
Message Franking via Committing
Authenticated Encryption

Paul Grubbs1(B), Jiahui Lu2, and Thomas Ristenpart1

1 Cornell Tech, New York, USA
pag225@cornell.edu

2 Shanghai Jiao Tong University, Shanghai, China

Abstract. We initiate the study of message franking, recently intro-
duced in Facebook’s end-to-end encrypted message system. It targets
verifiable reporting of abusive messages to Facebook without compro-
mising security guarantees. We capture the goals of message franking
via a new cryptographic primitive: compactly committing authenticated
encryption with associated data (AEAD). This is an AEAD scheme for
which a small part of the ciphertext can be used as a cryptographic com-
mitment to the message contents. Decryption provides, in addition to the
message, a value that can be used to open the commitment. Security for
franking mandates more than that required of traditional notions asso-
ciated with commitment. Nevertheless, and despite the fact that AEAD
schemes are in general not committing (compactly or otherwise), we
prove that many in-use AEAD schemes can be used for message frank-
ing by using secret keys as openings. An implication of our results is the
first proofs that several in-use symmetric encryption schemes are com-
mitting in the traditional sense. We also propose and analyze schemes
that retain security even after openings are revealed to an adversary.
One is a generalization of the scheme implicitly underlying Facebook’s
message franking protocol, and another is a new construction that offers
improved performance.

Keywords: Authenticated encryption · Encrypted messaging

1 Introduction

Encrypted messaging systems are now used by more than a billion people, due
to the introduction of popular, industry-promoted products including What-
sApp [60], Signal [61], and Facebook Messenger [30]. These use specialized (non-
interactive) key exchange protocols, in conjunction with authenticated encryp-
tion, to protect messages. Many tools are based off the Signal protocol [44],
which itself was inspired by elements of the off-the-record (OTR) messaging pro-
tocol [20]. A primary design goal is end-to-end security: intermediaries including
the messaging service providers, or those with access to their systems, should
not be able to violate confidentiality or integrity of user messages.

c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part III, LNCS 10403, pp. 66–97, 2017.
DOI: 10.1007/978-3-319-63697-9 3

Message Franking via Committing Authenticated Encryption 67

Scheme MO security Sender binding Rec. binding Enc Dec Ver

Encode-then-Encipher (Ideal) � � – – –

Encrypt-then-HMAC (one key) � � 2+1 2+1 2+1

HMAC-then-CBC � � 2+1 2+1 2+1

CtE1 � � � 3+1 3+1 1+1

CtE2 (Facebook) � � � 3+2 3+2 1+1

CEP � � � 2+1 2+1 1+1

Fig. 1. Summary of schemes investigated in this work. The columns indicate whether
the scheme meets multiple-opening (MO) security, sender binding, and receiver binding.
The last three columns indicate the number of cryptographic passes over a bit string of
length equal to the message plus the number of passes needed to handle the associated
data, for each of the three main operations. We omit comparisons with concrete encode-
then-encipher constructions, which vary in the number of passes required.

End-to-end security can be at odds with other security goals. A well known
example is dealing with filtering and reporting spam in the context of encrypted
email [39,56]. Similar issues arise in modern encrypted messaging systems. For
example, in Facebook’s system when one user sends harassing messages, phish-
ing links, malware attachments, etc., the recipient should be able to report the
malicious behavior so that Facebook can block or otherwise penalize the sender.
But end-to-end confidentiality means that Facebook must rely on users sending
examples of malicious messages. How can the provider know that the reported
message was the one sent? Reports could, in turn, become a vector for abuse
should they allow a malicious reporter to fabricate a message and convince the
provider it was the one sent [39].

Facebook messenger recently introduced a seeming solution for verifiable
abuse reporting that they refer to as message franking [31,47]. The idea is to
include in the report a cryptographic proof that the reported message was the
one sent, encrypted, by the particular sender. They offer a protocol (discussed
below) and a sensible, but informal and vague, discussion of security goals. At
present it is ultimately not clear what message franking provides, whether their
approach is secure, and if there exist better constructions. Given the critical role
message franking will play for most messaging services moving forward, more
study is clearly needed.

We therefore initiate the formal study of message franking. We introduce
the notion of compactly committing authenticated encryption with associated
data (AEAD) as the cryptographic primitive of merit that serves as the basis for
message franking. We provide security definitions, show how several widely used
existing AEAD schemes can already serve as compactly committing AEAD, give
an analysis of (a generalization of) the scheme underlying Facebook’s protocol,
and design a new scheme that has superior performance. A summary of schemes
treated in this work, and their efficiency, is shown in Fig. 1.

68 P. Grubbs et al.

Facebook’s message franking protocol. Facebook’s protocol works as fol-
lows, modulo a few details (see Sect. 3). A sender first generates a fresh key
for HMAC [3], and applies HMAC to the message. It then encrypts the HMAC
key and message using a conventional AEAD scheme with a symmetric key
shared with (just) the recipient, and sends along the resulting ciphertext and
the hash value to Facebook’s servers. Facebook signs the hash and forwards on
the whole package — signature, HMAC hash, and ciphertext — to the recipient,
who decrypts and checks the validity of the HMAC output using the recovered
HMAC key. Should the recipient want to report abuse, their software client sends
the signature, message, HMAC hash, and HMAC key to Facebook who can now
verify the signature and hash.

While descriptions of Facebook’s protocol do not use the term commitment,
intuitively that is the role played by HMAC. This may suggest viewing message
franking as simply a construction of committing encryption [23]. But committing
encryption views the entire ciphertext as the commitment and opens ciphertexts
by revealing the secret key. Neither is true of the Facebook scheme.

A new primitive: compactly committing AEAD. We introduce a new
cryptographic primitive that captures the properties targeted in verifiable abuse
reporting. We refer to it as compactly committing AEAD. This is an AEAD
scheme for which a small portion of the ciphertext can be used as a commit-
ment to the message. Decryption reveals an opening for the message, and the
scheme comes equipped with an additional verification algorithm that can check
the commitment. This formalization has some similarity to one for non-AEAD
symmetric encryption due to Gertner and Herzberg [36], but differs in important
ways and, in short, their treatment does not suffice for message franking (see
Sect. 9 for more detailed comparisons).

Formalizing security for committing AEAD schemes requires care. Informally
we want confidentiality, ciphertext integrity, and that the ciphertexts are bind-
ing commitments to their underlying plaintexts. While seemingly a straightfor-
ward adaptation of real-or-random style confidentiality and ciphertext integrity
notions would suffice [52,54,55], this turns out to provide only a weaker form
of security in which reporting abuse may invalidate security of the encryption
moving forward. In short, this is because the opening might reveal cryptographic
key material, e.g., if the secret key is itself used as the opening. We refer to this
as single-opening (SO) security. We formalize also multiple-opening (MO) secu-
rity notions which, in addition to the usual challenge oracles, gives the adversary
the ability to obtain regular encryptions and decryptions (which, by our syntax,
reveals the opening should a ciphertext be valid) under the target key. Analo-
gously to previous AEAD treatments [55], we formalize this both via an all-in-one
security game that simultaneously establishes confidentiality and integrity, and
as separate notions for confidentiality and integrity. We prove them equivalent.

Standard integrity notions like INT-CTXT do not by themselves imply that
the ciphertext is a binding commitment to the underlying message. We introduce
a notion called receiver binding, which is similar to the binding notions from the
commitment literature, notions from the robust encryption literature [1,32,33],

Message Franking via Committing Authenticated Encryption 69

and the prior notion of binding for committing encryption due to Gertner and
Herzberg. Importantly, we deal with the fact that only a portion of the ciphertext
is committing, and other details such as associated data. Achieving receiver
binding means that no computationally limited adversary can find two opening,
message pairs that verify for the same committing portion of a ciphertext.

At first glance this seemed like the end of the story with regards to binding
security. But in the message franking setting, schemes that are only receiver
binding may spectacularly fail to ensure verifiable abuse reporting. In partic-
ular, we show how schemes that are receiver binding still allow the following
attack: a sender carefully chooses a ciphertext so that an abusive message is
correctly decrypted by the receiver, but verification with the resulting opening
of that message fails. Such an attack is devastating and arises quickly without
careful design. We give an example of a natural performance improvement for
the Facebook scheme that provably enjoys confidentiality, ciphertext integrity,
and receiver binding, yet subtly falls to this attack. We therefore formalize and
target meeting a sender binding property that rules out such attacks.

Legacy schemes. With formal notions in place, we start by investigating
whether existing, in-use AEAD schemes are compactly committing. For these
legacy schemes the opening is taken to be the secret key and per-message ran-
domness used, and in each case we identify a small portion of the ciphertext
to take as the committing portion. In this context proving receiver binding also
proves the scheme to be committing in the more traditional sense.

As mentioned, AEAD schemes are not in general binding via simple counter-
examples. We therefore analyze specific constructions, focusing on three impor-
tant schemes. The first, Encode-then-Encipher [12], uses a variable-input-length
tweakable block cipher to build an authenticated encryption scheme by padding
messages with randomness and redundancy information (zero bits). We show
that, modeling the underlying tweakable cipher as ideal, one can show that tak-
ing a security-parameter number of bits of the ciphertext as the commitment
is both receiver and sender binding. Verification re-encrypts the message and
checks that the resulting ciphertext properly matches the commitment value.

We next investigate Encrypt-then-MAC constructions [9], which are particu-
larly relevant here given that Signal [44], and in turn Facebook messenger, uses
AES-CBC followed by HMAC for authenticated encryption of messages. In prac-
tice, one uses a key-derivation function to derive an encryption key and a MAC
key. Interestingly, if one uses as opening those two separate keys, then a simple
attack shows that this scheme is not receiver binding. If, however, one uses the
input to the KDF as the opening, we can prove receiver binding assuming the
KDF and MAC are collision resistant. Notably this rules out using CMAC [41],
PMAC [18], and Carter-Wegman MACs [59], but Encrypt-then-HMAC suffices.

This means that in Facebook messenger the underlying encryption already
suffices as a single-opening-secure committing AEAD scheme. Moreover, due
to ratcheting [14,26,45] Signal never reuses a symmetric key. Thus Face-
book could have avoided the dedicated HMAC commitment. Admittedly they
may be uncomfortable — for reason of psychological acceptability — with an

70 P. Grubbs et al.

architecture that sends decryption keys to Facebook despite the fact that this
represents no harm to future or past communications.

We finally investigate MAC-then-Encrypt, the mode of operation underlying
TLS 1.2 and before. The binding properties of MAC-then-Encrypt were briefly
investigated in a recent paper that used TLS 1.2 records as commitments [58],
including a brief proof sketch of receiver binding when taking the entire cipher-
text as the commitment. We expand on their proof sketch and provide a full
proof for the scheme instantiated with CBC-mode and HMAC (the instantia-
tion used in TLS), taking a small constant number of ciphertext blocks as the
committing portion. Interestingly this proof, unlike that of Encrypt-then-MAC,
required modeling the block cipher underlying CBC-mode as an ideal cipher and
HMAC as a random oracle [28].

Commit-then-Encrypt constructions. We next turn to analyzing generic
constructions that combine a commitment with an existing AE scheme. We
provide a generalization of the Facebook scheme, and show that it is multiple-
opening secure and both sender and receiver binding, assuming only that the
underlying AEAD scheme is sound and the commitment is unique. HMAC is
a unique commitment, thereby giving us the first formal security analysis of
Facebook’s message franking scheme. One can also use a non-malleable commit-
ment [29]. If one instead uses a malleable commitment, then the scheme will not
achieve ciphertext integrity.

We also offer an alternative composition that removes the need for non-
malleable commitments, and also can improve performance in the case that
associated data is relatively long. Briefly, we use a commitment to the associated
data and message as the associated data for the underlying AEAD scheme. This
indirectly binds the encryption ciphertext to the associated data, without paying
the cost of twice processing it.

Both these constructions are multiple-opening secure, since the commitment
opening is independent of the underlying AE keys. This is intuitively simple but
the proof requires care — commitments play a role in achieving CTXT and so
we must take care to show that unopened encryptions, despite using the same
keys as opened encryptions, retain ciphertext integrity. See the body for details.

The Committing Encrypt-and-PRF (CEP) scheme. The generic con-
structions that meet multiple-opening security are slower than existing (single-
opening secure) AEAD schemes, since they require an additional cryptographic
pass over the message. This represents approximately a 1.5x slowdown both for
encryption and decryption. For the expected workload in messaging applications
that consists primarily of relatively short plaintexts, this may not matter, but
if one wants to use committing AEAD for large plaintexts such as image and
video attachments or in streaming settings (e.g., a committing version of TLS)
the overhead will add up quickly.

We therefore offer a new AEAD scheme, called Committing Encrypt-and-
PRF (CEP) that simultaneously enjoys multiple-opening security while also
retaining the two-pass performance of standard AEAD schemes. As an additional
bonus we make the scheme nonce-based [54], meaning that it is derandomized

Message Franking via Committing Authenticated Encryption 71

and only needs to be used with non-repeating nonces. (We formalize nonce-based
committing AEAD in the body; it is largely similar as the randomized variant.)

The basic idea is to adapt an Encrypt-and-PRF style construction to be
compactly committing and multiple-opening. To do so we derive one-time use
PRF keys from the nonce, and compute a tag that is two-part. The commitment
value for the ciphertext is the output of a keyed hash that is simultaneously
a PRF when the key is private and collision resistant when it is adversarially
chosen. The latter is critical since receiver binding requires, in this context, a
collision-resistance property. If one stopped here, then the scheme would not be
secure, since openings reveal the PRF’s key, rendering it only CR, and CR is
not enough to prevent future ciphertext forgeries. We therefore additionally run
a one-time PRF (with key that is never opened) over this commitment value
to generate a tag that is also checked during decryption. Ultimately we prove
that the scheme achieves our notions of sender binding, receiver binding, and
multiple-opening confidentiality and ciphertext integrity.

We strove to make the scheme simple and fast. Instantiated with a stream
cipher such as AES-CTR-mode or ChaCha20, we require just a single secret key
and use the stream cipher to generate not only the one-time keys for the PRFs
but also a pad for encrypting the message. Because we need a collision-resistant
PRF, our suggested instantiation is HMAC, though other multi-property hash
functions [10] would work as well.

Future directions. Our work has focused on the symmetric encryption portion
of messaging protocols, but one can also ask how the landscape changes if one
holistically investigates the public-key protocols or key exchange in particular.
Another important direction is to understand the potential tension between com-
mitting AEAD and security in the face of selective opening attacks (SOA) [7,8].
Our current definitions do not model SOAs. (An SOA would allow, for example,
a compromise of the full cryptographic key, not just the ability to get openings.)
While it may seem that committing encryption and SOA security are at odds,
we actually conjecture that this is not fundamental (particularly in the ran-
dom oracle model), and future work will be able to show SOA-secure compactly
committing AEAD.

2 Preliminaries

We fix some alphabet Σ, e.g., Σ = {0, 1}. For any x ∈ Σ∗ let |x| denote its
length. We write x ←$ X to denote uniformly sampling from a set X. We write
X ‖ Y to denote concatenation of two strings. For a string X of n bits, we
will write X[i, . . . , j] for i < j ≤ n to mean the substring of X beginning at
index i and ending at index j. For notational simplicity, we assume that one can
unambiguously parse Z = X ‖ Y into its two parts, even for strings of varying
length. For strings X,Y ∈ {0, 1}∗ we write X ⊕ Y to denote taking the XOR of
X[1, . . . ,min{|X|, |Y |}] ⊕ Y [1, . . . ,min{|X|, |Y |}].

We use code-based games [13] to formalize security notions. A game G is a
sequence of pseudocode statements, with variables whose type will be clear from

72 P. Grubbs et al.

context. Variables are implicitly initialized to appropriate defaults for their type
(zero for integers, empty set for sets, etc.). Each variable is a random variable
in the probability distribution defined by the random coins used to execute the
game. We write Pr[G ⇒ y] to denote the event that the game outputs a value y.
Associated to this pseudocode is some fixed RAM model of computation where
most operations are unit cost. We will use “big-O” notation O(·) to hide only
small constants that do not materially impact the interpretation of our results.

We will work in the random oracle model (ROM) [11] and the ideal cipher
model (ICM). In the ROM, algorithms and adversaries are equipped with an
oracle that associates to each input a random output of some length that will
vary by, and be clear from, context. In the ICM, algorithms and adversaries
are equipped with a pair of oracles. The first takes input a key, a tweak, and a
message, all bit strings of some lengths k, t, and n, respectively. Each key, tweak
pair selects a random permutation on {0, 1}n. The second oracle takes as input
a key, a tweak, and an n-bit value, and returns the inverse of the permutation
selected by the key and tweak applied to the value.

Below, we will only discuss the time complexity of a reduction if bounding
it is non-trivial. Otherwise we will omit discussions of time complexity.

Symmetric encryption. A nonce-based authenticated encryption (AE) scheme
SE = (Kg, enc, dec) consists of a triple of algorithms. Associated to it are a
key space K ⊆ Σ∗, nonce space N ⊆ Σ∗, header space H ⊆ Σ∗, message
space M ⊆ Σ∗, and ciphertext space C ⊆ Σ∗. The randomized key genera-
tion algorithm Kg outputs a secret key K ∈ K. Canonically Kg selects K ←$ K
and outputs K. Encryption enc is deterministic and takes as input a four-tuple
(K,N,H,M) ∈ (Σ∗)4 and outputs a ciphertext C or a distinguished error sym-
bol ⊥. We require that enc(K,N,H,M)
= ⊥ if (K,N,H,M) ∈ K×N ×H×M.
Decryption dec is deterministic and takes as input a tuple (K,N,H,C) ∈ (Σ∗)4

and outputs a message M or ⊥.
An SE scheme is correct if for any (K,N,H,M) ∈ K × N × H × M it holds

that dec(K,N,H, enc(K,N,H,M)) = M .
Some schemes that we will analyze predate the viewpoint of nonce-based

encryption, including generic compositions that utilize CTR or CBC mode. A
randomized SE scheme SE = (Kg, enc, dec) is the same as a nonce-based SE
scheme except that we omit nonces everywhere, and have enc take an additional
input, the coins, that are assumed to be drawn from some coin space R ⊆ σ∗.
Correctness now is met if for any (K,H,M,R) ∈ K × H × M × R it holds that
dec(K,H, enc(K,H,M ; R)) = M . We will focus on schemes that are public-coin,
meaning the ciphertext includes R explicitly. This is true, for example, of CTR
or CBC mode encryption. For notational simplicity, we will assume for such
schemes that enc outputs R concatenated with the remainder of the ciphertext.

Pseudorandom functions. For a function F : K×{0, 1}∗ → {0, 1}n and adver-
sary A we define the pseudorandom function (PRF) advantage of A to be

Advprf
F (A) =

∣
∣
∣Pr

[

K ←$ K : AF (K,·) = 1
]

− Pr
[

R ←$ Func : AR(·) = 1
]∣
∣
∣ .

Message Franking via Committing Authenticated Encryption 73

We define Func to be the space of all functions that output n bits.1 Informally,
we say the function F is a PRF if Advprf

F () is small for all efficient adversaries.
Below we will sometimes refer to the left-hand experiment as the “real world”
and the other as the “ideal world”.

In proofs it will be convenient to use multi-user PRF security [4]. We define
the MU-PRF advantage of an adversary A to be

Advmu-prf
F (A) =

∣
∣
∣Pr

[

AF (·,·) ⇒ 1
]

− Pr
[

AR(·,·) ⇒ 1
]∣
∣
∣ .

where F on input a key identifier S ∈ {0, 1}∗ and a message M , checks if
there is a key associated to S, and if not chooses a fresh one K[S] ←$ {0, 1}k.
It then returns F (K[S],M). The oracle R on input a key identifier S ∈ {0, 1}∗

and a message M , checks if there is a random function associated to S, and if
not chooses a fresh one R[S] ←$ Func. It returns R[S](M). Note that MU-PRF
security is implied by PRF security via a standard argument.

Collision-resistance. For a function F : {0, 1}∗ ×{0, 1}∗ → {0, 1}n and adver-
sary A, define the collision-resistance (CR) advantage as

Advcr
F (A) = Pr

[

((x1, x2), (x′
1, x

′
2)) ←$ A :

F (x1, x2) = F (x′
1, x

′
2),

(x1, x2)
= (x′
1, x

′
2)

]

.

Informally, we say F is collision-resistant if Advcr
F () is small for all efficient

adversaries.

Commitment schemes with verification. A commitment scheme with ver-
ification CS = (Com,VerC) consists of two algorithms. Associated to any com-
mitment scheme is an opening space Kf ⊆ Σ∗, a message space M ⊆ Σ∗, and
a commitment space C ⊆ Σ∗. The algorithm Com is randomized and takes as
input a M ∈ Σ∗ and outputs a pair (K,C) ∈ Kf × C or an error symbol ⊥.
We assume that Com returns ⊥ with probability one if M /∈ M. The algorithm
VerC is deterministic. It takes input a tuple (K,C,M) ∈ Σ∗ and outputs a bit.
We assume that VerC returns 0 if its input (K,C,M) /∈ Kf ×C ×M. We assume
that the commitment values C are of some fixed length (typically denoted by t).

A commitment scheme (with verification) is correct if for all M ∈ M it holds
that Pr[VerC(Com(M),M) = 1] = 1 where the probability is over the coins
used by Com. We will not use the alternate definition of commitments with
opening [21]. We can formalize the binding security notion of our commitment
scheme as a game. Formally, the game vBINDCS,A first runs the adversary A who
outputs a tuple (Kc,M,K ′

c,M
′, C). The game then runs b ← VerC(Kc, C,M)

and b′ ← VerC(K ′
c, C,M ′). The game outputs true if M
= M ′ and b = b′ = 1

and false otherwise. To a commitment scheme CS and adversary A we associate
the vBIND advantage

Advv-bind
CS (A) = Pr [vBINDCS,A ⇒ true] .

1 We are abusing the formalism here by sampling R from an infinite set; we do so for
notational consistency and simplicity.

74 P. Grubbs et al.

The probability is over the coins used by the game.
Commitment schemes should enjoy a hiding property as well. Tradition-

ally this is formalized as a left-or-right indistinguishability notion (q.v., [6]).
For our purposes we will target a stronger notion, analogous to real-or-
random (ROR) security for symmetric encryption. It asks that a com-
mitment be indistinguishable from a random bit string while the opening
remaining secret. Game ROR1CS,A runs an adversary A and gives it access
to an oracle Com to which it can query messages. The oracle computes
(Kc, C) ←$ Com(M) and returns C. The adversary outputs a bit, and the game
outputs true if the bit is one. Game ROR0CS,A is similar except that the ora-
cle returns a string of random bits of length |C| and the game outputs true
if the adversary outputs zero. We define the advantage by Advcs-ror

CS (A) =
|Pr [ROR1CS,A ⇒ true] − Pr [ROR0CS,A ⇒ false]|.
HMAC is a good commitment. Any PRF that is also collision-resistant
meets our security goals for commitments. In particular, one can build a com-
mitment scheme CS[F] = (Com,VerC) works from any function F : K×{0, 1}∗ →
{0, 1}n as follows. Commitment Com(M) chooses a fresh value K ←$ K, com-
putes C ← F (K,M) and outputs (K,C). Verification VerC(K,C,M) outputs
one if F (K,M) = C and zero otherwise. Then the following theorem captures
the security of this commitment scheme, which rests on the collision resistance
and PRF security of F . A proof of this theorem appears in the full version of
the paper.

Theorem 1. Let F be a function and CS[F] be the commitment scheme built
from it as described above. Then for any efficient adversaries A making at most
q queries in game ROR and A′ in game vBIND respectively, there exists a pair
of adversaries B,B′ so that

Advcs-ror
CS[F](A) ≤ q ·Advprf

F (B) and Advv-bind
CS[F] (A′) ≤ Advcr

F (B′) .

The adversary B runs in time that of A and makes the same number of oracle
queries as A. Adversary B′ runs in time that of A′.

As the underyling function needs to be both CR and a good PRF, a suitable
candidate would be HMAC [5], i.e., F (K,M) = HMAC(K,M). Other multi-
property hash functions [10] could be used as well. The Facebook franking scheme
(discussed in Sect. 3) uses a non-standard HMAC-based commitment based on
F (K,M) = HMAC(K,M ‖ K). We will assume HMAC remains a PRF when
used in this non-standard way. One can substantiate this assumption directly in
the random oracle model, or using techniques from the key-dependent message
literature [19,37].

3 Message Franking and End-to-End Encryption

In end-to-end encrypted messaging services there exists a tension between
message privacy and reporting abusive message contents to service providers.

Message Franking via Committing Authenticated Encryption 75

The latter is important to flag abusive accounts, but reports need to be verifi-
able, meaning that the provider can check the contents of the allegedly abusive
message and be certain that it was the message sent. Otherwise abuse-reporting
mechanisms could themselves be abused to make false accusations.

A recipient can send the allegedly abusive plaintext to the service provider,
but message privacy guarantees that the provider does not know whether the
alleged message was in fact the one sent.2 A seeming solution would be for the
service to log ciphertexts, and have the recipient disclose the secret key to allow
the provider to decrypt the ciphertext. Not only is this impractical due to the
storage requirements, but it also does not guarantee that the decrypted message
is correct. It could be that the recipient chose a key that somehow decrypts
the (legitimate) ciphertext to a fake message. Ultimately what is required for
this to work is for the encryption to be committing: no computationally efficient
adversary can find a secret key that decrypts the ciphertext to anything but the
originally encrypted message.

Facebook’s approach. Facebook recently detailed a new cryptographic mech-
anism [31,47] targeting verifiable abuse reporting on Facebook messenger, which
uses end-to-end encryption based on Signal [61]. The basic idea is to force the
sender to provide a commitment, sent in the clear, to the plaintext message. A
diagram of Facebook’s protocol, that they call “message franking” (as in “speak-
ing frankly”), is shown in Fig. 2. The sender first applies HMAC with a fresh key
Kf to the concatenation of the message and Kf to produce a value C2, and then
encrypts using an AEAD scheme the message and Kf to produce a ciphertext
C1 using a key Kr shared with the recipient. Then (C1, C2) is sent to Facebook.
Facebook applies HMAC with its own secret key KFB to C2 to get a tag a, and
sends to the recipient (C1, C2, a). The recipient decrypts C1, recovers the mes-
sage M and key Kf and checks the value C2 = HMAC(Kf ,M ‖ Kf). To report
abuse, the recipient sends M , Kf , and a to Facebook. Facebook recomputes
HMAC(Kf ,M ‖ Kf) and checks the tag a.

It is clear that the sender is using HMAC as a cryptographic commitment
to the message. (This terminology is not used in their technical specifications.)
The use of HMAC by Facebook to generate the tag a is simply to forego having
to store commitments, instead signing them so that they can be outsourced to
recipients for storage and verified should an abuse report come in.

There are interesting security issues that could arise with Facebook’s scheme,
and cryptographic abuse reporting in general, that are orthogonal to the ones
discussed here. In particular, binding Facebook’s tag to the communicating par-
ties seems crucial: otherwise a malicious party could create a sock-puppet (i.e.
fake) account, send itself an abusive message, then accuse a victim of having
sent it.

While the design looks reasonable, and the Facebook white paper provides
some informal discussion about security, there has been no formal analysis to

2 Of course, if the recipient is running a trusted client, then this assertion could be
trusted. We are concerned with the case that the client is subverted.

76 P. Grubbs et al.

(Open)

Alice Facebook BobKf ←$ {0, 1}n

C2 ← HMAC(Kf ,M ‖ Kf)

C1 ←$ Enc(Kr,M ‖ Kf) md ← Alice ‖ Bob ‖ timestamp

s ← C2 ‖ md

a ← HMAC(KFB, s)

C1, C2

C1, C2, a

M ‖ Kf ← Dec(Kr, C1)

If M ‖ Kf = ⊥ then Return ⊥
If C2
= HMAC(Kf ,M ‖ Kf):

Return ⊥
Return M

M,Kf ,md, aC2 ← HMAC(Kf ,M ‖ Kf)

a′ ← HMAC(KFB, C2 ‖ md)

Return a = a′

Fig. 2. Facebook’s message franking protocol [47]. The key Kr is a one-time-use sym-
metric key derived as part of the record layer protocol. The top portion is the sending
of an encrypted message to the recipient. The bottom portion is the abuse reporting
protocol.

date. It is also not clear what security properties the main cryptographic con-
struction — combining a commitment with AEAD — should satisfy. We rectify
this by introducing, in the following section, the notion of committing AEAD.
This will allow us not only to analyze Facebook’s franking scheme, but to sug-
gest alternative designs, including ones that are legacy-compatible with existing
deployed AEAD schemes and do not, in particular, require adding an additional
dedicated commitment.

4 Committing AEAD

Formally, a committing AEAD scheme CE = (Kg,Enc,Dec,Ver) is a four-tuple of
algorithms. Associated to a scheme is a key space K ⊆ Σ∗, header space H ⊆ Σ∗,
message space M ⊆ Σ∗, ciphertext space C ⊆ Σ∗, opening space Kf ⊆ Σ∗, and
franking tag space T ⊆ Σ∗.

• Key generation: The randomized key generation algorithm Kg outputs a
secret key K ∈ K. We write K ←$ Kg to denote executing key generation.

• Encryption: Encryption Enc is randomized. The input to encryption is a
triple (K,H,M) ∈ (Σ∗)3 and the output is a pair (C1, C2) ∈ C × T or a
distinguished error symbol ⊥. Unlike with regular symmetric encryption, the
output includes two components: a ciphertext C1 and a franking tag C2. We
also refer to C2 as the commitment. We require that Enc(K,H,M)
= ⊥
if (K,H,M) ∈ K × H × M. We write (C1, C2) ←$ Enc(K,H,M) to denote
executing encryption.

• Decryption: Decryption, which is deterministic, takes as input a tuple
(K,H,C1, C2) ∈ (Σ∗)4 and outputs a message, opening value pair (M,Kf) ∈
M × Kf or ⊥. We write (M,Kf) ← Dec(K,H,C1, C2) to denote executing
decryption.

• Verification: Verification, which is deterministic, takes as input a tuple
(H,M,Kf , C2) ∈ (Σ∗)4 and outputs a bit. For (H,M,Kf , C2) /∈ H × M ×
Kf × T , we assume that Ver outputs 0. We write b ← Ver(H,M,Kf , C2) to
denote executing verification.

Message Franking via Committing Authenticated Encryption 77

We will often place K in the subscript of relevant algorithms. For example,
EncK(H,M) = Enc(K,H,M) and DecK(H,C1, C2) = Dec(K,H,C1, C2).

We require that CE schemes output ciphertexts whose lengths are determined
solely by the length of the header and message. Formally this means that there
exists a function clen : N×N → N×N such that for all (K,H,M) ∈ K×H×M it
holds that Pr[(|C1|, |C2|) = clen(|H|, |M |)] = 1 where (C1, C2) ←$ EncK(H,M)
and the probability is over the coins used by encryption.

We say a CE scheme has decryption correctness if for all (K,H,M) ∈ K ×
H × M it holds that Pr[Dec(K,H,C1, C2) = M] = 1 where the probability is
taken over the coins used to compute (C1, C2) ←$ Enc(K,H,M).

We say that a scheme has commitment correctness if for all (K,H,M) ∈
K × H × M it holds that Pr[Ver(H,M,Kf , C2) = 1] = 1 where the probability
is taken over the random variables used in the experiment

(C1, C2) ←$ EncK(H,M) ; (M,Kf) ← DecK(H,C1, C2) ; Return (Kf , C2)

Our formulation of CE schemes is a generalization of that for conventional
(randomized) AE schemes in the following sense. One can consider an AE scheme
as a CE scheme that has encryption output the entire ciphertext as C2, decryption
output an empty string for the opening value, and has verify always return one.

Compactly committing AEAD. In our formalism, a ciphertext has two com-
ponents. A scheme may output C1 = ε and a C2 value that therefore consists
of the entire ciphertext. This embodies the traditional viewpoint on committing
AEAD, in which the entire ciphertext is viewed as the commitment. But we
are more general, and in particular our formalism allows schemes with compact
commitments, by which we mean schemes for which |C2| is small. In particu-
lar we will want |C2| to be linear in the security-parameter, rather than linear
in the message length. One can make any CE scheme compact by hashing the
ciphertext with a collision-resistant (CR) hash function, as we show formally in a
moment. But we will also show compact schemes that have better performance.

Single versus multiple openings. In some protocols, we may wish to use
a CE scheme so that multiple different ciphertexts, encrypted under the same
secret key, can be opened without endangering the privacy or integrity of other
unopened ciphertexts. In other contexts, the CE scheme’s opening need only be
“single-use” — the secret key will not continue to be used after an opening. An
example of the latter is Signal, which due to ratcheting effectively has a fresh
secret key per message. As we will now discuss, whether one wants single-opening
or multiple-opening CE must be reflected in the security definitions.

Confidentiality. We want our CE schemes to provide message confidentiality.
We will in fact adapt the stronger real-or-random notion from the AE litera-
ture (q.v., [55]) to CE. At a high level we ask that no adversary can distinguish
between legitimate CE encryptions and (pairs of) random bit strings. A complex-
ity arises in the multi-opening case, where we want confidentiality to hold even
after openings occur. We handle this by giving the attacker an additional pair
of oracles, one for encryption and decryption. We must take care to avoid trivial

78 P. Grubbs et al.

MO-REALCE,A:

K ←$ Kg

b′ ←$ AEnc,Dec,ChalEnc

Return b′

Enc(H, M)

(C1, C2) ←$ EncK(H, M)

Y1 ← Y1 ∪ {(H, C1, C2)}
Return (C1, C2)

Dec(H, C1, C2)

If (H, C1, C2) /∈ Y1 then

Return ⊥
(M, Kf) ← DecK(H, C1, C2)

Return (M, Kf)

ChalEnc(H, M)

(C1, C2) ←$ EncK(H, M)

Return (C1, C2)

MO-RANDCE,A:

K ←$ Kg

b′ ←$ AEnc,Dec,ChalEnc

Return b′

Enc(H, M)

(C1, C2) ←$ EncK(H, M)

Y1 ← Y1 ∪ {(H, C1, C2)}
Return (C1, C2)

Dec(H, C1, C2)

If (H, C1, C2) /∈ Y1 then

Return ⊥
(M, Kf) ← DecK(H, C1, C2)

Return (M, Kf)

ChalEnc(H, M)

(�1, �2) ← clen(|H|, |M |)
(C1, C2) ←$ {0, 1}�1 × {0, 1}�2

Return (C1, C2)

MO-CTXTCE,A:

K ←$ Kg ; win ← false

AEnc,Dec,ChalDec

Return win

Enc(H, M)

(C1, C2) ←$ EncK(H, M)

Y ← Y ∪ {(H, C1, C2)}
Return (C1, C2)

Dec(H, C1, C2)

Return DecK(H, C1, C2)

ChalDec(H, C1, C2)

If (H, C1, C2) ∈ Y then

Return ⊥
(M, Kf) ← DecK(H, C1, C2)

If M 	= ⊥ then

win ← true

Return (M, Kf)

Fig. 3. Confidentiality (left two games) and ciphertext integrity (rightmost) games for
committing AEAD.

wins, of course, separating use of the real oracles from the challenge ones. We
also additionally require that the adversary can only query its decryption oracle
on valid ciphertexts returned from the encryption oracle. This all is formalized
in the games MO-REALCE,A and MO-RANDCE,A shown in Fig. 3. We measure
the multiple-openings real-or-random (MO-ROR) advantage of an adversary A
against a scheme CE by

Advmo-ror
CE (A) = |Pr [MO-REALCE,A ⇒ 1] − Pr [MO-RANDCE,A ⇒ 1]| .

The single-opening ROR (SO-ROR) games REALCE,A and RANDCE,A are iden-
tical to MO-REALCE,A and MO-RANDCE,A in Fig. 3 except that we omit the
Enc and Dec oracles. We measure the single-openings real-or-random (ROR)
advantage of an adversary A against a scheme CE by

Advror
CE (A) = |Pr [REALCE,A ⇒ 1] − Pr [RANDCE,A ⇒ 1]| .

Ciphertext integrity. We also want our CE schemes to enjoy ciphertext
integrity. As with confidentiality, we will lift the standard (randomized) AEAD
security notions to the multiple-opening and single-opening CE settings. The
game MO-CTXTCE,A is shown in Fig. 3. The adversary can obtain encryptions
and decryptions under the secret key, and its goal is to query a valid ciphertext
to a challenge decryption oracle. That ciphertext must not have been returned
by the encryption oracle. We measure the multiple-openings ciphertext integrity
(MO-CTXT) advantage of an adversary A against a scheme CE by

Advmo-ctxt
CE (A) = Pr [MO-CTXTCE,A ⇒ true] .

Message Franking via Committing Authenticated Encryption 79

s-BINDA
CE:

(K, H, C1, C2) ←$ A
(M ′, Kf) ← Dec(K, H, C1, C2)

If M ′ = ⊥ then Return false

b ← Ver(H, M ′, Kf , C2)

If b = 0 then

Return true

Return false

r-BINDA
CE:

((H, M, Kf), (H
′, M ′, K′

f), C2) ←$ A
b ← Ver(H, M, Kf , C2)

b′ ← Ver(H′, M ′, K′
f , C2)

If (H, M) = (H′, M ′) then

Return false

Return (b = b′ = 1)

Fig. 4. Binding security games for committing AEAD. Sender binding (left game)
models a setting where a malicious sender wants to send a message, but prevent com-
mitment opening from succeeding. Receiver binding (right game) models a setting
where a sender and recipient collude to open a ciphertext to different messages.

As with confidentiality, we can also specify a single-opening version of security by
removing the decryption oracle Dec from game MO-CTXTCE,A. Let the result-
ing game be CTXTCE,A. We measure the single-openings ciphertext integrity
(CTXT) advantage of an adversary A against a scheme CE by

Advctxt
CE (A) = Pr [CTXTCE,A ⇒ true] .

All-in-one notions. We have given separate confidentiality and ciphertext
integrity notions. As with traditional AEAD security, however, we can alter-
natively give an all-in-one notion that simultaneously captures confidentiality
and integrity goals. We defer the details to the full version of this work.

Security for AEAD. Given the fact that CE schemes encompass (randomized)
AEAD schemes as well (see our comments above), we note that the RORand
CTXTnotions apply to standard (randomized) AE schemes. As a slight abuse of
notation, we will therefore use RORand CTXTand their associated games and
advantage measures for the security of traditional AE schemes.

Binding security notions. We introduce two security notions for binding:
sender binding and receiver binding. Sender binding ensures the sender of a
message is bound to the message it actually sent. In abuse-reporting scenarios,
this prevents the sender of an abusive message from generating a bogus com-
mitment that does not give the receiver the ability to report the message. The
pseudocode game s-BINDon the left-hand-side of Fig. 4 formalizes this require-
ment. To an adversary A and CE scheme CE we associate the “sender binding”
advantage

Advs-bind
CE (A) = Pr [s-BINDCE,A ⇒ true] .

The probability is over the coins used in the game.
A CE scheme can generically meet sender binding by running Ver during Dec

and having Dec return ⊥ if Ver returns 0. We omit the proof of this, which follows
by inspection. But legacy AEAD schemes do not do this, and one needs to check
sender binding. For new schemes we will see more efficient ways to achieve sender
binding.

80 P. Grubbs et al.

The second security notion, receiver binding, is a lifting of the more tradi-
tional binding notion from commitment schemes (see Sect. 2). This definition is
important in abuse reporting, where it formalizes the intuition that a malicious
receiver should not be able to accuse a non-abusive sender of having said some-
thing abusive. A malicious receiver could do this by opening one of the sender’s
ciphertexts to an abusive message instead of the one the sender intended.

The pseudocode game r-BIND is shown on the right in Fig. 4. It has an
adversary output a pair of triples containing associated data, a message, and an
opening. The adversary outputs a franking tag C2 as well. The adversary wins
if verification succeeds on both triples with C2 and the header/message pairs
differ. To a CE scheme CE and adversary A we associate the “receiver binding”
advantage

Advr-bind
CE (A) = Pr [r-BINDCE,A ⇒ true] .

The probability is over the coins used in the game.
It is important to note that r-BIND security does not imply s-BIND secu-

rity. These notions are, in fact, orthogonal. Moreover, our MO-RORand
MO-CTXTnotions do not generically imply either of the binding notions.

Discussion. Our definitions also allow associated data, sometimes referred to
as headers. This puts committing AEAD on equal footing with modern authen-
ticated encryption with associated data (AEAD) schemes [52], which require it.
That said, modern AEAD schemes are most often formalized as nonce-based,
meaning that instead of allowing internal randomness, a non-repeating value
(the nonce) is an explicit input and encryption is deterministic. Existing sys-
tems relevant to abuse complaints use randomized AEAD (e.g., Signal [44]) that
do not meet nonce-based AEAD security. That said, we will explore nonce-based
committing AEAD in Sect. 7.

5 Are Existing AEAD Schemes Committing?

In this section we will study whether existing AEAD schemes meet our security
goals for CE. We believe it is important to study legacy schemes for several
reasons. If existing AEAD schemes are also committing, it will have impor-
tant positive and negative implications for deployed protocols (such as OTR or
Facebook’s franking scheme) that implicitly rely on binding (or non-binding)
properties of symmetric encryption. It is also helpful for protocol designers who
may want to build a protocol on top of existing legacy encryption. If well-tested,
mature implementations of AEAD can be used as CE schemes without code
changes, the attack surface of new protocol implementations is minimized.

In this section we only examine the binding properties of schemes, since past
work has shown they meet standard definitions for confidentiality and integrity.
We will prove that encode-then-encipher and encrypt-then-MAC (EtM) satisfy
our binding notions in the ideal cipher model, with the additional requirement
that the MAC used in EtM is a collision-resistant PRF. We will prove MAC-
then-encrypt meets our binding notions in the random oracle and ideal cipher

Message Franking via Committing Authenticated Encryption 81

Enc(K, H, M):

R ←$ {0, 1}r

C ← ẼH
K (M ‖ R ‖ 0s)

� ← l + r + s − t

C1 ← C[1, . . . , �]

C2 ← C[� + 1, . . . , l + r + s]

Return (C1, C2)

Dec(K, H, C1, C2):

M ′ ‖ R′ ‖ Z ← D̃H
K (C1 ‖ C2)

If Z 	= 0s then

Return ⊥
Return (M ′, (R′, K))

Ver(H, M, Kf , C2):

R ‖ K ← Kf

� ← l + r + s − t

C ← ẼH
K (M ‖ R ‖ 0s)

Return C[�+1, . . . , l+r+s] = C2

Fig. 5. Encode-then-encipher as a committing AEAD scheme where the commitment
is the final t bits of the ciphertext. ˜EH and ˜DH refer to encryption and decryption for
a tweakable blockcipher where the header H is the tweak.

model. We will also show simple attacks that break binding for real-world modes
using Carter-Wegman MACs (GCM and ChaCha20/Poly1305).

5.1 Committing Encode-then-Encipher

The Encode-then-Encipher (EtE) construction of Bellare and Rogaway shows
how to achieve AE security for messages given only a variable-input-length
PRP [12]. Their construction is quite simple: given a key K ∈ K, encrypt a
message M ∈ M (|M| = 2l) with header H ∈ H by first drawing a random
string R ←$ {0, 1}r and computing c = ẼH

K (M ‖ R ‖ 0s) where ẼH is a tweak-
able, variable-input length cipher with the header as the tweak. Decrypting a
ciphertext M works by first running M ′ = D̃H

K(C) and checking whether the
last s bits of M ′ are all zero. If they are, we call the message “valid” and output
M , else we output ⊥. For compactness, we commit to only the last t bits of the
ciphertext. We must include the randomness used to encrypt in the opening of
the commitment. Detailed pseudocode is given in Fig. 5. We will assume that E
is an ideal tweakable cipher in our proof of r-BIND security.

Theorem 2. Let EtE[E] be the scheme defined above using an ideal tweakable
cipher E and parameters s, t > 0. Let A be any adversary making at most q

queries to its ideal cipher oracles. Then Advr-bind
EtE (A) ≤ q+1

2s + q2

2t .

The proof will appear in the full version of this work. The scheme achieves
perfect s-BIND security: the advantage of any adversary for is zero because the
output of decryption is simply re-computed in Ver.

5.2 Encrypt-then-MAC

The classic Encrypt-then-MAC (EtM) construction composes a symmetric
encryption scheme and a message authentication code (MAC), by first encrypt-
ing the message, then computing the MAC over the ciphertext and any associ-
ated data.

82 P. Grubbs et al.

Committing EtM. We analyze EtM as a committing AEAD scheme in the
case that the encryption and authentication keys are derived via a key deriva-
tion function (KDF) that is a collision-resistant pseudorandom function. The
scheme EtM[KDF, F,SE] is detailed in Fig. 6. Beyond the functions F and KDF,
the scheme also makes use of a public-coin randomized symmetric encryption
algorithm SE = (Kg, enc, dec) that does not use associated data and whose key
generation is a random selection of some fixed-length bit string. It is important
that the scheme is public coin, as we require the randomness to be recoverable
during decryption to be included in the opening.

Enc(K, H, M):

Ke ← KDFK(0)

Km ← KDFK(1)

R ←$ R
R ‖ C ← encKe (M ; R)

T ← FKm (H ‖ R ‖ C)

Return (R ‖ C, T)

Dec(K, H, C1, C2):

R ‖ C ← C1

Ke ← KDFK(0)

Km ← KDFK(1)

T ′ ← FKm (H ‖ R ‖ C1)

If T ′ 	= C2 then Return ⊥
M ← decKe (C1)

If M = ⊥ then Return ⊥
Return (M, (R, K))

Ver(H, M, (R, K), C2):

Ke ← KDFK(0)

Km ← KDFK(1)

C ← encKe (M ; R)

T ← FKm (H ‖ R ‖ C)

Return T = C2

Fig. 6. Committing AEAD scheme EtM[KDF, F, SE] that composes an encryption
scheme SE = (Kg, enc, dec) using random coins from R, a MAC F , and that derives
keys via a function KDF.

This scheme arises in practice. The Signal protocol [44], for example, uses
HKDF to derive keys for use with CTR mode encryption combined with HMAC.
The following theorem proves the committing EtM construction in Fig. 6 meets
r-BIND if the MAC and key derivation function are both collision-resistant
PRFs.

Theorem 3. Let EtM = EtM[KDF, F,SE] be the EtM construction using func-
tions F and KDF as well as encryption scheme SE. Let A be any r-BINDEtM

adversary. Then there exist adversaries B and C, each that run in time that
of A, such that Advr-bind

EtM (A) < Advcr
F (B) + Advcr

KDF(C).

The proof of this theorem will appear in the full version of this work. The
s-BIND security of EtM[KDF, F,SE] is perfect because verification re-encrypts
the plaintext to check the tag.

Two-key EtM is not binding. The use of a KDF to derive the encryption
and MAC keys above is requisite to achieve receiver binding security. Consider
omitting the KDF steps, and instead letting keys be a pair (Ke,Km) where each
component is chosen randomly. The opening output by encryption and used by
verification is instead (R, (Ke,Km)). The rest of the scheme remains the same as
that in Fig. 6. But it is easy to break the receiver binding for this two-key variant:
simply have an adversary A that chooses an arbitrary header H, message M , keys
(Ke,Km), and randomness R, and computes R ‖ C ← encKe(M ; R) and then

Message Franking via Committing Authenticated Encryption 83

Enc(K, H, M):

Ke, Km ← K

IV ←$ {0, 1}n

T ← ROKm (H ‖ M)

C ← CBCKe (Padn(M ‖ T) ; IV)

� ← Padn(M ‖ T)/n

C′ ‖ C�−2 ‖ C�−1 ‖ C� ← C

Return (C′, IV ‖C�−2‖C�−1‖C�)

Dec(K, H, C1, C2):

Ke, Km ← K

IV ‖ C�−2 ‖ C�−1 ‖ C� ← C2

Cf ← C�−2 ‖ C�−1 ‖ C�

M‖T ← CBC−1
Ke (C1‖Cf ; IV)

T ′ ← ROKm (H ‖ M)

If T 	= T ′ then Return ⊥
Return (M, (Ke, Km))

Ver(H, M, Kf , C2):

Ke, Km ← Kf

IV ‖ C′
�−2 ‖ C′

�−1 ‖ C′
� ← C2

T ← ROKm (H ‖ M)

P ← Padn(M ‖ T)

C ← CBCKe (P ; IV)

C′ ‖ C′′
�−2 ‖ C′′

�−1 ‖ C′′
� ← C

Return
�∧

i=�−2
(C′′

i = C′
i)

Fig. 7. Committing authenticated encryption based on MtE composition of CBC mode
and a MAC modeled as a random oracle. The length � is defined to be Padn(M ‖T)/n.
The function Pad is the standard PKCS#7 padding used in TLS. The notation
CBCK(· ; IV) and CBC−1

K (· ; IV) means CBC mode encryption and decryption with
key K and initialization vector IV .

T ← FKm(H ‖R‖C). It then chooses another key K̃e
= Ke, and computes M̃ ←
dec

˜Ke(R ‖ C). Finally, it outputs (H, (R, (Ke,Km))), (H, (R, (K̃e,Km))), T). It
is easy to check that this adversary will win the r-BIND game with probability
close to one, assuming SE is such that decrypting the same ciphertext under
different keys yields distinct plaintexts with overwhelming probability.

5.3 MAC-then-Encrypt

The MAC-then-encrypt mode generically composes a MAC and an encryption
scheme by first computing the MAC of the header and message, then appending
the MAC to the message and encrypting them both. The pseudcode in Fig. 7
uses for concreteness CBC mode encryption and we refer to this committing
AEAD scheme as MtE. We will also assume the MAC is suitable to be modeled
as a keyed random oracle; HMAC-SHA256 is one such [28]. CBC with HMAC
in an MtE mode is a common cipher suite for modern TLS connections, which
motivated these choices. Prior work has investigated the security of MtE in
the sense of CTXT [42,51] and its ROR security is inherited directly from the
encryption mode. Below we will assume that the block size of n bits for the
cipher underlying CBC mode, and that our MACs have output length 2n bits.

Unlike with Encrypt-then-MAC, we are able to prove the two-key version of
MtE secure in the sense of receiver binding. The binding security of MtE in the
case where keys are derived via a KDF follows as a corollary, though we believe
better bounds can be achieved in this case.

A sketch of an argument that MtE is binding (in the traditional sense where
the entire ciphertext is the commitment) appeared in [58]. Their approach, which
only relied on modeling the MAC as a RO and made no assumptions about CBC
mode, led to a rather loose bound. We instead additionally model the cipher
underlying CBC as ideal. This results in a simpler and tighter proof. Our proof,
given in the full version of the paper, can also be readily adapted to when CTR
mode is used instead of CBC.

84 P. Grubbs et al.

Theorem 4. Let MtE be the scheme defined above using a random oracle and
an ideal cipher within CBC mode. For any r-BINDMtE adversary A making at
most qi queries to its ideal cipher and qr queries to its random oracle, it holds
that Advr-bind

MtE (A) < qiqr/22n.

The s-BIND advantage against compactly-committing MtE is zero, since the
commitment along with the output of a successful call to Dec uniquely defines
the inputs to Ver. Thus, no other ciphertext can be computed in Ver other than
the one previously decrypted in Dec, because the inputs to Ver are fixed by Dec.

5.4 Some Non-binding AEAD Schemes

In this section we will briefly detail attacks which break the receiver binding secu-
rity of some deployed AEAD schemes. In particular, typical schemes that use
MACs which are not collision resistant, such as Carter-Wegman MACs, do not
suffice. For completeness we spell out an example of breaking the receiver bind-
ing of GCM [46], an encrypt-then-MAC style construction that uses a Carter-
Wegman MAC.

A slight simplification of the GCM MAC is the function F shown in Fig. 8
applied to a ciphertext. (We ignore associated data for simplicity.) It uses a key
K for a block cipher E with block size n, as well as a nonce N . An initial point
P0 ← EK(0n) and a pad R ← EK(N) are computed. GCM uses an ε-almost
XOR universal (ε-AXU) [57] hash function computed by considering a ciphertext
of m encrypted message blocks an m-degree polynomial defined over a finite
field F. The field is a particular representation of GF(2128). This polynomial is
evaluated at the encryption point P0 and the result is XOR’d with the pad R.
The GCM AEAD scheme encrypts the message using CTR mode encryption
using EK and a random 96-bit IV concatenated with a 32-bit counter initially
set at one, and then MACs the resulting ciphertext C = C1, . . . , Cm to generate
a tag T = F (K, IV ‖ 032, C1, . . . , Cm).

F (K, N, (C1, . . . , Cm)):

P0 ← EK(0n)

R ← EK(N)

S ←
m∑

i=1
CiP

m−i
0

T ← R ⊕ S

Return T

Fig. 8. A simplified
description of the CW
MAC used in GCM.

A straightforward way to consider GCM as a com-
pactly committing AEAD is to have encryption output
as the commitment portion C2 the tag T , and the rest of
the ciphertext as the first portion C1. Decryption works
as usual for GCM, but additionally outputs (IV,K) as
the opening. Verification works by recomputing encryp-
tion and checking that the resulting tag matches the
commitment value C2. We denote this scheme simply by
GCM = (Kg,Enc,Dec,Ver) below.

We now give an r-BINDGCM adversary A. We
ignore associated data for simplicity. To win, A
must output ((M, (IV,K), (M ′, (IV ′,K ′), T) so that Ver(M, (IV,K), T) =
Ver(M ′, (IV ′,K ′), T) = 1. We will build an A that chooses messages such that
|M | = |M ′|. The adversary A will start by choosing a ciphertext C1, . . . , Cm

such that
F (K, IV,C1, . . . , Cm) = F (K ′, IV ′, C1, . . . , Cm) (1)

Message Franking via Committing Authenticated Encryption 85

CtE1-Enc(K, H, M)

(Kf , C2) ←$ Com(H ‖ M)

C1 ←$ encK(C2, M ‖ Kf)

Return (C1, C2)

CtE2-Enc(K, H, M)

(Kf , C2) ←$ Com(H ‖ M)

C1 ←$ encK(H, M ‖ Kf)

Return (C1, C2)

CtE1-Dec(K, H, C1, C2)

(M ‖ Kf) ← decK(C2, C1)

If M = ⊥ then Return ⊥
b ← VerC(Kf , C2, H ‖ M)

If b = 0 then

Return ⊥
Return (M, Kf)

CtE2-Dec(K, H, C1, C2)

(M ‖ Kf) ← decK(H, C1)

If M = ⊥ then Return ⊥
b ← VerC(Kf , C2, H ‖ M)

If b = 0 then

Return ⊥
Return (M, Kf)

Fig. 9. Algorithms for two Commit-then-Encrypt variants. Facebook’s scheme uses
CtE2 with an HMAC-based commitment. CtE1-Ver and CtE2-Ver both just output
VerC(H, M, Kf , C2).

and letting M (resp. M ′) be the CTR-mode decryption of C1, . . . , Cm under
IV,K (resp. IV ′,K ′). Choosing the ciphertext such that condition 1 holds is
straightforward, as plugging in for the definition of F and rearranging, the adver-
sary must solve the equation

[
m∑

i=1

Ci(Pm−i + (P ′)m−i)

]

+ (EK(N) + EK′(N ′)) = 0

where P ← EK(0n) and P ′ ← EK′(0n). For example, pick arbitrary
C1, . . . , Cm−1 and solve for the Cm that satisfies the equation.

This attack works even if associated data is used, or if the whole
ciphertext is used as the commitment. A very similar attack works on
ChaCha20/Poly1305 [15]; a small tweak is required to handle the fact that not
every member of F2130−5 is a valid ciphertext block.

6 Composing Commitment and AEAD

In the last section we saw that existing AEAD schemes already realize (com-
pactly) committing AEAD in some cases. These schemes, however, only realize
single-opening security as the opening includes the secret key. We now turn to
schemes that achieve multi-opening committing AEAD, and focus specifically
on schemes that generically compose AEAD with a commitment scheme.

Commit-then-Encrypt. We start with a simple general construction, what
we call the Commit-then-Encrypt scheme.3 It combines a commitment scheme
CS = (Com,VerC) with an AEAD scheme SE = (Kg, enc, dec). Formally the
scheme CtE1[CS,SE] = (Kg,CtE1-Enc,CtE1-Dec,CtE1-Ver) works as shown in
Fig. 9.

The CtE1 scheme produces a commitment value to the message and associ-
ated data H, and then encrypts the message along with the opening of the com-
mitment. It uses as associated data during encryption the commitment value,
3 This name was also used in [36], but the scheme is distinct. See Sect. 9.

86 P. Grubbs et al.

but not H. This nevertheless binds the underlying AEAD ciphertext to H as
well as C2 — as we will show tampering with either will be detected and rejected
during decryption. One could additionally include H in the associated data for
enc, but this would be less efficient. Should a protocol want H to not be in the
commitment scope, one can instead include H only as associated data within
enc and omit it from the commitment.

The proofs of the next two theorems will appear in the full version.

Theorem 5 (CtE1 confidentiality). Let CtE1 = CtE1[CS,SE]. Let A be an
MO-RORCtE1 adversary making at most q queries to its oracles. Then we give
adversaries B1, B2, C such that

Advmo-ror
CtE1 (A) ≤ Advror

SE (B1) + Advror
SE (B2) + Advcs-ror

CS (C) .

The adversaries B1, B2, and C all make the same number of queries as A and
all run in time that of A plus at most O(q) overhead.

Theorem 6 (CtE1 ciphertext integrity). Let CtE1 = CtE1[CS,SE]. Let A
be an MO-CTXTCtE1 adversary making at most q queries to its oracles. Then
we give adversaries B, C such that

Advmo-ctxt
CtE1 (A) ≤ Advctxt

SE (B) + Advv-bind
CS (C) .

Adversary B makes the same number of queries as A and runs in time that of
A plus at most O(q) overhead. Adversary C runs in time that of A.

The receiver binding security of CtE1 is trivially implied by the security of
the underlying commitment scheme, as captured by the next theorem.

Theorem 7 (CtE1 receiver binding). Let CtE1 = CtE1[CS,SE]. Let A be
an r-BINDCtE1 adversary. Then Advr-bind

CtE1 (A) = Advv-bind
CS (A).

We conclude the section by noting CtE1 meets s-BIND security, since it runs
Ver during decryption.

Facebook’s scheme. The Facebook franking scheme (Sect. 3) is almost, but
not quite, an instantiation of CtE1 using HMAC as the commitment scheme
CS. One difference is that their franking scheme does not bind C2 to C1 by
including C2 in the associated data during encryption. The other difference is
that the Facebook scheme builds a commitment from HMAC by first generating
a random secret key, then using it to evaluate HMAC on the concatenation of the
message and the key itself (see Fig. 2 for a diagram). Assuming HMAC remains a
collision-resistant PRF when evaluated on its own key, we can prove Facebook’s
non-standard construction is a secure commitment (see Theorem 1).

To analyze Facebook’s scheme, then, we introduce the scheme CtE2[SE,CS] =
(Kg,CtE2-Enc,CtE2-Dec,CtE2-Ver) that works as shown in Fig. 9. Note that
Facebook does not discuss how to handle associated data, and so their scheme
is CtE2 using CS instantiated with HMAC and requiring H = ε.

Message Franking via Committing Authenticated Encryption 87

There are two benefits to the approach of CtE1: (1) proving ciphertext
integrity does not require any special properties of the commitment scheme, and
(2) it is more efficient because associated data is cryptographically processed
once, rather than twice. We therefore advocate CtE1, but analyze CtE2 here
since it is already in use.

CtE2 is not secure assuming just that CS is hiding and binding. The
reason is that such commitments can be malleable and this allows easy
violation of ciphertext integrity. Specifically, consider a commitment scheme
CSBad = (ComBad,VerBad) built using a standard commitment scheme CS =
(Com,VerC). Algorithm ComBad(M) runs (Kc, C) ←$ Com(M) and then outputs
(Kc, C ‖ 1). Algorithm VerBad(M,Kf , C ‖ b) runs VerC(M,Kf , C) and outputs
the result. An easy reduction shows that CSBad is both hiding and binding,
assuming CS is too. But it’s clear that CtE2[SE,CSBad] does not enjoy cipher-
text integrity. The adversary simply obtains one ciphertext, flips the last bit,
and submits to the challenge decryption oracle to win.

This shows that standard commitments with hiding and binding properties
are insufficient to instantiate CtE2. But if a scheme CS has unique commitments,
then we can in fact show security of CtE2. A scheme has unique commitments if
for any pair (Kc,M) ∈ Kf ×M it holds that there is a single commitment value
C ∈ C for which Ver(Kc, C,M) = 1. All hash-based CS schemes, including the
HMAC one used by Facebook’s franking scheme, have unique commitments. If
one wanted to use a scheme that does not have unique commitments, then one
would need the commitment to satisfy a form of non-malleability [29].

The following sequence of theorems captures the security of CtE2 assuming
a unique commitment scheme. Proofs appear in the full version.

Theorem 8 (CtE2 confidentiality). Let CtE2 = CtE2[CS,SE]. Let A be an
MO-RORCtE2 adversary making at most q oracle queries. Then we give adver-
saries B1, B2, C such that

Advmo-ror
CtE2[CS,SE](A) ≤ Advror

SE (B1) + Advror
SE (B2) + Advcs-ror

CS (C)

Adversaries B1, B2, and C all run in time that of A plus at most O(q) overhead
and make at most q queries.

Theorem 9 (CtE2 ciphertext integrity). Let CtE2 = CtE2[CS,SE] and
assume CS has unique commitments. Let A be an MO-CTXTCtE2 adversary
making at most q queries. Then we give adversaries B, C such that

Advmo-ctxt
CtE2[CS,SE](A) ≤ Advctxt

SE (B) + Advv-bind
CS (C).

Adversaries B and C both run in time that of as A plus at most O(q) overhead.
Adversary B makes at most q queries to its oracles.

Theorem 10 (CtE2 receiver binding). Let CtE2 = CtE2[CS,SE]. Let A be
an r-BINDCtE2 adversary. Then we give an adversary B such that

Advr-bind
CtE1[CS,SE](A) ≤ Advv-bind

CS (B).

Adversary B runs time that of A.

88 P. Grubbs et al.

Finally, note that CtE2 achieves s-BIND security because it verifies the com-
mitment during decryption.

7 Nonce-Based Committing AEAD and the CEP
Construction

The committing AEAD schemes thus far have all been randomized. Cryptogra-
phers have advocated that modern AEAD schemes, however, be designed to be
nonce-based. Here one replaces internal randomness during encryption with an
input, called the nonce. Security should hold as long as the nonce never repeats
throughout the course of encrypting messages with a particular key.

We formalize nonce-based committing AEAD and provide a construction of
it that additionally achieves a number of valuable properties. It will achieve a
multiple-opening security notion suitably modified to the nonce-based setting.
It is faster than the other multiple-opening schemes, requiring only two crypto-
graphic passes during encryption and decryption, and a single one during ver-
ification. It also reduces ciphertext stretch compared to the schemes of Sect. 6,
since the opening will be recomputed in the course of decryption and so does
not need to be sent in the encryption.

Nonce-based committing AEAD. A nonce-based CE scheme is a tuple of
algorithms nCE = (Kg,Enc,Dec,Ver). We define it exactly like CE schemes
(Sect. 4) except for the following differences. In addition to the other sets, we
associate to any nCE scheme a nonce space N ⊆ Σ∗. Encryption and decryption
are now defined as follows:

• Encryption: Encryption Enc is deterministic and takes as input a tuple
(K,N,H,M) ∈ (Σ∗)4 and outputs a pair (C1, C2) ∈ C ×T or a distinguished
error symbol ⊥. We require that for any (K,N,H,M) ∈ K × N × H × M it
is the case that Enc(K,N,H,M)
= ⊥.

• Decryption: Decryption Dec is deterministic. It takes as input a quintu-
ple (K,N,H,C1, C2) ∈ (Σ∗)5 and outputs a message, opening value pair
(M,Kf) ∈ M × Kf or ⊥.

Key generation and verification are unchanged relative to randomized CE
schemes. As for randomized schemes, we assume that the length of cipher-
texts are dictated only by the lengths of the header and message. We
will often write EncNK(H,M) for Enc(K,N,H,M) and DecNK(H,C1, C2) for
Dec(K,N,H,C1, C2).

Nonce-based security. We adapt the confidentiality and integrity security
notions from Sect. 4 to the nonce-based setting. Let game MO-nREALA

nCE be
the same as the game MO-RANDA

nCE (Fig. 3), except that all oracles take an
additional input N , Enc and Dec executions use that value N as the nonce,
the sets Y1,Y2 are instead updated with (N,H,C1, C2), and the decryption
oracle checks if (N,H,C1, C2) ∈ Y1. Similarly let game MO-nRANDA

nCE be
the same as MO-RANDA

nCE (Fig. 3), except that all oracles take an additional

Message Franking via Committing Authenticated Encryption 89

input N , and Enc and Dec use that value N as the nonce, and Y2 is updated
with (N,H,C1, C2). For a scheme nCE, we measure the nonce-based multiple-
openings real-or-random MO-nRORnCE advantage of an adversary A by

Advmo-nror
nCE (A) =

∣
∣Pr

[

MO-nREALA
nCE ⇒ 1

]

− Pr
[

MO-nRANDA
nCE ⇒ 1

]∣
∣ .

An adversary is nonce-respecting if its queries never repeat the same N across
a pair of encryption queries (two queries to Enc, two to ChalEnc, or one to
each). We will assume nonce-respecting MO-nRANDnCE adversaries.

Let MO-nCTXTA
nCE be the same as the game MO-CTXTA

nCE (Fig. 3), except
that all oracles take an additional input N , Enc and Dec executions use that
value N as the nonce, and the set Y is instead updated with (N,H,C1, C2). For
a scheme nCE, we measure the nonce-based multiple-openings real-or-random
MO-nCTXTnCE advantage of an adversary A by

Advmo-nctxt
nCE (A) = Pr

[

MO-nCTXTA
nCE ⇒ 1

]

.

As with randomized committing AEAD, we can provide single-opening versions
of the above definitions, and can give an all-in-one version of nonce-based MO
and SO security. We omit the details for the sake of brevity.

The sender binding notion s-BIND for nonce-based schemes is the same as for
randomized schemes except that the adversary also outputs a nonce N , which
is used with Dec. Because verification is unchanged, receiver binding security is
formalized exactly the same for randomized and nonce-based committing AEAD.

The Committing Encrypt-and-PRF scheme. One can analyze some tra-
ditional nonce-based AEAD schemes to show they are compactly committing.
As one example, it is easy to see that the EtE construction (Sect. 5.1) works
just as well with non-repeating nonces, but with only single-opening security.
The other schemes in Sect. 5 do not, but can be easily modified to by replacing
IV with EK(N). Here we focus on a new scheme that will have better overall
performance and security than previous ones. Unlike the legacy schemes studied
in Sect. 5 it will be provably secure for multiple openings. At the same time, it
will be more efficient than the schemes in Sect. 6.

The scheme CEP[G[K],F,Fcr] = (Kg,CEP-Enc,CEP-Dec,CEP-Ver) is in
the style of an Encrypt-and-PRF construction. It uses an underlying stream
cipher G[E] built from a block cipher E : {0, 1}k × {0, 1}n × {0, 1}n and func-
tions F, F cr : {0, 1}n × {0, 1}t → {0, 1}t. The key space is K = {0, 1}k and key
generation simply outputs a random draw from it. Encryption starts by using
the nonce with the key K to derive one-time keys for the keyed cryptographic
hash F cr and a PRF F , as well as to generate an encryption pad to XOR with
the message. We use a block cipher E in CTR mode to generate these values.
Finally it computes a binding value for H,M and applies F to that commitment
value to generate a tag. Detailed pseudocode is given in Fig. 10.

We will need F cr to both be CR (for binding) as well as secure as a one-time
PRF (for confidentiality). This rules out some otherwise desirable choices such as
CMAC [41], PMAC [53] and Carter-Wegman-style PRFs such as Poly1305 [16]

90 P. Grubbs et al.

CEP-EncN
K(H, M):

IV ← EK(N)

m ← �|M |/n

For i = 0 to m + 1 do

Pi ← EK(IV + i)

C1 ← (P2 ‖ · · · ‖ Pm+1) ⊕ M

C2 ← F cr
P0

(H ‖ M)

T ← FP1 (C2)

Return (C1 ‖ T, C2)

CEP-DecN
K(H, C1 ‖ T, C2):

m ← �|C1|/n

For i = 0 to m + 1 do

Pi ← EK(IV + i)

M ‖ ← (P2 ‖ · · · ‖Pm+1)⊕C1

C′
2 ← F cr

P0
(H ‖ M)

T ′ ← FP1 (C
′
2)

If T 	= T ′ ∨ C′
2 	= C2 then

Return ⊥
Return (M, P0)

CEP-Ver(H, M, Kf , C2):

C′
2 ← F cr

Kf
(H ‖ M)

If C′
2 	= C2 then Return 0

Return 1

Fig. 10. A nonce-based committing AEAD.

and UMAC [17]. These PRFs are some of the fastest available, but would make
CEP vulnerable to binding attacks. (See also the discussion in Sect. 5.4.)

The most obvious choice is HMAC, for which formal analyses support it
being a secure PRF for a key secret [2,3] and CR for adversarially chosen keys
of the same length (assuming the underlying hash function is CR). Other multi-
property hash functions [10] would also suffice.

The reason we use EK both for CTR mode and for key derivation is speed.
This ensures that we need ever only use a single key with E; in some environ-
ments rekeying can be almost as expensive as another invocation of E. In fact
we are simply using EK to build a stream cipher, and any nonce-based secure
stream cipher would do, e.g., ChaCha-20 [15].

One might wonder why have a tag T as well as the commitment value C2. The
reason is that to achieve multi-opening security, we must disclose the key used
with F cr, rendering the unforgeability of C2 values moot. If one instead omitted
T and only checked C ′

2 = C2 to attempt to achieve unforgeability, then there
exists a straightforward MO-nCTXT attack that obtains a ciphertext for a nonce
N , queries it to Dec to get the key for F cr, and then uses that to forge a new
ciphertext to be submitted to ChalDec. The application of F under a distinct
key provides ciphertext integrity even after an adversary obtains openings (keys
for F cr). Similarly, dropping the check during decryption that C ′

2 = C2 also leads
to an attack, but this time on sender binding.

Comparisons. Before getting into the formal security analysis in the next
section, we first compare CEP to the generic composition constructions that also
achieve multiple-opening security. The first benefit over other schemes is that
it is nonce-based, making it suitable for stateful as well as randomized settings
(see also Rogaway’s discussion of the benefits of nonce-based encryption [54]).

The second is that ciphertext expansion is reduced by a security parameter
number of bits compared to the generic composition constructions, because in
CEP we do not need to transport an explicit opening — the recipient recom-
putes it pseudorandomly from the secret key. Consequently, CEP ciphertexts are
shorter than Facebook’s by 256 bits.

The third is that encryption and decryption both save an entire crypto-
graphic pass over the associated data and message. For Facebook’s chosen

Message Franking via Committing Authenticated Encryption 91

algorithms (HMAC for the commitment, plus Encrypt-then-MAC using AES-
CBC and HMAC), this means that CEP offers more than a 50% speed-up for
both algorithms.4 While in some messaging settings encryption and decryp-
tion may not be particularly performance-sensitive operations, any cost savings
is desirable. In other contexts, such as if one starts using committing encryp-
tion on larger files (images, videos) sent over messaging applications or if one
wants abuse reporting for streaming communications, performance will be very
important.

CEP achieves the stronger multiple-opening security goal, setting it apart
from the legacy committing AEAD schemes from Sect. 5. At the same time,
CEP has equivalent or better performance than those schemes. With respect to
EtM and MtE, verification is reduced from two cryptographic passes to one.

8 Analysis of CEP

Useful abstractions. We will introduce some intermediate abstractions of the
underlying primitives. First, a nonce-based stream cipher G takes as input a key
K, a nonce N , and an output length �. It outputs a string of length � bits. The
second abstraction is of the implicit MAC used within CEP. It is the composition
F ◦F cr(P1, P0,H‖M) = FP1(F

cr
P0

(H‖M)) for random keys P0, P1 and any strings
H,M . The output is a t-bit string. We defer a discussion of the security properties
required from these abstractions to the full version of this work. There, we define
a nonce-based pseudorandom generator (PRG) security notion that mandates
attackers cannot distinguish between G’s output and random bit strings, as
well as a multi-user unforgeability notion MU-UF-CMAF◦F cr that captures the
unforgeability of F ◦ F cr when adversaries can attack it under multiple keys.

Security of CEP. We are now in position to formally analyze the confidentiality,
ciphertext integrity, and binding of CEP. We give theorems for each in turn, with
proofs deferred to the full version of the paper.

Theorem 11 (CEP confidentiality). Let CEP = CEP[G,F]. Let A be an
MO-nRORCEP adversary making at most q queries and whose queried messages
total at most σ bits. Then we give adversaries B, C,D such that

Advmo-nror
CEP (A) ≤ 2 ·Advprg

G (B) + 2 ·Advprf
F (C) + ·Advprf

F cr(D)

Adversary B makes at most q queries to its oracle, the sum of its total outputs
requested is σ bits. Adversary C makes at most q queries to its oracle, and never
repeats a key identifier. Adversary D make at most q queries to its oracle and
never repeats a key identifier. All adversaries run in time at most that of A plus
an overhead of at most O(q).

4 HMAC is slower than AES. If AES-NI is available, then the speed-up will be even
larger, since the HMAC passes will be the performance bottleneck.

92 P. Grubbs et al.

Theorem 12 (CEP ciphertext integrity). Let CEP = CEP[G, F]. Let A
be an MO-nCTXTCEP adversary making at most q queries with query inputs
totalling at most σn bits. Let F 2 be the tagging scheme described earlier. Then
we give adversaries B, C such that

Advmo-nctxt
CEP (A) ≤ Advprg

G (B) + Advmu-uf-cma
F 2 (C) .

Adversary B runs in time that of A plus at most O(q) overhead and makes q
queries totaling at most σn bits. Adversary C makes at most q queries and runs
in time that of A plus at most O(q) overhead.

Finally we turn to binding. Recall that any scheme that effectively runs com-
mitment verification during decryption achieves sender binding. The check that
C ′

2 = C2 during decryption accomplishes this, and so the scheme is perfectly
sender binding. For receiver binding, a simple reduction gives the following the-
orem showing that the CR of F cr implies binding of CEP.

Theorem 13 (CEP receiver binding). Let CEP = CEP[G, F]. Let A be any
r-BINDCEP adversary. Then we give an adversary B such that Advr-bind

CEP (A) ≤
Advcr

F cr(B) and B runs in time that of A.

9 Related Work

The primary viewpoint in the literature has been that committing encryption is
undesirable either because one wants deniability [20,22,50] or due to the theoret-
ical challenges associated with proving encryption confidentiality in the face of
adaptive compromises [23]. Thus while non-committing encryption has received
significant attention (q.v., [22–25,27,34,35,40,43,49,50,62–65]), there is a dearth
of literature on building purposefully committing encryption.

We are aware of only one previous work on building committing encryption
schemes, due to Gertner and Herzberg [36]. They give definitions that are insuf-
ficient for the message franking setting (in particular they do not capture server
binding or multiple opening security). They do not analyze AE schemes, and
focus only on building asymmetric primitives.

Our receiver binding security property is related to the concept of robust
encryption, introduced by Abdalla et al. [1]. They give two security notions
for public-key encryption (PKE). The stronger, called strong robustness, asks
that an adversarially-chosen ciphertext should only correctly decrypt under at
most one legitimate secret key. Mohassel [48] showed efficient ways of adapting
existing PKE schemes to be robust. Farshim et al. [32] subsequently pointed
out that some applications require robustness to adversarially generated secret
keys, and introduced a notion called complete robustness. In a later work,
Farshim, Orlandi, and Rosie [33] adapt these robustness definitions to the set-
ting of authenticated encryption, message authentication codes (MACs), and
pseudorandom functions (PRFs). They show that in this context, the simpler
full robustness notion of [32] is the strongest of those considered.

Message Franking via Committing Authenticated Encryption 93

These prior notions, in particular the full robustness for AE notion from [33],
do not suffice for formalizing binding for AEAD. First, it does not capture sender
binding. Second, for receiver binding, it turns out that the most straightforward
adaptation of full robustness to handle associated data fails to imply receiver
binding. We defer a more detailed explanation to the full version of this work.

Abdalla et al. [1] propose a generic composition of a commitment scheme
and PKE scheme to achieve robustness and Farshim et al. [33] show a variant
of this for the symmetric encryption setting. The latter construction commits to
the key, not the message, and could not be used to achieve the multiple opening
security targeted by our generic composition constructions.

Selective-opening security allows an adversary to adaptively choose to corrupt
some senders that sent (correlated) encrypted messages [8] or to compromise the
keys of a subset of receivers [38]. Bellare et al. [8] gave the first constructions
of schemes secure against selective-opening attacks for sender corruptions. Non-
committing encryption can be used to realize security for receiver corruptions.
Our definitions do not model selective-opening attacks, and as mentioned in the
introduction, assessing the viability of committing AEAD in selective-opening
settings is an interesting open problem.

Acknowledgments. The authors would like to thank the anonymous reviewers of
Crypto 2017 for their thoughtful comments, as well as Mihir Bellare for discussions
about robust encryption and its relation to binding. This work was funded in part by
NSF grant CNS-1330308.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-11799-2 28

2. Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer,
Heidelberg (2006). doi:10.1007/11818175 36

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). doi:10.1007/3-540-68697-5 1

4. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, 1996, pp. 514–523. IEEE (1996)

5. Bellare, M., Canetti, R., Krawczyk, H.: HMAC: Keyed-hashing for message authen-
tication. Internet Request for Comment RFC, 2104 (1997)

6. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: Foundations of Computer Science (FOCS) (1997)

7. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29011-4 38

http://dx.doi.org/10.1007/978-3-642-11799-2_28
http://dx.doi.org/10.1007/978-3-642-11799-2_28
http://dx.doi.org/10.1007/11818175_36
http://dx.doi.org/10.1007/3-540-68697-5_1
http://dx.doi.org/10.1007/978-3-642-29011-4_38
http://dx.doi.org/10.1007/978-3-642-29011-4_38

94 P. Grubbs et al.

8. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 1

9. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 41

10. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 299–314. Springer, Heidelberg (2006). doi:10.1007/11935230 20

11. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS (1993)

12. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 24

13. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: EUROCRYPT (2006)

14. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: The security of messaging. Cryptology ePrint
Archive, Report 2016/1028 (2016). http://eprint.iacr.org/2016/1028

15. Bernstein, D.J.: ChaCha, a variant of Salsa20. https://cr.yp.to/chacha/
chacha-20080128.pdf

16. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). doi:10.1007/11502760 3

17. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and
secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 216–233. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 14

18. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 25

19. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol.
2595, pp. 62–75. Springer, Heidelberg (2003). doi:10.1007/3-540-36492-7 6

20. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not
to use PGP. In: ACM Workshop on Privacy in the Electronic Society (2004)

21. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37, 156–189 (1988)

22. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). doi:10.1007/BFb0052229

23. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC (1996)

24. Canetti, R., Poburinnaya, O., Raykova, M.: Optimal-rate non-committing encryp-
tion in a CRS model. IACR Cryptology ePrint Archive (2016)

25. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10366-7 17

http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/11935230_20
http://dx.doi.org/10.1007/3-540-44448-3_24
http://dx.doi.org/10.1007/3-540-44448-3_24
http://eprint.iacr.org/2016/1028
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
http://dx.doi.org/10.1007/11502760_3
http://dx.doi.org/10.1007/3-540-48405-1_14
http://dx.doi.org/10.1007/3-540-46035-7_25
http://dx.doi.org/10.1007/3-540-36492-7_6
http://dx.doi.org/10.1007/BFb0052229
http://dx.doi.org/10.1007/978-3-642-10366-7_17

Message Franking via Committing Authenticated Encryption 95

26. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. IACR ePrint Archive (2016)

27. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 27

28. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again?
(in)differentiability results for H2 and HMAC. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32009-5 21

29. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Review (2003)
30. Facebook. Facebook Messenger app (2016). https://www.messenger.com/
31. Facebook. Messenger Secret Conversations technical whitepaper (2016). https://

fbnewsroomus.files.wordpress.com/2016/07/secret conversations whitepaper-1.
pdf

32. Farshim, P., Libert, B., Paterson, K.G., Quaglia, E.A.: Robust encryption, revis-
ited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 352–
368. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 22

33. Farshim, P., Orlandi, C., Rosie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symmetric Cryptology 2017(1), 449–473 (2017)

34. Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption and
efficient adaptively secure oblivious transfer. IACR Cryptology ePrint Archive
(2008)

35. Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption
and efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03356-8 30

36. Gertner, Y., Herzberg, A.: Committing encryption and publicly-verifiable signcryp-
tion. IACR Cryptology ePrint Archive (2003)

37. Halevi, S., Krawczyk, H.: Security under key-dependent inputs. In: ACM CCS
(2007)

38. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 443–469.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 19

39. Hearn, M.: Modern anti-spam and E2E crypto. https://moderncrypto.org/
mail-archive/messaging/2014/000780.html

40. Hemenway, B., Ostrovsky, R., Rosen, A.: Non-committing encryption from Φ-
hiding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 591–608.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6 24

41. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39887-5 11

42. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How Secure Is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 310–331. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8 19

43. Lei, F., Chen, W., Chen, K.: A non-committing encryption scheme based on
quadratic residue. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y.
(eds.) ISCIS 2006. LNCS, vol. 4263, pp. 972–980. Springer, Heidelberg (2006).
doi:10.1007/11902140 101

44. Marlinspike, M.: libsignal protocol (Java) (2016). https://github.com/Whisper
Systems/libsignal-protocol-java

http://dx.doi.org/10.1007/3-540-44598-6_27
http://dx.doi.org/10.1007/978-3-642-32009-5_21
https://www.messenger.com/
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
http://dx.doi.org/10.1007/978-3-642-36362-7_22
http://dx.doi.org/10.1007/978-3-642-03356-8_30
http://dx.doi.org/10.1007/978-3-642-03356-8_30
http://dx.doi.org/10.1007/978-3-662-48797-6_19
https://moderncrypto.org/mail-archive/messaging/2014/000780.html
https://moderncrypto.org/mail-archive/messaging/2014/000780.html
http://dx.doi.org/10.1007/978-3-662-46494-6_24
http://dx.doi.org/10.1007/978-3-540-39887-5_11
http://dx.doi.org/10.1007/978-3-540-39887-5_11
http://dx.doi.org/10.1007/3-540-44647-8_19
http://dx.doi.org/10.1007/11902140_101
https://github.com/WhisperSystems/libsignal-protocol-java
https://github.com/WhisperSystems/libsignal-protocol-java

96 P. Grubbs et al.

45. Marlinspike, M., Perrin, T.: The Double Ratchet algorithm. https://whisper
systems.org/docs/specifications/doubleratchet/doubleratchet.pdf

46. McGrew, D., Viega, J.: The galois/counter mode of operation (gcm). Submission
to NIST Modes of Operation Process 20 (2004)

47. Millican, J.: Challenges of E2E Encryption in Facebook Messenger. Real World
Cryptography Conference (2017). https://www.realworldcrypto.com/rwc2017/
program

48. Mohassel, P.: A closer look at anonymity and robustness in encryption schemes.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 501–518. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17373-8 29

49. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 8

50. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22792-9 30

51. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag Size Does matter: attacks and
proofs for the TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25385-0 20

52. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS (2002)
53. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to

modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 2

54. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25937-4 22

55. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). doi:10.1007/11761679 23

56. Ryan, M.D.: Enhanced certificate transparency and end-to-end encrypted mail. In:
NDSS. The Internet Society (2014)

57. Stinson, D.R.: Universal hashing and authentication codes. Designs, Codes and
Cryptography (1994)

58. Wang, L., Pass, R., Shelat, A., Ristenpart, T.: Secure channel injection and anony-
mous proofs of account ownership. Cryptology ePrint Archive, Report 2016/925
(2016). http://eprint.iacr.org/2016/925

59. Wegman, M.N., Lawrence Carter, J.: New hash functions and their use in authen-
tication and set equality. Journal of computer and system sciences (1981)

60. Whatsapp. Whatsapp (2016). https://www.whatsapp.com/
61. Wikipedia. Signal (software) (2016). https://en.wikipedia.org/wiki/Signal

(software)
62. Zhu, H., Araragi, T., Nishide, T., Sakurai, K.: Adaptive and composable

non-committing encryptions. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 135–144. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14081-5 9

63. Zhu, H., Araragi, T., Nishide, T., Sakurai, K.: Universally composable non-
committing encryptions in the presence of adaptive adversaries. In: SECRYPT
(2010)

https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://www.realworldcrypto.com/rwc2017/program
https://www.realworldcrypto.com/rwc2017/program
http://dx.doi.org/10.1007/978-3-642-17373-8_29
http://dx.doi.org/10.1007/3-540-45708-9_8
http://dx.doi.org/10.1007/978-3-642-22792-9_30
http://dx.doi.org/10.1007/978-3-642-25385-0_20
http://dx.doi.org/10.1007/978-3-642-25385-0_20
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/978-3-540-25937-4_22
http://dx.doi.org/10.1007/11761679_23
http://eprint.iacr.org/2016/925
https://www.whatsapp.com/
https://en.wikipedia.org/wiki/Signal_(software)
https://en.wikipedia.org/wiki/Signal_(software)
http://dx.doi.org/10.1007/978-3-642-14081-5_9
http://dx.doi.org/10.1007/978-3-642-14081-5_9

Message Franking via Committing Authenticated Encryption 97

64. Zhu, H., Bao, F.: Non-committing encryptions based on oblivious naor-pinkas cryp-
tosystems. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922,
pp. 418–429. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10628-6 27

65. Zhu, H., Bao, F.: Error-free, multi-bit non-committing encryption with constant
round complexity. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol.
6584, pp. 52–61. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21518-6 4

http://dx.doi.org/10.1007/978-3-642-10628-6_27
http://dx.doi.org/10.1007/978-3-642-21518-6_4

	Message Franking via Committing Authenticated Encryption
	1 Introduction
	2 Preliminaries
	3 Message Franking and End-to-End Encryption
	4 Committing AEAD
	5 Are Existing AEAD Schemes Committing?
	5.1 Committing Encode-then-Encipher
	5.2 Encrypt-then-MAC
	5.3 MAC-then-Encrypt
	5.4 Some Non-binding AEAD Schemes

	6 Composing Commitment and AEAD
	7 Nonce-Based Committing AEAD and the CEP Construction
	8 Analysis of CEP
	9 Related Work
	References

