.KeyGen, OFE.Enc, OFE.Dec)
for C.

— A puncturable PRF scheme PPRF = (PRF.Gen, PRF.Punc, F).

Given the above building blocks, to construct collusion resistant FE CRFE for
C, we start with the following intuition. If efficiency were not a problem, we could
trivially construct a FE scheme that support releasing any polynomial number
of secret keys, essentially by using a super-polynomial number of instances of
OFE. Concretely, we would proceed as follows:

— Setup: Generate a super-polynomial number, M = 21N = 2N of OFE

instances with master keys {(OMPK;, OMSK;) & OFE.Setup(1*) }ie a1
— Key Generation: To generate a key for a function f, sample an index at

random iy & [M] and generate a secret key using the i;h master secret

key OSK;, & OFE.KeyGen(OMSK;,, f). Since there are at most a polyno-
mial number of secret keys ever generated, the probability that every OFE
instance is used to generate at most one secret key is overwhelming.

— Encryption: To encrypt any input x, simply encrypt the input x under all

master public keys, {OCT; & OFE.Enc(OMPK;, x) }ieras]- Given the set of
ciphertexts, one can compute the output f(z) of any function f for which a
secret key OSK;, has been generated, by decrypting the appropriated cipher-
text OCT;, using the secret key OSK;, .

Of course, the only problem with this FE scheme is that its setup and encryp-
tion algorithms run in super-polynomial time. To address this, we follow the
previously adopted idea (e.g. [17,25]) of using IO to “compress” these super-
polynomially many OFE instances into “polynomial size”. More precisely,
instead of having the setup algorithm publish all M master public keys, let
it generate an obfuscated circuit that on input i € [M] outputs the i*" mas-
ter public key. Similarly, instead of having the encryption algorithm publish M
ciphertexts, let it generate an obfuscated circuit that on input ¢ € [M] out-
puts the i*" ciphertext under the i* master public key. Since the inputs to the
obfuscated circuits are indexes from the range [M], which could be represented
in i¢ bits, it suffices to use il-bit-input 10. Furthermore, for “compression” to
the possible, all M master public and secret keys, as well as all M ciphertexts,
need to be sampled using pseudo-randomness generated by puncturable PRFs.
The resulting obfuscated circuits have polynomial size, since generating indi-
vidual master public keys and ciphertexts using pseudorandomness is efficient,
and hence the new FE scheme becomes efficient. Finally, the security of the new
FE scheme follows from the common “one-input-at-a-time” argument, which
incurs a 27111 = 271 security loss. We formally describe the collusion-resistant
FE scheme CRFE for C in Fig. 4.

We postpone the analysis of correctness, efficiency, and security of the CRFE
scheme to the full version [55].
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Collusion Resistant FE Scheme CRFE for C
SETUP: CRFE.Setup(1?) does:

— Sample a PPRF key K*® < PRF.Gen(1%).
— Obfuscate the program Psetup|0, K °, L] described in Figure 5

psetup ‘i ZO(IR7 Psetup[oy KS7 J~7 J~]) I

where the 10 sche}ne is invoked with a security parameter £ = max(\, | Psctup|)-
— Output MPK = Pictup and MSK = K°.

ENCRYPTION: CRFE.Enc(MPK = ﬁsetup, x) does the following to encrypt an input
z € {0,1}":

— Sample a PPRF key K¢ < PRF.Gen(1%).

— Obfuscate the program Penc[Psetup, 0, K¢, z, L, L] described in Figure 6,
CT = Penc ‘i Z’O(lﬁ,7 Penc[ﬁ)setupa 07 Kea x, J—a J—a J—D )

where the IO scheme is invoked with a security parameter k' = max (X, | Penc|).
— Output the obfuscated circuit as the ciphertext CT = Pepe.

KEY GENERATION: CRFE.KeyGen(MSK = K?| f) a key for function f € C as fol-
lows:

— Sample at random an index i; < [M].
— Generate a secret key of f under the i}h master secret key,

(OMPK;,,OMSK;,) = OFE.Setup(1* ; F(K®,iy)) ,

OSK;, & OFE.KeyGen(OMSK;,, f) .

ifs

— Output SK = (iy, OSK;, ).
DECRYPTION: CRFE.Dec(SK = (is, OSK;,),CT = Punc) does:
— Compute the ciphertext of z under the itfh master public key,
OCTi, = Penc(iy) .
— Decrypt the obtained ciphertext using OSK; ,,

y = OFE.Dec(0OSK;,,0CT;,) .

ifs

— Output y.

Fig. 4. Collusion resistant FE scheme CRFE for C from i¢()\) = w(A)-bit-input 10
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Circuit Paowpli*, K°, OMPK?]

Constants: i € {0,---,M + 1} is an index, for M = 21N and 10 = w(log ),
K*® is a PPRF key, and OMPK™ is a master public key of the OFE scheme.
Input: Index i € [M].
Procedure:
1. If i # 4%, compute (OMPK;, OMSK;) = OFE.Setup(1* ; F(K*,4)).
2. If i = 4", output OMPK;+ = OMPK™.
Output OMPK;.

Fig. 5. Circuit Psctup in the construction and analysis of CRFE

Circuit P.,. [Psemp, i*, K¢ xo,x1,0CT"]

Constants: lssctup is an obfuscated program, i* € {0,--- , M + 1} is an index, for
M = 2% and i¢ = w(log)), K*® is a PPRF key, xo,z1 € {0,1}" are two
inputs, and OCT™ is a ciphertext of OFE.

Input: Index i € [M].

Procedure:

1 If i < i,
compute OMPK; = Issemp(i) and OCT; = OFE.Enc(OMPK;, z1; F(K®,1)).
2. If i =", output OCT;» = OCT™.
3. 1 > i,
compute OMPK; = Issemp(i) and OCT; = OFE.Enc(OMPK;, zo; F(K*°,1)).
Output OCT;. o

Fig. 6. Circuit Penc in the construction and analysis of CRFE
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