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1 Département d’informatique de l’ENS École normale supérieure,
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Abstract. At EUROCRYPT 2016, Gay et al. presented the first
pairing-free public-key encryption (PKE) scheme with an almost tight
security reduction to a standard assumption. Their scheme is competitive
in efficiency with state-of-the art PKE schemes and has very compact
ciphertexts (of three group elements), but suffers from a large public key
(of about 200 group elements).

In this work, we present an improved pairing-free PKE scheme with an
almost tight security reduction to the Decisional Diffie-Hellman assump-
tion, small ciphertexts (of three group elements), and small public keys
(of six group elements). Compared to the work of Gay et al., our scheme
thus has a considerably smaller public key and comparable other charac-
teristics, although our encryption and decryption algorithms are some-
what less efficient.

Technically, our scheme borrows ideas both from the work of Gay
et al. and from a recent work of Hofheinz (EUROCRYPT, 2017). The
core technical novelty of our work is an efficient and compact designated-
verifier proof system for an OR-like language. We show that adding such
an OR-proof to the ciphertext of the state-of-the-art PKE scheme from
Kurosawa and Desmedt enables a tight security reduction.

Keywords: Public key encryption · Tight security

1 Introduction

Tight security reductions. We are usually interested in cryptographic
schemes that come with a security reduction to a computational assumption.
A security reduction shows that every attack on the scheme can be translated
into an attack on a computational assumption. Thus, the only way to break the
scheme is to solve an underlying mathematical problem. We are most interested
in reductions to well-investigated, “standard” assumptions, and in reductions
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that are “tight”. A tight security reduction ensures that the reduction trans-
lates attacks on the scheme into attacks on the assumption that are of similar
complexity and success probability. In other words, the difficulty of breaking the
scheme is quantitatively not lower than the difficulty of breaking the investigated
assumption.

Tight security reductions are also beneficial from a practical point of view.
Indeed, assume that we choose the keylength of a scheme so as to guarantee that
the only way to break that scheme is to break a computational assumption on
currently secure parameters.1 Then, a tight reduction enables smaller keylength
recommendations (than with a non-tight reduction in which, say, the attack on
the assumption is much more complex than the attack on the scheme).

Tightly secure PKE schemes. The focus of this paper are public-key encryp-
tion (PKE) schemes with a tight security reduction. The investigation of this
topic was initiated already in 2000 by Bellare, Boldyreva, and Micali [3]. How-
ever, the first tightly secure encryption scheme based on a standard assumption
was presented only in 2012 [13], and was far from practical. Many more efficient
schemes were proposed [1,2,4,5,10–12,15,19,20] subsequently, but Gay et al. [9]
(henceforth GHKW) were the first to present a pairing-free tightly secure PKE
scheme from a standard assumption. Their PKE scheme has short ciphertexts
(of three group elements), and its efficiency compares favorably with the popular
Cramer-Shoup encryption scheme. Still, the GHKW construction suffers from a
large public key (of about 200 group elements). Figure 1 summarizes relevant
features of selected existing PKE schemes.

|pk | |c| − |m|
3 3 O(Q) 1 LIN = DDH

k + 1 k + 1 O(Q) k LIN k ≥ 1
O(1) O(λ) O(1) 2 LIN
O(λ) 47 O(λ) 2 LIN
O(λ) 12 O(λ) 2 LIN
O(λ) 6k O(λ) k LIN k ≥ 1
2λk 3k O(λ) k LIN k ≥ 1

2k(k + 5) k + 4 O(λ) k LIN k ≥ 2
20 28 O(λ) DCR

6 3 O(λ) 1 LIN = DDH
2k(k + 4) 4k O(λ) k LIN k ≥ 2

Fig. 1. Comparison amongst CCA-secure encryption schemes, where Q is the number
of ciphertexts, |pk | denotes the size (in groups elements) of the public key, and |c|−|m|
denotes the ciphertext overhead, ignoring smaller contributions from symmetric-key
encryption.

1 This is unfortunately different from current practice, which does not take into
account security reductions at all: practical keylength recommendations are such
that known attacks on the scheme itself are infeasible [18].
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Our contribution. In this work, we construct a pairing-free PKE scheme with
an almost2 tight security reduction to a standard assumption (the Decisional
Diffie-Hellman assumption), and with short ciphertexts and keys. Our scheme
improves upon GHKW in that it removes its main disadvantage (of large public
keys), although our encryption and decryption algorithms are somewhat less
efficient than those of GHKW.

Our construction can be seen as a variant of the state-of-the-art Kurosawa-
Desmedt PKE scheme [17] with an additional consistency proof. This consistency
proof ensures that ciphertexts are of a special form, and is in fact very efficient
(in that it only occupies one additional group element in the ciphertext). This
proof is the main technical novelty of our scheme, and is the key ingredient to
enable an almost tight security reduction.

Technical overview. The starting point of our scheme is the Kurosawa-
Desmedt PKE scheme from [17]. In this scheme, public parameters, public keys,
and ciphertexts are of the following form:3

pars = [A ] ∈ G
2×1 for random A ∈ Z

2×1
|G|

pk = [k�
0 A, k�

1 A ] ∈ G × G for random k0,k1 ∈ Z
2
|G|

C =
(
[ c = Ar ], EK(M)

)
for random r ∈ Z|G|,

K = [(k0 + τk1)�Ar],
and τ = H([c]).

(1)

Here, E is the encryption algorithm of a symmetric authenticated encryption
scheme, and H is a collision-resistant hash function.

In their (game-based) proof of IND-CCA security (with one scheme instance
and one challenge ciphertext), Kurosawa and Desmedt proceed as follows: first,
they use the secret key k0,k1 to generate the value K in the challenge ciphertext
from a given [c] = [Ar] (through K = [(k0+τk1)�c]). This enables the reduction
to forget the witness r, and thus to modify the distribution of c. Next, Kurosawa
and Desmedt use the Decisional Diffie-Hellman (DDH) assumption to modify the
setup of c to a random vector not in the span of A. Finally, they argue that this
change effectively randomizes the value K from the challenge ciphertext (which
then enables a reduction to the security of E).

To see that K is indeed randomized, note that once c /∈ span(A), the value
K = [(k0 + τk1)�c] depends on entropy in k0,k1 that is not leaked through pk .
Furthermore, Kurosawa and Desmedt show that even a decryption oracle leaks
no information about that entropy. (Intuitively, this holds since any decryption
query with c ∈ span(A) only reveals information about k0,k1 that is already
contained in pk . On the other hand, any decryption query with c /∈ span(A)

2 Like [5], we call our reduction almost tight, since its loss (of λ) is independent of the
number of challenges and users, but not constant.

3 In this paper, we use an implicit notation for group elements. That is, we write
[x] := gx ∈ G

n for a fixed group generator g ∈ G and a vector x ∈ Z
n
|G|, see [8]. We

also use the shorthand notation [x,y] := ([x], [y]).
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results in a computed key K that is independently random, and thus will lead
the symmetric authenticated encryption scheme to reject the whole ciphertext.)

An argument of Bellare, Boldyreva, and Micali [3] (which is applied in [3] to
the related Cramer-Shoup encryption scheme) shows that the security proof for
the Kurosawa-Desmedt scheme carries over to a setting with many users. Due
to the re-randomizability properties of the DDH assumption, the quality of the
corresponding security reduction does not degrade in the multi-user scenario.
The security proof of Kurosawa and Desmedt does however not immediately
scale to a larger number of ciphertexts. Indeed, observe that the final argument
to randomize K relies on the entropy in k0,k1. Since this entropy is limited,
only a limited number of ciphertexts (per user) can be randomized at a time.4

First trick: randomize k0. In our scheme, we adapt two existing techniques
for achieving tight security. The first trick, which we borrow from GHKW [9]
(who in turn build upon [5,15]), consists in modifying the secret key k0,k1

first, before randomizing the values K from challenge ciphertexts. Like the orig-
inal Kurosawa-Desmedt proof, our argument starts out by first using k0,k1 to
generate challenge ciphertexts, and then simultaneously randomizing all values c
from challenges (using the re-randomizability of DDH). But then we use another
reduction to DDH, with the DDH challenges embedded into k0 and in all chal-
lenge c, to simultaneously randomize all challenge K at once.

During this last reduction, we will (implicitly) set up k0 = k′
0 + αA⊥ for a

known k′
0, a known A⊥ ∈ Z

2×1
|G| with (A⊥)�A = 0, and an unknown α ∈ Z|G|

from the DDH challenge [α, β, γ]. We can thus decrypt all ciphertexts with c ∈
span(A) (since k�

0 Ar = k′�
0 Ar), and randomize all challenge ciphertexts (since

their c satisfies c /∈ span(A) and thus allows to embed β and γ into c and K,
respectively). However, we will not be able to answer decryption queries with
c /∈ span(A). Hence, before applying this trick, we will need to make sure that
any such decryption query will be rejected anyway.

Second trick: the consistency proof. We do not know how to argue (with
a tight reduction) that such decryption queries are rejected in the original
Kurosawa-Desmedt scheme from (1). Instead, we introduce an additional consis-
tency proof in the ciphertext, so ciphertexts in our scheme now look as follows:

C =
(
[ c = Ar ], π, EK(M)

)
for random r ∈ Z|G|,

K = [(k0 + τk1)�Ar],
and τ = H([c]).

(2)

Here, π is a proof (yet to be described) that shows the following statement:

c ∈ span(A) ∨ c ∈ span(A0) ∨ c ∈ span(A1), (3)

4 We note that a generic hybrid argument shows the security of the Kurosawa-Desmedt
scheme in a multi-ciphertext setting. However, the corresponding security reduction
loses a factor of Q in success probability, where Q is the number of challenge cipher-
texts.



Kurosawa-Desmedt Meets Tight Security 137

where A0,A1 ∈ Z
2×1
|G| are different (random but fixed) matrices. Our challenge

ciphertexts will satisfy (3) at all times, even after their randomization.
We will then show that all “inconsistent” decryption queries (with c /∈

span(A)) are rejected with a combination of arguments from GHKW [9] and
Hofheinz [11]. We will proceed in a number of hybrids. In the i-th hybrid, all
challenge ciphertexts are prepared with a value of k0 + Fi(τ|i) instead of k0,
where Fi(τ|i) is a random function applied to the first i bits of τ . Likewise,
in all decryption queries with inconsistent c (i.e., with c /∈ span(A)), we use
k0 +Fi(τ|i). Going from the i-th to the (i + 1)-th hybrid proceeds in a way that
is very similar to the one from GHKW: First, we set up the c value in each
challenge ciphertext to be in span(Aτi+1), where τi+1 is the (i + 1)-th bit of the
respective τ .

Next, we add a dependency of the used k0 on the (i+1)-th bit of τ . (That is,
depending on τi+1, we will use two different values of k0 both for preparing chal-
lenge ciphertexts, and for answering decryption queries.) This is accomplished
by adding random values kΔ with k�

ΔAτi+1 = 0 to k0. Indeed, for challenge
ciphertexts, adding such kΔ values results in the same computed keys K, and
thus cannot be detected. We note however that at this point, we run into a com-
plication: since decryption queries need not have c ∈ span(Aτi+1), we cannot
simply add random values kΔ with k�

ΔAτi+1 = 0 to k0. (This could be detected
in case c /∈ span(Aτi+1).) Instead, here we rely on a trick from [11], and use that
even adversarial c values must lie in span(A) or span(Ab) for b ∈ {0, 1}. (This
is also the reason why we will eventually have to modify and use k1. We give
more details on this step inside.)

Once k0 is fully randomized, the resulting K computed upon decryption
queries with c /∈ span(A) will also be random, and thus any such decryption
query will be rejected. Hence, using the first trick above, security of our scheme
follows.

We finally mention that our complete scheme generalizes to weaker assump-
tions, including the k-Linear family of assumptions (see Fig. 1).

Relation to existing techniques. We borrow techniques from both GHKW [9]
and Hofheinz [11], but we need to modify and adapt them for our strategy in
several important respects. While the argument from [9] also relies on a consis-
tency proof that a given ciphertext lies in one of three linear subspaces (span(A)
or span(Ab)), their consistency proof is very different from ours. Namely, their
consistency proof is realized entirely through a combination of different linear
hash proof systems, and requires orthogonal subspaces span(Ab). This requires a
large number (i.e., 2λ) of hash proof systems, and results in large public keys to
accommodate their public information. Furthermore, the ciphertexts in GHKW
require a larger [c] ∈ G

3k (compared to the Kurosawa-Desmedt scheme), but no
explicit proof π in C This results in ciphertexts of the same size as ours.

On the other hand, [11] presents a scheme with an explicit consistency proof
π for a statement similar to ours (and also deals with the arising technical com-
plications sketched above similarly). But his construction and proof are aimed at
a more generic setting which also accommodates the DCR assumption (both for
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the PKE and consistency proof constructions). As a consequence, his construc-
tion does not modify the equivalent of our secret key k0,k1 at all, but instead
modifies ciphertexts directly. This makes larger public keys and ciphertexts with
more “randomization slots” necessary (see Fig. 1), and in fact also leads to a
more complicated proof. Furthermore, in the discrete-log setting, the necessary
“OR”-style proofs from [11] require pairings, and thus his PKE scheme does as
well. In contrast, our scheme requires only a weaker notion of “OR”-proofs, and
we show how to instantiate this notion without pairings.

Crucial ingredient: efficient pairing-free OR-proofs. In the above argu-
ment, a crucial component is of course a proof π for (3). We present a designated-
verifier proof π that only occupies one group element (in the DDH case) in C.
While the proof nicely serves its purpose in our scheme, we also remark that our
construction is not as general as one would perhaps like: in particular, honest
proofs (generated with public information and a witness) can only be generated
for c ∈ span(A) (but not for c ∈ span(A0) or c ∈ span(A1)).

Our proof system is perhaps best described as a randomized hash proof
system. We will outline a slightly simpler version of the system which only proves
c ∈ span(A) ∨ c ∈ span(A0). In that scheme, the public key contains a value
[k�

y A], just like in a linear hash proof system (with secret key ky) for showing
c ∈ span(A) (see, e.g., [7]). Now given either the secret key ky or a witness r
to the fact that c = Ar, we can compute [k�

y c]. The idea of our system is to
encrypt this value [k�

y c] using a special encryption scheme that is parameterized
over c (and whose public key is also part of the proof system’s public key). The
crucial feature of that encryption scheme is that it becomes lossy if and only if
c ∈ span(A0).

We briefly sketch the soundness of our proof system: we claim that even in
a setting in which an adversary has access to many simulated proofs for valid
statements (with c ∈ span(A) ∪ span(A0)), it cannot forge proofs for invalid
statements. Indeed, proofs with c ∈ span(A) only depend on (and thus only
reveal) the public key [k�

y A]. Moreover, by the special lossiness of our encryption
scheme, proofs with c ∈ span(A0) do not reveal anything about ky. Hence, an
adversary will not gain any information about ky beyond k�

y A. However, any
valid proof for c /∈ span(A) ∪ span(A0) would reveal the full value of ky, and
thus cannot be forged by an adversary that sees only proofs for valid statements.

We remark that our proof system has additional nice properties, including
a form of on-the-fly extensibility to more general statements (and in particular
to more than two “OR branches”. We formalize this type of proof systems as
“qualified proof systems” inside.

Roadmap. After recalling some preliminaries in Sect. 2, we introduce the notion
of designated-verifier proof systems in Sect. 3, along with an instantiation in
Sect. 4. Finally, in Sect. 5, we present our encryption scheme (in form of a key
encapsulation mechanism).
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2 Preliminaries

2.1 Notations

We start by introducing some notation used throughout this paper. First we
denote by λ ∈ N the security parameter. By negl : N → R≥0 we denote a negligi-
ble function. For an arbitrary set B, by x ←R B we denote the process of sampling
an element x from B uniformly at random. For any bit string τ ∈ {0, 1}∗, we
denote by τi the i-th bit of τ and by τ|i ∈ {0, 1}i the bit string comprising the
first i bits of τ .

Let p be a prime, and k, � ∈ N such that � > k. Then for any matrix A ∈ Z
�×k
p ,

we write A ∈ Z
k×k
p for the upper square matrix of A, and A ∈ Z

(�−k)×k
p for the

lower � − k rows of A. With

span(A) := {Ar | r ∈ Z
k
p} ⊂ Z

�
p,

we denote the span of A.
For vectors v ∈ Z

2k
p , by v ∈ Z

k
p we denote the vector consisting of the upper

k entries of v and accordingly by v ∈ Z
k
p we denote the vector consisting of the

lower k entries of v.
As usual by A� ∈ Z

k×�
p we denote the transpose of A and if � = k and A is

invertible by A−1 ∈ Z
�×�
p we denote the inverse of A.

For � ≥ k by A⊥ we denote a matrix in Z
�×(�−k)
p with A�A⊥ = 0 and rank

� − k. We denote the set of all matrices with these properties as

orth(A) := {A⊥ ∈ Z
�×(�−k)
p | A�A⊥ = 0 and A⊥ has rank � − k}.

2.2 Hash Functions

A hash function generator is a probabilistic polynomial time algorithm H that,
on input 1λ, outputs an efficiently computable function H : {0, 1}∗ → {0, 1}λ,
unless domain and co-domain are explicitly specified.

Definition 1 (Collision Resistance). We say that a hash function generator
H outputs collision-resistant functions H, if for all PPT adversaries A and H ←R

H(1λ) it holds

AdvCR
H,A(λ) := Pr

[
x 	= x′ ∧ H(x) = H(x′) | (x, x′) ← A(1λ,H)

] ≤ negl(λ).

We say a hash function is collision resistant if it is sampled from a collision
resistant hash function generator.

Definition 2 (Universality). We say a hash function generator H is univer-
sal, if for every x, x′ ∈ {0, 1}∗ with x 	= x′ it holds

Pr
[
h(x) = h(x′) | h ←R H(1λ)

]
=

1
2λ

.

We say a hash function is universal if it is sampled from a universal hash func-
tion generator.
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Lemma 1 (Leftover Hash Lemma [16]). Let X ,Y be sets, � ∈ N and h : X →
Y be a universal hash function. Then for all X ←R X , U ←R Y and ε > 0 with
log |X | ≥ log |Y| + 2 log ε we have

Δ ((h, h(X)), (h, U)) ≤ 1
ε
,

where Δ denotes the statistical distance.

2.3 Prime-Order Groups

Let GGen be a PPT algorithm that on input 1λ returns a description G =
(G, p, P ) of an additive cyclic group G of order p for a 2λ-bit prime p, whose
generator is P .

We use the representation of group elements introduced in [8]. Namely, for a ∈
Zp, define [a] = aP ∈ G as the implicit representation of a in G. More generally,
for a matrix A = (aij) ∈ Z

�×k
p we define [A] as the implicit representation of A

in G:

[A] :=

⎛

⎝
a11P ... a1kP

a�1P ... a�kP

⎞

⎠ ∈ G
�×k

Note that from [a] ∈ G it is hard to compute the value a if the discrete logarithm
assumption holds in G. Obviously, given [a], [b] ∈ G and a scalar x ∈ Zp, one
can efficiently compute [ax] ∈ G and [a + b] ∈ G.

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH)
assumption from [8].

Definition 3 (Matrix Distribution). Let k, � ∈ N, with � > k and p be a
2λ-bit prime. We call D�,k a matrix distribution if it outputs matrices in Z

�×k
p

of full rank k in polynomial time.

In the following we only consider matrix distributions D�,k, where for all
A ←R D�,k the first k rows of A form an invertible matrix.

The D�,k-Matrix Diffie-Hellman problem is, for a randomly chosen A ←R

D�,k, to distinguish the between tuples of the form ([A], [Aw]) and ([A], [u]),
where w ←R Z

k
p and u ←R Z

�
p.

Definition 4 (D�,k-Matrix Diffie-Hellman D�,k-MDDH). Let D�,k be a
matrix distribution. We say that the D�,k-Matrix Diffie-Hellman (D�,k-MDDH)
assumption holds relative to a prime order group G if for all PPT adversaries A,

Advmddh
G,D�,k,A(λ) : = |Pr[A(G, [A], [Aw]) = 1] − Pr[A(G, [A], [u]) = 1]|

≤ negl(λ),

where the probabilities are taken over G := (G, p, P ) ←R GGen(1λ), A ←R

D�,k,w ←R Z
k
p,u ←R Z

�
p.
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For Q ∈ N, W ←R Z
k×Q
p and U ←R Z

�×Q
p , we consider the Q-fold

D�,k-MDDH assumption, which states that distinguishing tuples of the form
([A], [AW]) from ([A], [U]) is hard. That is, a challenge for the Q-fold D�,k-
MDDH assumption consists of Q independent challenges of the D�,k-MDDH
Assumption (with the same A but different randomness w). In [8] it is shown
that the two problems are equivalent, where the reduction loses at most a factor
� − k.

Lemma 2 (Random self-reducibility of D�,k-MDDH, [8]). Let �, k, Q ∈ N

with � > k and Q > � − k. For any PPT adversary A, there exists an adversary
B such that T (B) ≈ T (A) + Q · poly(λ) with poly(λ) independent of T (A), and

AdvQ-mddh
G,D�,k,A(λ) ≤ (� − k) · Advmddh

G,D�,k,B(λ) +
1

p − 1
.

Here

AdvQ-mddh
G,D�,k,A(λ) := |Pr[A(G, [A], [AW]) = 1] − Pr[A(G, [A], [U]) = 1]| ,

where the probability is over G := (G, p, P ) ←R GGen(1λ), A ←R U�,k,W ←R

Z
k×Q
p and U ←R Z

�×Q
p .

The uniform distribution is a particular matrix distribution that deserves
special attention, as an adversary breaking the U�,k-MDDH assumption can also
distinguish between real MDDH tuples and random tuples for all other possible
matrix distributions.

Definition 5 (Uniform distribution). Let �, k ∈ N, with � ≥ k, and a prime
p. We denote by U�,k the uniform distribution over all full-rank � × k matrices
over Zp. Let Uk := Uk+1,k.

Lemma 3 (D�,k-MDDH ⇒ U�,k-MDDH, [8]). Let D�,k be a matrix distribution.
For any adversary A on the U�,k-distribution, there exists an adversary B on the
D�,k-assumption such that T (B) ≈ T (A) and Advmddh

G,U�,k,A(λ) = Advmddh
G,D�,k,B(λ).

We state a tighter random-self reducibility property for case of the uniform
distribution.

Lemma 4 (Random self-reducibility of U�,k-MDDH, [8]). Let �, k, Q ∈ N

with � > k. For any PPT adversary A, there exists an adversary B such that
T (B) ≈ T (A) + Q · poly(λ) with poly(λ) independent of T (A), and

AdvQ-mddh
G,U�,k,A(λ) ≤ Advmddh

G,U�,k,B(λ) +
1

p − 1
.

We also recall this property of the uniform distribution, stated in [9].

Lemma 5 (Uk-MDDH ⇔ U�,k-MDDH). Let �, k ∈ N, with � > k. For any
adversary A, there exists an adversary B (and vice versa) such that T (B) ≈ T (A)
and Advmddh

G,U�,k,A(λ) = Advmddh
G,Uk,B(λ) .
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In this paper, for efficiency considerations, and to simplify the presentation
of the proof systems in Sect. 3, we are particularly interested in the case k = 1,
which corresponds to the DDH assumption, that we recall here.

Definition 6 (DDH). We say that the DDH assumption holds relative to a
prime order group G if for all PPT adversaries A,

Advddh
G,A(λ) : = |Pr[A(G, [a], [r], [ar]) = 1] − Pr[A(G, [a], [r], [b]| ≤ negl(λ),

where the probabilities are taken over G := (G, p, P ) ←R GGen(1λ), a, b, r
←R Zp.

Note that the DDH assumption is equivalent to D2,1-MDDH, where D2,1 is
the distribution that outputs matrices

(
1
a

)
, for a ←R Zp chosen uniformly at

random.

2.4 Public-Key Encryption

Definition 7 (Public-Key Encryption). A public-key encryption scheme is
a tuple of three PPT algorithms (Gen,Enc,Dec) such that:

Gen(1λ): returns a pair (pk , sk) of a public and a secret key.
Enc(pk ,M): given a public key pk and a message M ∈ M(λ), returns a
ciphertext C.
Dec(pk , sk , C): deterministically decrypts the ciphertext C to obtain a mes-
sage M or a special rejection symbol ⊥.

We say PKE := (Gen,Enc,Dec) is perfectly correct, if for all λ ∈ N,

Pr[Dec(pk , sk ,Enc(pk ,M)) = M ] = 1,

where the probability is over (pk , sk) ←R Gen(1λ) , C ←R Enc(pk ,M).

Definition 8 (Multi-ciphertext CCA security). For any public-key encryp-
tion scheme PKE = (Gen,Enc,Dec) and any stateful adversary A, we define
the following security experiment:

Expcca
PKE,A(λ):

(pk, sk) ←R Gen(1λ)
b ←R {0, 1}
Cenc := ∅
b′ ←R AOenc(·,·),Odec(·)(pk)
if b = b′ return 1
else return 0

Oenc(M0, M1):
if |M0| = |M1|

C ←R Enc(pk , Mb)
Cenc := Cenc ∪ {C}
return C

Odec(C):
if C /∈ Cenc

M := Dec(pk , sk , C)
return M

else return ⊥

We say PKE is IND-CCA secure, if for all PPT adversaries A, the advantage

Advcca
PKE,A(λ) :=

∣
∣
∣
∣Pr[Expcca

PKE,A(λ) = 1] − 1
2

∣
∣
∣
∣ ≤ negl(λ).
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2.5 Key Encapsulation Mechanism

Instead of presenting an IND-CCA secure encryption scheme directly, we con-
struct a key encapsulation mechanism (KEM) and prove that it satisfies the secu-
rity notion of indistinguishability against constrained chosen-ciphertext attacks
(IND-CCCA) [14]. By the results of [14], together with an arbitrary authen-
ticated symmetric encryption scheme, this yields an IND-CCA secure hybrid
encryption.5 Roughly speaking, the CCCA security experiment, in contrast to
the CCA experiment, makes an additional requirement on decryption queries.
Namely, in addition to the ciphertext, the adversary has to provide a predicate
implying some partial knowledge about the key to be decrypted. The idea of
hybrid encryption and the notion of a KEM was first formalized in [6].

Definition 9 (Key Encapsulation Mechanism). A key encapsulation mech-
anism is a tuple of PPT algorithms (KGen,KEnc,KDec) such that:

KGen(1λ): generates a pair (pk , sk) of keys.
KEnc(pk): on input pk, returns a ciphertext C and a symmetric key K ∈
K(λ), where K(λ) is the key-space.
KDec(pk , sk , C): deterministically decrypts the ciphertext C to obtain a key
K ∈ K(λ) or a special rejection symbol bot.

We say (Gen,Enc,Dec) is perfectly correct, if for all λ ∈ N,

Pr[KDec(pk , sk , C) = K] = 1,

where (pk , sk) ←R Gen(1λ), (K,C) ←R KEnc(pk) and the probability is taken
over the random coins of Gen and KEnc.

As mentioned above, for constrained chosen ciphertext security, the adversary
has to have some knowledge about the key up front in order to make a decryption
query. As in [14] we will use a measure for the uncertainty left and require it to
be negligible for every query, thereby only allowing decryption queries where the
adversary has a high prior knowledge of the corresponding key. We now provide
a formal definition.

Definition 10 (Multi-ciphertext IND-CCCA security). For any key
encapsulation mechanism KEM = (KGen,KEnc,KDec) and any stateful
adversary A, we define the following experiment:

Expccca
KEM,A(λ):

(pk, sk) ←R KGen(1λ)
b ←R {0, 1}
Cenc := ∅
b′ ←R AOenc,Odec(·,·)(pk)
if b = b′ return 1
else return 0

Oenc:
K0 ←R K(λ)
(C, K1) ←R KEnc(pk)
Cenc := Cenc ∪ {C}
return (C, Kb)

Odec(predi, Ci):
Ki := KDec(pk , sk , Ci)
if Ci /∈ Cenc and
if predi(Ki) = 1

return Ki

else return ⊥

5 The corresponding reduction is tight also in the multi-user and multi-ciphertext
setting. Suitable (one-time) secure symmetric encryption schemes exist even uncon-
ditionally [14].
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Here predi : K(λ) �→ {0, 1} denotes the predicate sent in the i-th decryption
query, which is required to be provided as the description of a polynomial time
algorithm (which can be enforced for instance by requiring it to be given in form
of a circuit). Let further Qdec be the number of total decryption queries made by
A during the experiment, which are independent of the environment (hereby we
refer to the environment the adversary runs in) without loss of generality. The
uncertainty of knowledge about the keys corresponding to decryption queries is
defined as

uncertA(λ) :=
1

Qdec

Qdec∑

i=1

PrK←RK(λ)[predi(K) = 1].

We say that the key encapsulation mechanism KEM is IND-CCCA secure,
if for all PPT adversaries with negligible uncertA(λ), for the advantage we have

Advccca
KEM,A(λ) :=

∣
∣
∣
∣Pr[Expccca

KEM,A(λ) = 1] − 1
2

∣
∣
∣
∣ ≤ negl(λ).

Note that the term uncertA(λ) in the final reduction (proving IND-CCA
security of the hybrid encryption scheme consisting of an unconditionally one-
time secure authenticated encryption scheme and an IND-CCCA secure KEM)
is statistically small (due to the fact that the symmetric building block is uncon-
ditionally secure). Thus we are able obtain a tight security reduction even if
the term uncertA(λ) is multiplied by the number of encryption and decryption
queries in the security loss (as it will be the case for our construction).

3 Qualified Proof Systems

The following notion of a proof system is a combination of a non-interactive
designated verifier proof system and a hash proof system. Our combined proofs
consist of a proof Π and a key K, where the key K can be recovered by the
verifier with a secret key and the proof Π. The key K can be part of the key in
the key encapsulation mechanism presented later and thus will not enlarge the
ciphertext size.

Definition 11 (Proof system). Let L = {Lpars} be a family of languages
indexed by the public parameters pars, with Lpars ⊆ Xpars and an efficiently
computable witness relation R. A proof system for L is a tuple of PPT algorithms
(PGen,PPrv,PVer,PSim) such that:

PGen(1λ): generates a public key ppk and a secret key psk.
PPrv(ppk , x, w): given a word x ∈ L and a witness w with R(x,w) = 1,
deterministically outputs a proof Π and a key K.
PVer(ppk , psk , x,Π): on input ppk, psk, x ∈ X and Π, deterministically
outputs a verdict b ∈ {0, 1} and in case b = 1 additionally a key K, else ⊥.
PSim(ppk , psk , x): given the keys ppk, psk and a word x ∈ X , deterministi-
cally outputs a proof Π and a key K.
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The following definition of a qualified proof system is a variant of “benign
proof systems” as defined in [11] tailored to our purposes. Compared to benign
proof systems, our proof systems feature an additional “key derivation” stage,
and satisfy a weaker soundness requirement (that is of course still sufficient for
our purpose). We need to weaken the soundness condition (compared to benign
proof systems) in order to prove soundness of our instantiation.

We will consider soundness relative to a language Lsnd ⊇ L. An adversary
trying to break soundness has access to an oracle simulating proofs and keys for
statements randomly chosen from Lsnd \ L and a verification oracle, which only
replies other than ⊥ if the adversary provides a valid proof and has a high a-
priori knowledge of the corresponding key. The adversary wins if it can provide
a valid verification query outside Lsnd. The adversary loses immediately if it
provides a valid verification query in Lsnd \ L. This slightly weird condition is
necessitated by our concrete instantiation which we do not know how to prove
sound otherwise. We will give more details in the corresponding proof in Sect. 4.2.
The weaker notion of soundness still suffices to prove our KEM secure, because
we employ soundness at a point where valid decryption queries in Lsnd \ L end
the security experiment anyway.

Definition 12 (Qualified Proof System). Let PS = (PGen,PPrv,
PVer,PSim) be a proof system for a family of languages L = {Lpars}. Let
Lsnd = {Lsnd

pars} be a family of languages, such that Lpars ⊆ Lsnd
pars . We say that

PS is Lsnd-qualified, if the following properties hold:

Completeness: For all possible public parameters pars, for all words x ∈ L,
and all witnesses w such that R(x,w) = 1, we have

Pr[PVer(ppk , psk , x,Π) = (1,K)] = 1,

where the probability is taken over (ppk , psk) ←R PGen (1λ) and (Π,K) :=
PPrv(ppk, x, w).
Uniqueness of the proofs: For all possible public parameters pars, all key
pairs (ppk , psk) in the output space of PGen (1λ), and all words x ∈ L, there
exists at most one Π such that PVer(ppk , psk , x,Π) outputs the verdict 1.
Perfect zero-knowledge: For all public parameters pars, all key pairs
(ppk , psk) in the range of PGen(1λ), all words x ∈ L, and all witnesses
w with R(x,w) = 1, we have

PPrv(ppk , x, w) = PSim(ppk , psk , x).

Constrained Lsnd-soundness: For any stateful PPT adversary A, we con-
sider the following soundness game (where PSim and PVer are implicitly
assumed to have access to ppk):
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Expcsnd
PS,A(λ):

(ppk , psk) ←R PGen(1λ)
AOsim,Over(·,·,·)(1λ, ppk)
if Over returned lose

return 0
if Over returned win

return 1
return 0

Osim:
x ←R Lsnd\L
(Π, K) ← PSim(psk , x)
return (x, Π, K)

Over(x, Π, pred):
(v, K) := PVer(psk , x, Π)
if v = 1 and pred(K) = 1

if x ∈ L
return K

else if x ∈ Lsnd

return lose and
abort

else return win and
abort

else return ⊥

Let Qver be the total number of oracle queries to Over and predi be the predi-
cate submitted by A on the i-th query. The adversary A loses and the experiment
aborts if the verification oracle answers lose on some query of A. The adversary
A wins, if the oracle Over returns win on some query (x,Π, pred) of A with
x /∈ Lsnd and the following conditions hold:

– The predicate corresponding to the i-th query is of the form predi : K∪{⊥} →
{0, 1} with predi(⊥) = 0 for all i ∈ {1, . . . , Qver}.

– For all environments E having at most running time of the described con-
strained soundness experiment, we require that

uncertsndA (λ) :=
1

Qver

Qver∑

i=1

PrK∈K[predi(K) = 1 when A runs in E ]

is negligible in λ.
Note that in particular the adversary cannot win anymore after the verifica-
tion oracle replied lose on one of its queries, as in this case the experiment
directly aborts and outputs 0. Let Advcsnd

Lsnd,PS,A(λ) := Pr[Expcsnd
PS,A(λ) = 1],

where the probability is taken over the random coins of A and Expcsnd
PS,A. Then

we say constrained Lsnd-soundness holds for PS, if for every PPT adversary
A, Advcsnd

Lsnd,PS,A(λ) = negl(λ).

To prove security of the key encapsulation mechanism later, we need to switch
between two proof systems. Intuitively this provides an additional degree of
freedom, allowing to randomize the keys of the challenge ciphertexts gradually.
To justify this transition, we introduce the following notion of indistinguishable
proof systems.

Definition 13 (Lsnd-indistinguishability of two proof systems). Let L ⊆
Lsnd be (families of) languages. Let PS0 := (PGen0,PPrv0,PVer0, PSim0)
and PS1 := (PGen1,PPrv1,PVer1,PSim1) proof systems for L. For every
adversary A, we define the following experiment (where PSimb and PVerb are
implicitly assumed to have access to ppk):
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ExpPS−ind

Lsnd,PS0,PS1,A(λ):

b ←R {0, 1}
(ppk , psk) ← PGenb(1

λ)

b′ ← AOb
sim,Ob

ver(·,·)(ppk)
if b = b′ return 1
else return 0

Ob
sim:

x ←R Lsnd\L
(Π, K) ← PSimb(psk , x)
return (x, Π, K)

Ob
ver(x, Π, pred):

(v, K) := PVerb(psk , x, Π)
if v = 1 and pred(K) = 1
and x ∈ Lsnd

return K
else return ⊥

As soon as A has submitted one query which is replied with lose by the verification
oracle, the experiment aborts and outputs 0.

We define the advantage function

AdvPS-ind
Lsnd,PS0,PS1,A(λ) :=

∣
∣
∣
∣Pr

[
ExpPS−ind

Lsnd,PS0,PS1,A(λ) = 1
]

− 1
2

∣
∣
∣
∣ .

We say PS0 and PS1 are Lsnd-indistinguishable, if for all (unbounded) algo-
rithms A the advantage AdvPS-ind

L,PS0,PS1,A(λ) is negligible in λ.

Note that we adopt a different (and simpler) definition for the verification
oracle in the indistinguishability game than in the soundness game, in particular
it leaks more information about the keys. We can afford this additional leakage
for indistinguishability, but not for soundness.

In order to prove security of the key encapsulation mechanism presented
in Sect. 5, we will require one proof system and the existence of a second proof
system it can be extended to. We capture this property in the following definition.

Definition 14 (L̃snd-extensibility of a proof system). Let L ⊆ Lsnd ⊆ L̃snd

be three (families of) languages. An Lsnd-qualified proof system PS for language
L is said to be L̃snd-extensible if there exists a proof system P̃S for L that
complies with L̃snd-constrained soundness and such that PS and P̃S are Lsnd-
indistinguishable.

4 The OR-Proof

In the following sections we explain how the public parameters parsPS are sam-
pled, how our system of OR-languages is defined and how to construct a qual-
ified proof system complying with constrained soundness respective to these
languages.

4.1 Public Parameters and the OR-Languages

First we need to choose a k ∈ N depending on the assumption we use to prove
security of our constructions. We invoke GGen(1λ) to obtain a group description
G = (G, p, P ) with |G| ≥ 22λ. Next we sample matrices A ←R D2k,k and
A0 ←R U2k,k, where we assume without loss of generality that A0 is full rank.
Let H0 and H1 be universal hash function generators returning functions of
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the form h0 : Gk+1 → Z
k
p and h1 : G2 → Zp respectively. Let h0 ←R H0 and

h1 ←R H1.
Altogether we define the public parameters for our proof system to comprise

parsPS := (k,G, [A], [A0], h0, h1).

We assume from now that all algorithms have access to parsPS without explicitly
stating it as input.

Additionally let A1 ∈ Z
2k×k
p be a matrix distributed according to U2k,k with

the restriction A0 = A1. Then we define the languages

L : = span([A]),
Lsnd : = span([A]) ∪ span([A0]),

L̃snd : = span([A]) ∪ span([A0]) ∪ span([A1]).

A crucial building block for the key encapsulation mechanism will be a proof
system PS that is Lsnd-qualified and L̃snd-extensible. We give a construction
based on D2k,k-MDDH in the following section.

4.2 A Construction Based on MDDH

The goal of this section is to construct an Lsnd-qualified proof system for L
based on D2k,k-MDDH for any matrix distribution D2k,k (see Definition 3). To
this aim we give a proof system PrePS := (PrePGen, P rePPrv, P rePVer,
P rePSim) for L in Fig. 2.

In case k = 1 this is sufficient, namely setting PGen := PrePGen, PPrv :=
PrePPrv, PVer := PrePVer and PSim := PrePSim, we can prove that PS :
= (PGen,PPrv,PVer,PSim) is Lsnd-qualified under the DDH assumption.
For the case k > 1 we give the construction of PS in the full version.

As a compromise between generality and readability, we decided to give the
proof in full detail for k = 1 (i.e. the DDH case), while sticking to the general
matrix notation. As for k = 1 a vector in Z

k
p = Z

1
p is merely a single element,

we do not use bold letters to denote for instance x and r in Zp (other than in
Fig. 2).

Theorem 1. If the DDH assumption holds in G, and h0, h1 are universal hash
functions, then for k = 1 the proof system PS := PrePS described in Fig. 2 is
Lsnd-qualified. Further, the proof system PS is L̃snd-extensible.

Proof. Completeness and perfect zero-knowledge follow straightforwardly from
the fact that for all r ∈ Zp, [KxA]r = Kx[Ar] and [KyA]r = Ky[Ar].

Uniqueness of the keys follows from the fact that the verification algorithm
computes exactly one proof [π] (plus the corresponding key [κ]), and aborts if
[π] 	= [π�].

We prove in Lemm 6 that PS satisfies constrained Lsnd-soundness.
In the full version we prove that PS is L̃snd-extensible. ��



Kurosawa-Desmedt Meets Tight Security 149

PrePGen(1λ)

Kx ←R Z
(k+1)×2k
p

Ky ←R Z
2×2k
p

ppk := ([KxA], [KyA])
psk := (Kx,Ky)

PrePVer(ppk , psk , [c], [π�])

x := h0(Kx[c]) ∈ Z
k
p

y := h1(Ky[c]) ∈ Zp

[π] := [A0] · x + [c] · y ∈ Z
k
p

[κ] := [A0] · x + [c] · y ∈ Z
k
p

[π] = [π�] (1, [κ])
(0, ⊥)

PrePPrv(ppk , [c], r)

x := h0([KxA]r) ∈ Z
k
p

y := h1([KyA]r) ∈ Zp

[π] := [A0] · x + [c] · y
[κ] := [A0] · x + [c] · y

PrePSim(ppk , psk , [c])

x := h0(Kx[c]) ∈ Z
k
p

y := h1(Ky[c]) ∈ Zp

[π] := [A0] · x + [c] · y
[κ] := [A0] · x + [c] · y

Fig. 2. Proof System PrePS for L. For k = 1 the proof system PS := PrePS is
Lsnd-qualified based on DDH.

Lemma 6 (Constrained Lsnd-soundness of PS). If the DDH assumption
holds in G, and h0, h1 are universal hash functions, then the proof system PS
described in Fig. 2 (for k = 1) complies with constrained Lsnd-soundness. More
precisely, for every adversary A, there exists an adversary B such that T (B) ≈
T (A) + (Qsim + Qver) · poly(λ) and

Advcsnd
PS,A(λ) ≤ Advddh

G,B(λ) + Qver · uncertsndA (λ) + (Qsim + Qver) · 2−Ω(λ),

where Qver, Qsim are the number of calls to Over and Osim respectively,
uncertsndA (λ) describes the uncertainty of the predicates provided by A (see Defi-
nition 12) and poly is a polynomial function independent of T (A).

Note that, as explained in Sect. 2.5, in the proof of IND-CCA security
of the final hybrid encryption scheme (where we will employ constrained
Lsnd-soundness of PS to prove IND-CCCA security of our KEM), the term
uncertsndA (λ) will be statistically small, so we can afford to get a security loss of
Qver · uncertsndA (λ) without compromising tightness.

Proof. We prove Lsnd-soundness of PS via a series of games, described in Fig. 3.
We start by giving a short overview of the proof.

The idea is to first randomize x used in simulated proofs of statements [c] ∈
Lsnd \L, using the DDH assumption and the Leftover Hash Lemma (Lemma 1).
This makes [π, κ] an encryption of y that becomes lossy if and only if [c] ∈
span([A0]). For the final proof step, let ([c], [π], [κ]) be an honestly generated
combined proof (with randomized x) with [c] ∈ Lsnd, that is there exists an
r ∈ Zp such that either [c] = [Ar] or [c] = [A0r]. In the former case, we have
y = h1(K�

y [c]) = h1([KyA]r), thus no information about Ky is leaked apart
from what is already contained in the public key. In the latter case, we have
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x
[c] ∈ Lsnd\L [κ] [c] /∈ L

G0 x := h0 (Kx[c]) [A0] · x + [c] · y
Lsnd

G1 x := h0 (Kx[c]) A0A
−1
0

(
[π�] − [c] · y

)
+ [c] · y A,A0

G2
u ←R Z

2
p

x := h0([u])
A0A

−1
0

(
[π�] − [c] · y

)
+ [c] · y A,A0

G3 x ←R Zp A0A
−1
0

(
[π�] − [c] · y

)
+ [c] · y A,A0

Fig. 3. Overview of the proof of Lsnd-constrained soundness of PS. The first column
shows how x is computed for queries to Osim. The second column shows how the key
[κ] is computed by the verifier in queries to Over when [c] /∈ L.

[π, κ] = [A0] · x + [c] · y = [A0](x + r · y), thus y, and in particular Ky, are
completely hidden by the randomized x. This implies that even knowing many
sound tuples ([c], [π], [κ]) for [c] ∈ Lsnd, an adversary cannot do better than
guessing y to produce a valid key for a statement outside Lsnd, and therefore,
only has negligible winning chances.

We start with the constrained Lsnd-soundness game, which we refer to as
game G. In the following we want to bound the probability

ε := Advcsnd
PS,A(λ).

We denote the probability that the adversary A wins the game Gi by

εi := AdvGi,A(λ).

G � G0: From game G0 on, on a valid verification query ([c],Π, pred) the
verification oracle will not return lose and abort anymore, but instead simply
return ⊥. This can only increase the winning chances of an adversary A. Thus
we obtain

ε ≤ ε0.

G0 � G1: We show that ε1 ≥ ε0. The difference between G0 and G1 is
that from game G1 on the oracle Over, on input ([c],Π, pred), first checks if
[c] ∈ span([A]). If this is the case, Over behaves as in game G0. Otherwise, it
does not check if [π�] = [π] anymore, and it computes

[κ] = A0A
−1

0

(
[π�] − [c] · y

)
+ [c] · y,

where y is computed as in G0. Note that this computation requires to know
A0, but not Kx, since x is not computed explicitly. This will be crucial for the
transition to game G2.
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We again have to show that this can only increase the winning chances of
the adversary, in particular we have to show that this change does not affect the
adversaries view on non-winning queries.

First, from game G0 on the verification oracle Over always returns ⊥ on
queries from Lsnd\L, and thus games G0 and G1 only differ when Over is queried
on statements with [c] /∈ Lsnd. Therefore it remains to show that for any query
([c], [π�], pred) to Over with [c] /∈ Lsnd, we have that if the query is winning in
G0, then it is also winning in G1. Suppose ([c], [π�],pred) satisfies the winning
condition in G0. Then, it must hold true that [π�] = [A0] · x + [c] · y and
pred

(
[A0] · x + [c] · y

)
= 1. In G1, the key is computed as

A0A
−1

0

(
[π�] − [c] · y

)
+ [c] · y = [A0] · x + [c] · y,

and thus the query is also winning in G1.
Note that for this step it is crucial that we only require a weakened soundness

condition of our proof systems (compared to benign proof systems [11]). Namely,
if instead the verification oracle in the soundness experiment Over returned the
key [κ] for valid statements x ∈ Lsnd\L, we could not argue that the proof
transition does necessarily at most increase the winning chances of an adversary.
This holds true as in game G1 on a statement x ∈ Lsnd\L with non-valid proof
(but with valid predicate respective to the proof) the key would be returned,
whereas in game G0 “⊥” would be returned.

G1 � G2: In this transition, we use the DDH assumption to change the way x
is computed in simulated proofs. More precisely, we build an adversary B such
that T (B) ≈ T (A) + (Qver + Qsim) · poly(λ) and

|ε2 − ε1| ≤ Advddh
G,B(λ) + 2−Ω(λ).

Let ([B], [h1, . . . ,hQsim
]) be a Qsim-fold DDH challenge. We build the adver-

sary B as follows. First B picks A,A0,A1 as described in Sect. 4.1. Further B
chooses K′

x ←R Z
2×2
p and Ky ←R Z

2×2
p and implicitely sets Kx = K′

x+U(A⊥)�

for some A⊥ ∈ orth(A), where U ∈ Z
2×1
p depends on the Qsim-fold DDH chal-

lenge (and cannot be computed by B). This will allow B to embed the Qsim-fold
DDH challenge into simulation queries. Note that even though B does not know
Kx explicitly, the special form of Kx still allows B to compute the public para-
meters [KxA] = [K′

xA] and [KyA].
For queries to Over containing [c] ∈ L, in order to compute x, B computes

Kx[c] = K′
x[c] using K′

x (note that B can check if [c] ∈ L since it knows A).
Answering queries to Over for c /∈ L does not require knowledge of x. Both cases
can thus be handled without concrete knowledge of Kx.

The adversary B prepares for queries to the simulation oracle Osim as follows.
First it chooses w ← Zp and defines [V] := w · [B]. Note that with overwhelming
probability over the choices of A and A0, the matrix (A⊥)�A0 is full rank and
thus (K′

x + U(A⊥)�)A0 is distributed statistically close to uniform over Zp.
Therefore replacing [(K′

x +U(A⊥)�)A0] by [V] is statistically indistinguishable
for the adversary A.
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On the i-th query to Osim, for all i ∈ [Qsim], the adversary B defines [ci] :=
A0[hi] and computes x := h0(w · [hi]). Further B can compute y := h1(Ky[ci])
as before. In case of a real DDH challenge, we have hi = Bri for ri ←R Zp

and thus we have [ci] = [A0ri] and x = h0(w · [Bri]) = h0([Vri]). By our
previous considerations [Vri] is statistically close to Kx[ci] and thus adversary
B simulates game G1. In case the adversary was given a random challenge, the
hi are distributed uniformly at random and the adversary simulates game G2.
Now we can employ the random self-reducibility of DDH (Lemma 2) to obtain
an adversary as claimed.

Note that in order to prove this transition we require that in the defini-
tion of constrained soundness the simulation oracle returns random challenges
(otherwise we would not be able to embedd the DDH challenge into simulation
queries). This is another reason why we cannot directly employ the notion of
benign proof systems [11].

G2 � G3: As h0 is universal, we can employ the Leftover Hash Lemma
(Lemma 1) to switch (h0, h0([v])) to (h0,u) in all simulation queries, where
u ←R Zp. A hybrid argument yields

|ε2 − ε3| ≤ Qsim/p.

Game G3: We show that ε3 ≤ Qver · uncertsndA (λ), where Qver is the number
of queries to Over and uncertsndA (λ) describes the uncertainty of the predicates
provided by the adversary as described in Definition 12.

We use a hybrid argument over the Qver queries to Over. To that end, we
introduce games G3.i for i = 0, . . . , Qver, defined as G3 except that for its first
i queries Over answers ⊥ on any query ([c], [π], pred) with [c] /∈ Lsnd. We have
ε3 = ε3.0, ε3.Qver = 0 and we show that for all i = 0, . . . , Qver − 1 it holds

|ε3.i − ε3.(i+1)| ≤ Pr
K∈K

[predi+1(K) = 1] + 2−Ω(λ),

where predi+1 is the predicate contained in the i + 1-th query to Over.
Games G3.i and G3.(i+1) behave identically on the first i queries to Over.

An adversary can only distinguish between the two, if it manages to provide a
valid (i + 1)-st query ([c], [π], pred) to Over with [c] /∈ Lsnd. In the following we
bound the probability of this happening.

From queries to Osim and the first i queries to Over the adversary can only
learn valid tuples ([c], [π], [κ]) with [c] ∈ Lsnd. As explained in the beginning,
such combined proofs reveal nothing about Ky beyond what is already revealed
in the public key, as either [c] = [Ar] for an r ∈ Zp and y = h1([Kyc]) =
h1([KyA]r) or [c] = [A0r] and [π, κ] = [A0](x + r · y). In the former case y
itself reveals no more about Ky than the public key, while in the latter case y is
hidden by the fully randomized x.

For any [c] /∈ Lsnd, y = h1[Kyc] computed by Over is distributed statistically
close to uniform from the adversary’s point of view because of the following.
First we can replace Ky by Ky + U(A⊥)� for U ←R Z

2×1
p and A⊥ ∈ orth(A)
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as both are distributed identically. By our considerations, this extra term is
neither revealed through the public key, nor through the previous queries to Osim

and Over.
Now Lemma 1 (Leftover Hash Lemma) implies that the distribution of y is

statistically close to uniform as desired. Since [c] /∈ span([A0]) we have [c] −
[A0]A

−1

0 [c] 	= 0, thus the key

[κ] := A0A
−1

0 [π�] +
(
[c] − A0A

−1

0 [c]
)

︸ ︷︷ ︸

=0

·y

computed by Over is statistically close to uniform over Zp. Altogether we obtain:

ε3 ≤ Qver · uncertsndA (λ) + Qver · 2−Ω(λ).

5 Key Encapsulation Mechanism

In this section we present our CCCA-secure KEM that builds upon a qualified
proof system for the OR-language as presented in Sect. 4.

Ingredients. Let parsPS be the public parameters for the underlying quali-
fied proof system comprising G = (G, p, P ) and A,A0 ∈ Z

2k×k
p (as defined

in Sect. 4.1). Recall that L = span([A]), Lsnd = span([A]) ∪ span([A0]) and
L̃snd = span([A])∪ span([A0])∪ span([A1]) (for A1 ∈ Z

2k×k
p as in Sect. 4.1). Let

further H be a collosion resistant hash function generator returning functions of
the form H : Gk → {0, 1}λ and let H ←R H. We will sometimes interpret values
τ ∈ {0, 1}λ in the image of H as elements in Zp via the map τ �→ ∑λ

i=1 τi · 2i−1.
In the following we assume that all algorithms implicitly have access to the

public parameters parsKEM := (parsPS,H).

Proof systems. We employ an Lsnd-qualified and L̃snd-extensible proof system
PS := (PGen,PPrv,PVer,PSim) for the language L as provided in Fig. 2
(respectively for k > 1 as provided in the full version). We additionally require
that the key space is a subset of G, which is satisfied by our construction in
Sect. 4.

Construction. The construction of the KEM is given in Fig. 4.

Efficiency. When using our qualified proof system from Sect. 4 (respectively
for k > 1 from the full version) to instantiate PS, the public parameters com-
prise 4k2 group elements (plus the descriptions of the group itself and four hash
functions). Further public keys and ciphertexts of our KEM contain 8k + 2k2,
resp. 4k group elements for k > 1.

We stress that our scheme does not require pairings and can be implemented
with k = 1, resulting in a tight security reduction to the DDH assumption in G.
As in this case the upper entries of the matrix A is 1, we get by with 3 group
elements in the public parameters. Further, we can save one hash function due to
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KGen(1λ)

(ppk , psk) ←R PGen(1λ)
k0,k1 ←R Z

2k
p

pk := (ppk , [k�
0 A], [k�

1 A])
sk := (psk ,k0,k1)

KEnc(pk)

r ←R Z
k
p

[c] := [A]r
(Π, [κ]) := PPrv(ppk , [c], r)
τ := H([c])

C := ([c], Π)
K := ([k�

0 A] + τ [k�
1 A])r + [κ]

KDec(pk , sk , C)
C := ([c], Π)

(b, [κ]) := PVer(psk , [c], Π)
b = 0 ⊥

τ := H([c])
K := (k0 + τk1)

�[c] + [κ]

Fig. 4. Construction of the KEM

the simpler underlying proof system. For the same reason, in case k = 1 public
keys and ciphertexts contain 6, resp. 3 group elements. Compared to the GHKW
scheme [9], our scheme thus has ciphertexts of the same size, but significantly
smaller public keys.

Without any optimizations, encryption and decryption take 8k2 + 12k,
resp. 6k2 + 14k exponentiations for k > 1. For DDH we have 11 for both cases
(again due to the simpler proof system and the distribution). Since most of these
are multi-exponentiations, however, there is room for optimizations. In compar-
ison, encryption and decyption in the GHKW scheme take 3k2 + k, resp. 3k
exponentiations (plus about λk group operations for encryption, and again with
room for optimizations). The main reason for our somewhat less efficient opera-
tions is the used qualified proof system. We explicitly leave open the construction
of a more efficient proof system.

To turn the KEM into a IND-CCA secure hybrid encryption scheme, we
require a quantitatively stronger security of the symmetric building block than
[9]. Namely, the uncertainty uncertA(λ) in our scheme has a stronger dependency
on the number of queries (Qenc ·Qdec instead of Qenc +Qdec). This necessitates
to increase the key size of the authenticated encryption scheme compared to [9].
Note though that one-time secure authenticated encryption schemes even exist
unconditionally and therefore in the reduction proving security of the hybrid
encryption scheme, the uncertainty uncertA(λ) will be statistically small.

Theorem 2. (Security of the KEM). If PS is Lsnd-qualified and L̃snd-
extensible to P̃S, if H is a collision resistant hash function and if the
D2k,k-MDDH assumption holds in G, then the key encapsulation mechanism
KEM described in Fig. 4 is perfectly correct and IND-CCCA secure. More pre-
cisely, for every IND-CCCA adversary A that makes at most Qenc encryption
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and Qdec decryption queries, there exist adversaries Bmddh, Bcsnd, Bind, B˜csnd
and Bcr with running time T (Bmddh) ≈ T (Bcsnd) ≈ T (Bind) ≈ T (Bcsnd) ≈
T (Bcr) ≈ T (A)+(Qenc +Qdec) ·poly(λ) respectively T (B˜csnd) ≈ T (A)+(Qenc +
Qenc · Qdec) · poly(λ) where poly is a polynomial independent of T (A), and such
that

Advccca
KEM,A(λ) ≤ 1

2
· Advcsnd

Lsnd,PS,Bcsnd(λ) +
1
2

· Advind
Lsnd,PS,˜PS,Bind(λ)

+ (2λ + 2 + k) · Advmddh
G,D2k,k,Bmddh(λ)

+
λ

2
· Advcsnd

˜Lsnd,˜PS,B ˜csnd(λ)

+
λ + 2

2
· Qenc · Qdec · uncertA(λ)

+ Advcr
H,Bcr(λ) + Qenc · 2−Ω(λ).

Proof. We use a series of games to prove the claim. We denote the probability
that the adversary A wins the i-th Game Gi by εi. An overview of all games is
given in Fig. 5.

The goal is to randomize the keys of all challenge ciphertexts and thereby
reducing the advantage of the adversary to 0. The methods employed here for
a tight security reduction require us to ensure that Odec aborts on ciphertexts
which are not in the span of [A], as we will no longer be able to answer those.
The justification of this step relies crucially on the additional consistency proof
Π and can be found in the full version.

Game G0: This game is the IND-CCCA security game (Definition 10).

G0 � G1: From game G1 on, we restrict the adversary to decryption queries
with a fresh tag, that is, a tag which has not shown up in any previous encryption
query. There are two conceivable bad events, where the adversary reuses a tag.

The first event is due to a collision of the hash function. That is, A provides a
decryption query ([c],Π), such that there exists a challenge ciphertext [c′] from
a previous encryption query with [c] 	= [c′], but H([c]) = H([c′]). In that case we
can straightforwardly employ A to obtain an adversary B attacking the collision
resistance of H in time T (B) ≈ T (A) + (Qenc + Qdec) · poly(λ) for a polynomial
poly independent of T (A). Thereby we obtain an upper bound on the described
event of Advcr

H,B(λ).
In the second event, A provides a valid decryption query ([c],Π), such that

[c] = [c′] for a previous challenge ciphertext [c′] 	= [c]. By the properties of PS,
the proof corresponding to a ciphertext [c] is unique, which in particular implies
[c] /∈ span([A]). We bound the probability that A submits a valid decryption
query ([c],Π) such that [c] /∈ span([A]) by Qdec · uncertA(λ), using a series of
hybrids: For i = 0, . . . , Qdec let G0.i be defined like G0, except Odec checks
the freshness of τ for the first i queries and operates as in game G0 from the
(i + 1)-st query on. Note that game G0.0 equals G0 and game G0.Qdec

equals
G1. We show that for all i ∈ {0, . . . , Qdec − 1}:

|ε0.i − ε0.(i+1)| ≤ Pr
K←RK

[predi+1(K) = 1].
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c [κ] Odec

G0 A PPrv

G1 A PPrv τ H

G2 A PSim τ PS

G3 A0 PSim τ D2k,k

G4 A0 PSim τ [c] ∈ span([A])

G5 A0 τ [c] ∈ span([A]) D2k,k

Fig. 5. Security of the KEM. Here column “ch. c” refers to the vector computed by
Oenc as part of the challenge ciphertexts, where A indicates that [c] ←R span([A]), for
instance. Column “ch. [κ]” refers to the key computed by Oenc as part of the key K. In
the column “Odec checks” we describe what Odec checks on input C = (pred, ([c], Π))
additionally to C /∈ Cenc and pred(K) = 1. By a fresh tag τ := H([c]) we denote a tag
not previously used in any encryption query. In case the check fails, the decryption
oracle outputs ⊥.

Game G0.i and game G0.(i+1) only differ when the (i + 1)-st query to Odec is
valid with [c] = [c′] for a previous challenge ciphertext [c′] 	= [c]. As all challenge
ciphertexts are in span([A]), they do not reveal anything about k0 beyond the
public key [k�

0 A]. Thus, for [c] /∈ span([A]), the value k�
0 [c] looks uniformly

random from the adversary’s point of view, proving the claimed distance between
game G0.i and game G0.(i+1). Altogether we obtain

|ε0 − ε1| ≤ Advcr
H,B(λ) + Qdec · uncertA(λ).

G1 � G2: From G2 on, the way challenge ciphertexts are computed is
changed. Namely, the simulation algorithmen PSim(psk , [c]) is used instead of
PPrv(ppk , [c], r) to compute (Π, [κ]). Since for all challenge ciphertexts we have
[c] ∈ L, the proofs and keys are equal by the perfect zero-knowledge property of
PS, and thus we have

ε1 = ε2.

G2 � G3: Game G3 is like G2 except the vectors [c] in the challenge ciphertexts
are chosen randomly in the span of [A0].

We first employ the Qenc-fold D2k,k-MDDH assumption to tightly switch the
vectors in the challenge ciphertexts from span([A]) to uniformly random vectors
over G

2k. Next we use the Qenc-fold U2k,k-MDDH assumption to switch these
vectors from random to [A0r].

To be specific, we build adversaries B, B′ such that for a polynomial poly
independent of T (A) we have T (B) ≈ T (B′) ≈ T (A) + (Qenc + Qdec) · poly(λ)
and
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|ε2 − ε3| ≤ AdvQenc-mddh
G,D2k,k,B (λ) + AdvQenc-mddh

G,U2k,k,B′ (λ).

Let ([A], [v1| . . . |vQenc ]) with [A] ∈ G
2k×k and [V] := [v1| . . . |vQenc ] ∈

G
2k×Qenc be the Qenc-fold D2k,k-MDDH challenge received by B. Then B sam-

ples (ppk , psk) ←R PGen(1λ), k0,k1 ←R Z
2k
p , b ←R {0, 1} and sends the public

key pk := (ppk , [k�
0 A], [k�

1 A]) to A.
On the i-th query to Oenc, B sets the challenge ciphertext to [c] := [vi],

next computes τ := H([c]), (Π, [κ]) := PSim(psk , [vi]) and finally K1 := (k�
0 +

τk�
1 )[c] (and K0 ←R K(λ) as usual). As B has generated the secret key itself,

for decryption queries it can simply follow KDec(pk , sk , C).
In case [V] = [AR], B perfectly simulates game G2. In case [V] is uniformly

random over G
2k×Qenc , B simulates an intermediary game H, where the chal-

lenge ciphertexts are chosen uniformly at random. Analogously we construct an
adversary B′ on the Qenc-fold U2k,k-MDDH assumption, who simulates game H
if [V] is uniformly at random over G

2k×Qenc , and game G3, if [V] = [A0R].
Altogether this proves the claim stated above.

Finally, from Lemma 4 (random self-reducibility of U2k,k-MDDH), Lemma 3
(D2k,k-MDDH ⇒ U2k,k-MDDH), and Lemma 2 (random self-reducibility of
D2k,k-MDDH), we obtain an adversary B′′ such that T (B′′) ≈ T (A) + (Qenc +
Qdec) · poly(λ) where poly is independent of T (A) and

|ε2 − ε3| ≤ (1 + k) · Advmddh
G,D2k,k,B′′(λ) +

2
p − 1

.

G3 � G4: We now restrict the adversary to decryption queries with [c] ∈
span([A]). For the justification we refer to the full version.

G4 � G5: In game G5, we change the keys [κ] computed by Oenc to random
over G. This is justified as follows.

Firstly, we can replace k0 by k0 + A⊥u with u ←R Z
k
p and A⊥ ∈ orth(A),

as those are identically distributed. Note that this change does neither affect
the public key, nor the decryption queries, since for all c ∈ span(A), c�(k0 +
A⊥u ) = c�k0. Thus, the term A⊥u only shows up when Oenc computes the

value [(A⊥u)�A0r] for r ←R Z
k
p as part of the key K1 (the key that is not

chosen at random by the security experiment).
Secondly, the distributions (A⊥u)�A0 and v� ←R Z

1×k
p are 1−2−Ω(λ)-close.

Altogether, we obtain that Oenc, on its j-th query for each j ∈ [Qenc], can
compute key K1 for rj ←R Z

k
p, and v ←R Z

k
p as

K1 :=
[
(k0 + τk1)

� A0rj

]
+ [v�rj ] + [κ].

We then switch from ([rj ], [v�rj ]) to ([rj ], [zj ]), where zj is a uniformly
random value over G, using the Qenc-fold Uk-MDDH assumption as follows.
On input ([B], [h1| . . . |hQenc ]) with B ←R Uk (that is B ∈ Z

(k+1)×k
p ) and

h1, . . . ,hQenc ∈ Z
k+1
p , B samples (ppk , psk) ←R PGen(1λ), k0,k1 ←R Z

2k
p ,

b ←R {0, 1} and sends the public key pk := (ppk , [k�
0 A], [k�

1 A]) to A. In the
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following for all j ∈ Qenc let [hj ] ∈ G
k comprise the upper k entries and [hj ] ∈ G

the (k+1)-st entry of [hj ] and similar for [B] let [B] ∈ G
k×k be the upper square

matrix of [B] and [B] ∈ G
1×k comprise the last row.

On the j-th encryption query, B sets [c] := A0[hj ] (and thus [rj ] := [hj ]) and
computes the key as

K1 :=
[
(k0 + τk1)

� c
]

+ [hj ] + [κ].

The adversary B can answer decryption queries as usual using k0, as decryption
queries outside L are rejected.

Now if ([B], [h1| . . . |hQenc ]) was a real Uk-MDDH challenge, we have hj =
Bsj for a sj ←R Z

k
p and thus we have rj = Bsj and [hj ] = [B]sj = [B]B

−1
rj .

Note that the distribution of [B]B
−1

is statistically close to the distribution
of v� and therefore B simulates game G4. In case hj was chosen uniformly
at random from Z

k+1
p , the adversary B simulates game G5 instead. In the end

adversary B can thus forward the output of A to its own experiment.
Finally, Lemmas 3, 4 and 5 yield the existence of an adversary B′ such that

T (B′) ≈ T (A) + (Qenc + Qdec) · poly(λ) where poly is a polynomial independent
of T (A), and

|ε4 − ε5| ≤ Advmddh
G,D2k,k,B′(λ) + 2−Ω(λ).

Game G5: In this game, the keys K1 computed by Oenc are uniformly random,
since the value [κ] which shows up in K1 := [(k0 + τk1)�c] + [κ] is uniformly
random for each call to Oenc. The same holds true for the keys K0 which are
chosen at random from K(λ) throughout all games. Therefore, the output of
Oenc is now independent of the bit b chosen in Expccca

KEM,A(λ). This yields

ε5 = 0. ��
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