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Abstract. We introduce a new variant MP-LWE of the Learning With
Errors problem (LWE) making use of the Middle Product between
polynomials modulo an integer q. We exhibit a reduction from the
Polynomial-LWE problem (PLWE) parametrized by a polynomial f , to
MP-LWE which is defined independently of any such f . The reduction
only requires f to be monic with constant coefficient coprime with q.
It incurs a noise growth proportional to the so-called expansion factor
of f . We also describe a public-key encryption scheme with quasi-optimal
asymptotic efficiency (the bit-sizes of the keys and the run-times of all
involved algorithms are quasi-linear in the security parameter), which
is secure against chosen plaintext attacks under the MP-LWE hardness
assumption. The scheme is hence secure under the assumption that PLWE
is hard for at least one polynomial f of degree n among a family of f ’s
which is exponential in n.
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1 Introduction

Lattice-based cryptography relies in great parts on the assumed hardness of
two well-studied and closely related problems: the Small Integer Solution prob-
lem (SIS) introduced in [Ajt96] and the Learning With Errors problem (LWE)
introduced in [Reg09]. They lead to numerous cryptographic constructions, are
conjectured exponentially hard to solve even for quantum algorithms, and enjoy
reductions from standard worst-case lattice problems such as finding a short
non-zero vector in a lattice (ApproxSVP). However, the resulting cryptographic
constructions suffer from large keys and/or rather inefficient algorithms. This
is because the problems themselves involve large-dimensional random matrices
over a ring Zq (for some q ≥ 2).

To obtain more efficient SIS-based primitives, Lyubashevsky and Miccian-
cio [LM06], and Peikert and Rosen [PR06] introduced the Polynomial SIS

c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part III, LNCS 10403, pp. 283–297, 2017.
DOI: 10.1007/978-3-319-63697-9 10



284 M. Roşca et al.

problem (PSIS), inspired from [Mic07,HPS98].1 PSIS(f) can be described in
terms of elements of Zq[x]/f for an integer q ≥ 2 and a polynomial f that
parametrizes the problem. Equivalently, it may be described as SIS where the
uniform matrix is replaced by a structured matrix (the precise structure depends
on f). PSIS allows the design of fast digital signatures, among other applications
(see [Lyu09], for example).

This approach was extended to LWE by Stehlé et al. [SSTX09], who intro-
duced and studied the (search version of) Polynomial-LWE problem (PLWE).2

Lyubashevsky et al. [LPR13] introduced the Ring-LWE problem, which involves
number fields rather than polynomials, and proposed a reduction from its search
to decision versions, in the case of cyclotomic polynomials. Power-of-2 cyclo-
tomic polynomials (for which PLWE and Ring-LWE match) have been exploited
to design fast encryption schemes, among others (see [ADPS16], for example).
Cryptographic schemes based on PLWE/Ring-LWE most often enjoy keys of ˜O(λ)
bit-sizes and algorithms with ˜O(λ) runtime, where λ refers to the security para-
meter (i.e., all known attacks run in time ≥ 2λ) and the ˜O(·) notation hides
poly-logarithmic factors.

Switching from unstructured SIS and LWE to their polynomial counter-
parts PSIS and PLWE has undeniable efficiency advantages. However, the secu-
rity guarantees are severely degraded. PSIS and PLWE also enjoy reductions
from worst-case lattice problems such as ApproxSVP, but these lattice prob-
lems, e.g., ApproxSVP(f), are restricted to lattices that correspond to ideals
of Z[x]/f , where f is the polynomial that parametrizes PSIS and PLWE: under
some conditions on f , there exists a reduction from ApproxSVP(f) with small
approximation factor, to PSIS(f) and PLWE(f) (see [LM06,PR06,SSTX09]). It is
entirely possible that PSIS(f)/PLWE(f) could be easy to solve for some poly-
nomials f , and hard for others.3 For instance, if f has a linear factor over
the integers, then it is well-known that PSIS(f)/PLWE(f) are computationally
easy (we note that the reductions from ApproxSVP(f) require f to be irre-
ducible). Finding weak f ’s for PLWE has been investigated in a sequence of
recent works [EHL14,ELOS15,CLS15,HCS16], although it was later established
that the weaknesses of the studied instantiations lied in the choice of the noise
distribution rather than in the choice of f [CIV16b,CIV16a,Pei16]. In another

1 The problem was called Ideal-SIS in [LM06], Cyclotomic-SIS in [PR06], and is now
commonly referred to as Ring-SIS. We prefer to call it PSIS as it is not defined in
terms of number fields but polynomial rings (as opposed to Ring-LWE), similarly
to the Polynomial-LWE problem (PLWE) we consider in this work. It is possible to
define a SIS variant of Ring-LWE, i.e., involving number fields: in the common case
of power-of-2 cyclotomics, PSIS and Ring-SIS match (as do PLWE and Ring-LWE). In
this work, we are interested in larger classes of polynomials, making the distinction
important.

2 It was originally called Ideal-LWE, by analogy to Ideal-SIS.
3 We note that the stability of the polynomial rings under multiplication by x can be

exploited to accelerate some known lattice algorithms by small polynomial factors,
but we are interested here in more drastic weaknesses.
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sequence of works, Cramer et al. [CDPR16,CDW17] showed that ApproxSVP(f)

is easier for f a cyclotomic polynomial of prime-power conductor than for general
lattices. More concretely, the authors of [CDW17] give a quantum polynomial-
time algorithm for ApproxSVP(f) with approximation factor 2 ˜O(

√
n), where n is

the degree of f . As a comparison, for such approximation factors and arbitrary
lattices, the best known algorithms run in time 2 ˜O(

√
n) (see [Sch87]). Finally,

we note that the choice of non-cyclotomic polynomials in [BCLvV16] was moti-
vated by such weaknesses. Even though the results in [CDPR16,CDW17] impact
ApproxSVP(f), it may be argued that it could have implications for PLWE(f) as
well, possibly even for lower approximation factors. On the other hand, it could
be that similar weaknesses exist for ApproxSVP(f) considered in [BCLvV16],
although none is known at the moment. This lack of understanding of which f ’s
correspond to hard PLWE(f) problems motivates research into problems that are
provably as hard as PLWE(f) for the hardest f in a large class of polynomials,
while preserving the computational efficiency advantages of PLWE. Our results
are motivated by and make progress in this direction.

Recently, Lyubashevsky [Lyu16] introduced a variant R<n-SIS of SIS that
is not parametrized by a polynomial f and which enjoys the following desirable
properties. First, an efficient algorithm for R<n-SIS with degree bound n leads
to an efficient algorithm for PSIS(f) for all f ’s in a family of polynomials of size
exponential in n. Second, there exists a signature scheme which is secure under
the assumption that R<n-SIS is hard, involves keys of bit-size ˜O(λ) = ˜O(n)
and whose algorithms run in time ˜O(λ). In this sense, R<n-SIS can serve as an
alternative cryptographic foundation that hedges against the risk that PSIS(f)

is easy to solve for some f (as long as it stays hard for some f in the family).

Our contributions. Our main contribution is the introduction of an LWE coun-
terpart to Lyubashevsky’s R<n-SIS problem. Let n, q ≥ 2. We let Z<n

q [x] denote
the set of polynomials with coefficients in Zq and degree < n. For a ∈ Z

<n
q [x]

and s ∈ Z
<2n−1
q [x], we let a �n s = �(a · s mod x2n)/xn� ∈ Z

<n
q [x] denote the

polynomial obtained by multiplying a and s and keeping only the middle third
of coefficients. Middle-Product LWE (MP-LWE), with parameters n, q ≥ 2 and
α ∈ (0, 1), consists in distinguishing arbitrarily many samples (ai, bi) uniform
in Z

<n
q [x] × (R/qZ)<n[x], from the same number of samples (ai, bi) with ai uni-

form in Z
<n
q [x] and bi = ai �n

s+ei, where each coefficient of ei is sampled from
the Gaussian distribution of standard deviation α · q, and s is uniformly chosen
in Z

<2n−1
q [x].

We give a reduction from (decision) PLWE(f) to (decision) MP-LWE of para-
meter n, for every monic f of degree n whose constant coefficient is coprime
with q. The noise parameter amplifies linearly with the so-called Expansion Fac-
tor of f , introduced in [LM06]. The noise parameter in MP-LWE can for example
be set to handle all monic polynomials f = xn + g with constant coefficient
coprime with q, deg g ≤ n/2 and ‖g‖ ≤ nc for an arbitrary c > 0. For any c, this
set of f ’s has exponential size in n. We note that similar restrictions involving
the expansion factor appeared before in [LM06,SSTX09].
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Finally, we describe a public-key encryption scheme that is IND-CPA secure
under the MP-LWE hardness assumption, involves keys of bit-size ˜O(λ) and
whose algorithms run in time ˜O(λ). The scheme is adapted from Regev’s [Reg09].
Its correctness proof involves an associativity property of the middle product.
To establish its security, we prove that a related hash function family involving
middle products is universal, and apply a generalized version of the leftover hash
lemma. The standard leftover hash lemma does not seem to suffice for our needs,
as the first part of the ciphertext is not statistically close to uniform, contrarily
to Regev’s encryption scheme.

Open problems. Our reduction is from the decision version of PLWE(f) to the
decision version of MP-LWE. (It can be adapted to the search counterparts, but
it is unclear how to use the hardness of search MP-LWE for cryptographic pur-
poses). Unfortunately, the hardness of decision PLWE(f) is currently supported
by the presumed hardness of ApproxSVP(f) for very few polynomials f . Such
reductions for larger classes of polynomials f would strengthen our confidence
in the hardness of MP-LWE. A first strategy towards this goal would be to design
a reduction from search PLWE(f) to decision PLWE(f) for larger classes of f ’s
than currently handled (the reduction from [LPR13] requires f to be cyclo-
tomic). This reduction could then be combined with the one from ApproxSVP(f)

to PLWE(f) from [SSTX09], which only requires f to be irreducible with bounded
expansion factor. A second strategy would be to reduce decision Ring-LWE(f) to
decision PLWE(f) and rely on the new reduction from ApproxSVP restricted to
ideals of the number field Kf to decision Ring-LWE(f) from [PRSD17]. Indeed,
this new reduction is not restricted to cyclotomic polynomials.

We show the cryptographic relevance of MP-LWE by adapting Regev’s
encryption scheme to the middle-product algebraic setting. Adapting the dual-
Regev scheme from [GPV08] does not seem straightforward. Indeed, it appears
that we would need a leftover hash lemma for polynomials over Zq[x] that are not
folded modulo some polynomial f . The difficulty is that the constant coefficients
of the polynomials are now “isolated”, in the sense that the constant coefficient
of a polynomial combination of polynomials only involves the constant coeffi-
cients of these polynomials. Hopefully, solving this difficulty would also enable
the construction of a trapdoor for MP-LWE, similar to those that exist for LWE
and SIS (see [MP12] and references therein). Independently, showing that the
MP-LWE secret could be sampled from a small-norm distribution, as achieved
for LWE in [ACPS09], may allow for a more efficient ElGamal-type encryption,
similar to the one described in [LPR13].

Notations. We use the notation U(X) for the uniform distribution over the
set X. If D1 and D2 are two distributions over the same countable domain, we
let Δ(D1,D2) denote their statistical distance. We let ‖b‖ and ‖b‖∞ denote
the Euclidean and infinity norm of any vector b over the reals, respectively.
Similarly, if b is a polynomial over the reals, we let ‖b‖ denote the Euclidean
norm of its coefficient vector. For a matrix M we let Mi,j denote its element
in the i-th row and j-th column. We let ‖M‖ denote the largest singular value
of M.
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2 Background

In this section, we provide the background definitions and results that are nec-
essary to present our contributions.

2.1 Probabilities

We will use the following variant of the leftover hash lemma. We recall that a
(finite) family H of hash functions h : X → Y is universal if Prh←↩U(H)[h(x1) =
h(x2)] = 1/|Y |, for all x1 
= x2 ∈ X.

Lemma 2.1. Let X,Y,Z denote finite sets. Let H be a universal family of hash
functions h : X → Y . Let f : X → Z be arbitrary. Then for any random variable
T taking values in X, we have:

Δ
(

(h, h(T ), f(T )) , (h,U(Y ), f(T ))
) ≤ 1

2
·
√

γ(T ) · |Y | · |Z|,

where γ(T ) = maxt∈X Pr[T = t].

In the problems we will study, the so-called noise distributions will be
Gaussian.

Definition 2.1. We define the Gaussian function on R
n of covariance matrix

Σ as ρΣ(x) := exp(−π · xT Σ−1x) for every vector x ∈ R
n. The probability dis-

tribution whose density is proportional to ρΣ is called the Gaussian distribution
and is denoted DΣ. When Σ = s2 · Idn, we write ρs and Ds instead of ρΣ and
DΣ, respectively.

2.2 Polynomials and Structured Matrices

Let R be a ring. For k > 0, we let R<k[x] denote the set of polynomials in R[x]
of degree < k. Given a polynomial a = a0 + a1x + · · · + ak−1x

k−1 ∈ R<k[x]
and some j < k, we use the following notations: a = (a0, . . . , ak−1)T ∈ Rk and
a = (ak−1, . . . , a0)T ∈ Rk. The latter notation is extended to the corresponding
polynomial.

Definition 2.2. Let f be a polynomial of degree m. For any d > 0 and any
a ∈ R[x], we let Rotdf (a) denote the matrix in Rd×m whose i-th row is given by
the coefficients of the polynomial (xi−1 · a) mod f , for any i = 1, . . . , d. We will
use the notation Rotf (a) instead of Rotmf (a).

Note that if a′ = a mod f , then Rotdf (a) = Rotdf (a′) for any d. Note also
that Rotf (a · b) = Rotf (a) · Rotf (b) for any a, b ∈ R[x].

Definition 2.3. Let f be a polynomial of degree m. We define Mf as the (Han-
kel) matrix in Rm×m such that for any 1 ≤ i, j ≤ m, the coefficient (Mf )i,j is
the constant coefficient of xi+j−2 mod f .
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Matrix Mf helps rewriting multiplication on the left by matrix Rotf (a) as a
multiplication on the right by a.

Lemma 2.4. For any a ∈ R<m[x], we have Rotf (a) · (1, 0, . . . , 0)T = Mf · a.

Proof. First, the i-th coordinate of the left hand side is the constant coefficient
of xi−1 · a mod f . Second, the i-th entry of the right hand side is

((a0x
i−1 mod f) mod x) + · · · + ((am−1x

m+i−2 mod f) mod x),

which can be re-written as xi−1(a0 + · · · + am−1x
m−1 mod f) mod x = (xi−1 ·

a mod f) mod x. The latter is the constant coefficient of xi−1 · a mod f . ��
Definition 2.5. For any d, k > 0 and a ∈ R<k[x], we let Toepd,k(a) denote the
matrix in Rd×(k+d−1) whose i-th row, for i = 1, . . . , d, is given by the coefficients
of xi−1 · a.

The following property will be useful in proving our main result.

Lemma 2.6. For any d, k > 0 and any a ∈ R<k[x], we have Rotdf (a) =
Toepd,k(a) · Rotk+d−1

f (1).

Proof. It is sufficient to prove that the rows of Rotdf (a) and Toepd,k(a) ·
Rotk+d−1

f (1) are equal. We just note that the i-th row of Rotk+d−1
f (1) is

xi−1 mod f , for i = 1, . . . , k + d and these will fill the gap in the definitions
of Rotdf (a) and Toepd,k(a). ��

We now recall the definition of the expansion factor [LM06].

Definition 2.7. Let f ∈ Z[x] of degree m. Then the expansion factor of f is
defined as EF(f) = max(‖g mod f‖∞/‖g‖∞ : g ∈ Z

<2m−1[x] \ {0}).

We remark that there are numerous polynomials with bounded expansion
factor. One class of such polynomials [LM06] is the family of all f = xm + h, for
h =

∑

i≤m/2 hix
i and ‖h‖∞ ∈ poly(m): we then have EF(f) ∈ poly(m).

Lemma 2.8. For f ∈ Z[x], we have ‖Mf‖ ≤ deg(f) · EF(f).

Proof. By definitions of Mf and EF(f), we have that |(Mf )i,j | ≤ EF(f), for
1 ≤ i, j ≤ m. Therefore, the largest singular value of Mf is bounded from above
by m · EF(f). ��

2.3 The Polynomial Learning with Errors Problem (PLWE)

We first define the distribution the PLWE problem is based on. For the rest of
this paper, we will use the notation Rq := R/qZ.

Definition 2.9 (P distribution). Let q ≥ 2, m > 0, f a polynomial of degree
m, χ a distribution over R[x]/f . Given s ∈ Zq[x]/f , we define the distribution
P
(f)
q,χ(s) over Zq[x]/f × Rq[x]/f obtained by sampling a ←↩ U(Zq[x]/f), e ←↩ χ

and returning (a, b = a · s + e).
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Definition 2.10 (PLWE). Let q ≥ 2, m > 0, f a polynomial of degree m, χ

a distribution over R[x]/f . The (decision) PLWE(f)
q,χ consists in distinguishing

between arbitrarily many samples from P
(f)
q,χ(s) and the same number of sam-

ples from U(Zq[x]/f × Rq[x]/f), with non-negligible probability over the choices
of s ←↩ U(Zq[x]/f).

One can also define a search variant of PLWE(f)
q,χ, which would consist in

computing s ∈ Zq[x]/f from arbitrarily many samples from P
(f)
q,χ(s).

3 The Middle-Product Learning with Errors Problem

We first recall the definition of the middle product of two polynomials and some
of its properties.

3.1 The Middle-Product

Let R be a ring. Assume we multiply two polynomials a and b of degrees < da

and < db, respectively. Assume that da+db−1 = d+2k for some integers d and k.
Then the middle-product of size d of a and b is obtained by multiplying a and b,
deleting the (left) coefficients of 1, x, . . . , xk−1, deleting the (right) coefficients
of xk+d, xk+d+1, . . . , xd+2k−1, and dividing what remains (the middle) by xk.

Definition 3.1. Let da, db, d, k be integers such that da + db − 1 = d + 2k. The
middle-product �

d
: R<da [x] × R<db [x] → R<d[x] is the map:

(a, b) �→ a �
d

b =
⌊

(a · b) mod xk+d

xk

⌋

.

We use the same notation �
d

for every da, db such that da + db − 1 − d is non-
negative and even.

The middle-product of polynomials is used in computer algebra to accelerate
computations in polynomial rings (see, e.g., [Sho99,HQZ04]). As it is part of
the output of polynomial multiplication, it can be computed with a number of
ring additions and multiplications that is quasi-linear number in da + db. Faster
algorithms exist [HQZ04].

The (reversed) coefficient vector of the middle-product of two polynomials is
in fact equal to the product of the Toeplitz matrix associated to one polynomial
by the (reversed) coefficient vector of the second polynomial.

Lemma 3.2. Let d, k > 0. Let r ∈ R<k+1[x] and a ∈ R<k+d[x] and b = r�
d
a.

Then b = Toepd,k+1(r) · a. In other words, we have b = Toepd,k+1(r) · a.

Proof. We first note that Toepd,2k+d(r ·a) = Toepd,k+1(r)·Toepk+d,k+d(a). Thus,
by definition of the middle-product, we have that the coefficients of b appear in
the first row of Toep(r · a), namely bi = Toepd,2k+d(r · a)1,k+i+1 for i < d. But
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since Toep(r · a) is constant along its diagonals, we also have that b appear
(in reversed order) in the (k + d)-th column of Toepd,2k+d(r · a), namely bi =
Toepd,2k+d(r · a)d−i,k+d for i < d. Therefore, vector b is the (k + d)-th column
of Toepd,2k+d(r ·a), which is equal to Toepd,k+1(r) ·a′, where a′ is the (k + d)-th
column of Toepk+d,k+d(a). Since Toepk+d,k+d(a) is constant along its diagonals,
its first row is equal to its reversed (k + d)-th column, so a′ = a, as required. ��

The middle-product is an additive homomorphism when either of its inputs
is fixed. As a consequence of the associativity of matrix multiplication and
Lemma 3.2, the middle-product satisfies the following associativity property.

Lemma 3.3. Let d, k, n > 0. For all r ∈ R<k+1[x], a ∈ R<n[x], s ∈
R<n+d+k−1[x], we have r �

d
(a �

d+k
s) = (r · a) �

d
s.

Proof. Note first that the degree bounds match. Now, by Lemma 3.2, the vector
associated to the reverse of r �

d
(a �

d+k
s) is Toepd,k+1(r) · (Toepd+k,n(a) · s).

Similarly, the vector associated to the reverse of (r · a) �
d

s is Toepd,k+n(r ·
a) · s. The result follows from observing that Toepd,k+1(r) · Toepd+k,n(a) =
Toepd,k+n(r · a). ��

3.2 Middle-Product Learning with Errors

Before stating MP-LWE, we first introduce a distribution its definition relies on.

Definition 3.4 (MP distribution). Let n, d > 0, q ≥ 2, and χ a distribution
over R

<d[x]. For s ∈ Z
<n+d−1
q [x], we define the distribution MPq,n,d,χ(s) over

Z
<n
q [x] × R

<d
q [x] as the one obtained by: sampling a ←↩ U(Z<n

q [x]), e ←↩ χ and
returning (a, b = a �

d
s + e).

Definition 3.5 (MP-LWE). Let n, d > 0, q ≥ 2, and a distribution χ
over R

<d[x]. The (decision) MP-LWEn,d,q,χ consists in distinguishing between
arbitrarily many samples from MPq,n,d,χ(s) and the same number of sam-
ples from U(Z<n

q [x] × R
<d
q [x]), with non-negligible probability over the choices

of s ←↩ U(Z<n+d−1
q [x]).

It is possible to define a search variant of MP-LWEq,n,d,χ, which would consist
in computing s ∈ Z

<n+d−1
q [x] from arbitrarily many samples from MPq,n,d,χ(s).

Note that MP-LWEq,n,d,χ can also be viewed as a variant of LWE, in which
the samples are correlated. Thanks to Lemma 3.2, it can indeed be restated as
follows. Given many samples (Toepd,n(ai),bi) ∈ Z

d×(n+d−1)
q × R

d
q for uniformly

chosen ai ∈ Z
<n
q [x], decide if the vectors bi are uniformly sampled in R

d
q or are

of the form bi = Toepd,n(ai) · s + ei for some common s ←↩ U(Z<n+d−1
q [x]) and

ei ←↩ χ.
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3.3 Hardness of MP-LWE

The following reduction from PLWE to MP-LWE is our main result.

Theorem 3.6. Let n, d > 0, q ≥ 2, and α ∈ (0, 1). For S > 0, we let F(S, d, n)
denote the set of polynomials f ∈ Z[x] that are monic, have constant coef-
ficient coprime with q, have degree m in [d, n] and that satisfy EF(f) < S.
Then there exists a ppt reduction from PLWE

(f)
q,Dα·q for any f ∈ F(S, d, n)

to MP-LWEq,n,d,Dα′·q with α′ = αdS.

Proof. We first reduce PLWE(f) to a variant of MP-LWE whose only dependence
on f lies in the noise distribution (see Lemma 3.7 below). Then we remove
the latter dependence, by adding a compensating Gaussian distribution (see
Lemma 3.8 below). The bound on the magnitude of matrix Mf from Lemma 2.8
for χ = Dα·q implies that

‖Σ0‖ = αq‖J · Md
f‖ = αq‖Md

f‖ ≤ αqdEF(f) < αqdS.

Hence, taking α′q = αqdS completes the proof. ��
Lemma 3.7. Let n, d > 0, q ≥ 2, and χ a distribution over R

<d[x]. Then
there exists a ppt reduction from PLWE(f)

q,χ for any monic f ∈ Z[x] with constant
coefficient coprime with q and degree m ∈ [d, n], to MP-LWEq,n,d,J·Md

f ·χ. Here,

matrix Md
f is the one obtained by keeping only the first d rows of Mf , and J ∈

Z
d×d is the one with 1’s on the anti-diagonal and 0’s everywhere else.

Proof. We describe below an efficient randomized mapping φ that takes as input
a pair (ai, bi) ∈ Zq[x]/f×Rq[x]/f and maps it to a pair (a′

i, b
′
i) ∈ Z

<n
q [x]×R

<d
q [x],

such that φ maps U(Zq[x]/f × Rq[x]/f) to U(Z<n
q [x] × R

<d
q [x]) and P

(f)
q,χ(s) to

MPq,n,d,χ′(s′), for some s′ that depends on s and some χ′ that depends on χ
and f .

The reduction is then as follows:

• Sample t ←↩ U(Z<n+d−1
q [x]).

• Each time the MP-LWE oracle requests a new sample, ask for a fresh PLWE
sample (ai, bi), compute (a′

i, b
′
i) = φ(ai, bi) and give (a′

i, b
′
i) + (0, a′

i �
d

t) to
the MP-LWE oracle.

• When MP-LWE terminates, return its output.

Assuming φ satisfies the specifications above, the reduction maps uniform sam-
ples to uniform samples, and P

(f)
q,χ(s) samples for a uniform s that is common to

all samples to MPq,n,d,J·Md
f ·χ(s′ + t) samples for a uniform s′ + t that is common

to all samples.
We now describe φ. Let (ai, bi) ∈ Zq[x]/f ×Rq[x]/f be an input pair. Let m

denote the degree of f . We sample ri ←↩ U(Z<n−m
q [x]) and set φ(ai, bi) = (a′

i, b
′
i)

with:
a′

i = ai + f · ri ∈ Z
<n
q [x] , b′

i = Md
f · bi ∈ R

<d
q [x].
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As ai and ri are uniformly distributed in Z
<m
q [x] and Z

<n−m
q [x] respec-

tively, the polynomial a′
i is uniformly distributed in Z

<n
q [x] (we refer to [Lyu16,

Lemma 2.10] for a fully detailed proof). Here, we use the assumption that f is
monic.

Further, if bi is uniformly distributed, then so is its coefficient vector bi, and
so is Md

f ·bi. Indeed, as the constant coefficient is coprime with q, matrix Mf is
invertible modulo q (reordering its columns makes it triangular, with diagonal
coefficients all equal to the constant coefficient of f).

Now, assume that bi = ai · s + ei, for some s ∈ Zq[x]/f and ei ←↩ χ. Thanks
to Subsect. 2.2, we know that Rotf (bi) = Rotf (ai) · Rotf (s) + Rotf (ei), and, by
taking the first columns and d first rows, we have

Md
f · bi = Rotdf (ai) · Mf · s + Md

f · ei

= Rotdf (a′
i) · Mf · s + Md

f · ei

= Toepd,n(a′
i) · Rotd+n−1

f (1) · Mf · s + Md
f · ei

= Toepd,n(a′
i) · s′ + Md

f · ei,

where s′ = Rotd+n−1
f (1) · Mf · s. Since b′

i = Md
f · bi = Toep(a′

i) · s′ + Md
f · ei,

we get that e′
i = Md

f · ei, which makes the distribution in MP-LWE equals to the
claimed J · Md

f · χ. This completes the proof. ��
We now remove the dependence in f of the noise distribution.

Lemma 3.8. Let n, d > 0, q ≥ 2. Let σ′ > 0. Let Σ0 ∈ R
d×d be symmetric

definite positive matrix with ‖Σ0‖ < σ′. Then there exists a ppt reduction from
MP-LWEq,n,d,DΣ0

to MP-LWEq,n,d,Dσ′·Idd
, where Idd denotes the d-dimensional

identity matrix.

Proof. The reduction is as follows. We first note that, there exists a positive
definite matrix Σ′, such that Σ0 + Σ′ = σ′ · Idd. The positive definiteness is
guaranteed by fact that ‖Σ0‖ < σ′. Then, for any MP-LWEq,n,d,DΣ0

input sam-
ple (ai, bi), we sample e′

i ←↩ DΣ′ and compute (a′
i, b

′
i) = (ai, bi + e′

i).
Observe that the reduction maps uniform samples to uniform samples, and

MPq,n,d,DΣ0
(s) samples to MPq,n,d,Dσ′·Idd

(s) samples. This completes the proof. ��

4 Public-Key Encryption from MP-LWE

We now describe a public key encryption scheme that is IND-CPA secure, under
the MP-LWE hardness assumption. The scheme is an adaptation of Regev’s
from [Reg09]. It relies on parameters q, n, d, t ≥ 2, and a noise rate α ∈ (0, 1).
We let χ = �Dαq� denote the distribution over Z

<d+k[x] where each coefficient
is sampled from Dα·q and then rounded to nearest integer. The plaintext space
is {0, 1}<d[x], while the ciphertext space is Z

<k+n
q [x] × Z

<d
q [x].
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KeyGen(1λ). Sample s ←↩ U(Z<n+d+k−1
q [x]). For every i ≤ t, sample ai ←↩

U(Z<n
q [x]), ei ←↩ χ and compute bi = ai �

d+k
s + 2 · ei ∈ Z

<d+k
q [x]. Return

the secret key sk := s and the public key pk := (ai, bi)i≤t.

Encrypt(pk = (ai, bi)i≤t, μ). For i ≤ t, sample ri ←↩ U({0, 1}<k+1[x]), and return
c = (c1, c2) with:

c1 =
∑

i≤t

ri · ai , c2 = μ +
∑

i≤t

ri �
d

bi.

Decrypt(sk = s, c). Return the plaintext μ′ = (c2 − c1 �
d

s mod q) mod 2.

Example parameters are n ≥ λ, k = d = n/2, q = Θ(n5/2+c
√

log n),
t = Θ(log n) and α = Θ(1/n

√
log n), for c > 0 arbitrary. For these parame-

ters, the scheme is correct (by Lemma 4.1) and secure under MP-LWEq,n,n,Dαq

(by Lemma 4.3). These parameters allow to rely on the assumed hardness
of PLWE

(f)
q,Dβ·q via Theorem 3.6, for β = Ω(

√
n/q) (hence preventing attacks

à la [AG11]) and for any f monic of degree n, with constant coefficient coprime
with q and expansion factor ≤ nc. Finally, note that the scheme encrypts and
decrypts n plain text bits in time ˜O(n), and the key pair has bit-length ˜O(n).

Correctness follows from Lemma 3.3 and the proof of correctness of Regev’s
encryption scheme.

Lemma 4.1 (Correctness). Assume that α < 1/(16
√

λtk) and q ≥ 16t(k+1).
With probability ≥ 1 − d · 2−Ω(λ) over the randomness of (sk, pk) ←↩ KeyGen, for
all plain text μ and with probability 1 over the randomness of Encrypt, we have
Decrypt(sk,Encrypt(pk, μ)) = μ.

Proof. Assume that (c1, c2) is an encryption of μ under pk. Then we have, mod-
ulo q:

c2 − c1 �
d

s = μ +
∑

i≤t

ri �
d

bi − (
∑

i≤t

ri · ai) �
d

s

= μ +
∑

i≤t

(

ri �
d

(ai �
d+k

s + 2 · ei) − (ri · ai) �
d

s
)

= μ + 2
∑

i≤t

ri �
d

ei,

where the last equality follows from Lemma 3.3. If ‖μ+2·∑i≤t ri�d
ei‖∞ < q/2,

then centered reduction modulo q of c2 − c1 �
d

s gives us μ + 2 · ∑

i≤t ri �
d

ei

(over the integers). Reducing modulo 2 then provides μ.
Now, each coefficient of

∑

i≤t ri �
d

ei can be viewed as an inner prod-
uct between a binary vector of dimension t(k + 1) and a vector sampled
from �Dαq�t(k+1). Each coefficient individually has magnitude ≤ αq

√

λt(k + 1)+
t(k + 1) with probability ≥ 1 − 2−Ω(λ), because of the Gaussian tail bound and
the triangle inequality. By the union bound and triangular inequality, we obtain
that ‖μ + 2 · ∑

i≤t ri �
d

ei‖∞ < 2αq
√

tλ(k + 1) + 2t(k + 1) + 1 with probabil-
ity ≥ 1 − d · 2−Ω(λ). ��
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The security proof is adapted from that of Regev’s encryption scheme
from [Reg09], with a subtlety in the application of the leftover hash lemma.
In Regev’s scheme, if the public key is replaced by uniformly random elements,
then the leftover hash lemma guarantees that the joint distribution of the pub-
lic key and the encryption of an arbitrary plain text is within exponentially
small statistical distance from uniform. This property does not hold in our case:
indeed, if a1, . . . , at all have constant coefficient equal to 0 (this event occurs
with a probability 1/qt, which is not exponentially small for our parameters),
then so does

∑

i riai. However, we can show that the second component c2 of
the ciphertext is statistically close to uniform, given the view of the first com-
ponent c1. This suffices, as the plain text is embedded in the second ciphertext
component.

We first prove that the hash function family coming into play in the security
proof is universal.

Lemma 4.2. Let q, k, d ≥ 2. For (bi)i ∈ (Z<d+k
q [x])t, we let h(bi)i

denote the
map that sends (ri)i≤t ∈ ({0, 1}<k+1[x])t to

∑

i≤t ri �
d

bi ∈ Z
<d
q [x]. Then the

hash function family (h(bi)i
)(bi)i

is universal.

Proof. Our aim is to show that for r1, . . . , rt not all 0, we have

Pr
(bi)i,(b′

i)i

[
∑

i≤t

ri �
d

bi =
∑

i≤t

ri �
d

b′
i

]

= q−d.

W.l.o.g. we may assume that r1 
= 0. By linearity, it suffices to prove that for
all y ∈ Z

<d
q [x],

Pr
b1

[

r1 �
d

b1 = y
]

= q−d.

Let j be minimal such that the coefficient in xj of r1 is non-zero (i.e., equal to 1
as r1 is binary). Then the equation r1�

d
b1 = y restricted to entries j+1 to j+d

is a triangular linear system in the coefficients of b1 with diagonal coefficients
equal to 1. The map b1 �→ r1 �

d
b1 restricted to these coefficients of b1 is hence

a bijection. This gives the equality above. ��
Lemma 4.3 (Security). Assume that t ≥ (2·λ+(k+d+n)·log q)/(k+1). Then
the scheme above is IND-CPA secure, under the MP-LWEq,n,d+k,Dαq

hardness
assumption.

Proof. The IND-CPA security experiment is as follows. The challenger C samples
a bit b ←↩ {0, 1} and (sk, pk) ←↩ KeyGen(1λ); it gives pk to adversary A who sends
back two plaintexts μ0 
= μ1; the challenger computes c ←↩ Encrypt(pk, μb) and
sends it to A, who outputs a bit b′. The scheme is secure if no ppt adversary A
outputs b′ = b more probability that is non-negligibly away from 1/2.

Now, consider the variant of the experiment above, in which C does not run
(sk, pk) ←↩ KeyGen(1λ) but instead samples pk = (ai, bi)i uniformly. Under the
MP-LWE hardness assumption, the probabilities that A outputs b′ = b in both
experiments are negligibly close. The reduction from MP-LWE to distinguishing
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the first and second experiments consists in rounding the real samples given by
an MP-LWE oracle to the nearest integer modulo q, mapping MP-LWE with real
noise to MP-LWE with rounded real noise (and uniform MP-LWE over the reals
modulo q to a uniform MP-LWE over the integers modulo q).

We consider a third experiment, in which C also samples pk = (ai, bi)i,
and additionally does not compute c ←↩ Encrypt(pk, μb) before sending it
to A, but instead computes c = (c1, c2) as follows. For i ≤ t, it samples
ri ←↩ U({0, 1}<k+1[x]), u ←↩ U(Z<d

q [x]), and sets:

c1 =
∑

i≤t

ri · ai , c2 = u.

Note that in this game, the view of A is independent of b, and hence the proba-
bility that it outputs b′ = b is exactly 1/2. We argue below that the distributions
of ((ai, bi)i, c1, c2) in this new experiment and the latter one are within expo-
nentially small statistical distance. The combination of these two facts provides
the result.

It remains to prove that

Δ
(

((ai, bi)i,
∑

i≤t

ri · ai,
∑

i≤t

ri �
d

bi) , ((ai, bi)i,
∑

i≤t

ri · ai, u)
)

≤ 2−λ,

where the ai’s, bi’s, ri’s and u are uniformly sampled in Z
<n
q [x], Z

<d+k
q [x],

U({0, 1}<k+1[x]) and Z
<d
q [x], respectively. By Lemma 4.2, the hash function

family h(bi)i
is universal. Further, the quantity

∑

i≤t ri · ai belongs to Z
<k+n
q ,

of cardinality qk+n. Hence, by the Generalized Leftover Hash Lemma (see
Lemma 2.1), the statistical distance above is bounded from above by (2−(k+1)·t ·
qk+d+n)1/2/2. ��
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