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Abstract. In 1982, Yao introduced a technique of “circuit garbling”
that became a central building block in cryptography. The question
of garbling general random-access memory (RAM) programs was intro-
duced by Lu and Ostrovsky in 2013. The most recent results of Garg,
Lu, and Ostrovsky (FOCS 2015) achieve a garbled RAM with black-box
use of any one-way functions and poly-log overhead of data and program
garbling in all the relevant parameters, including program run-time. The
advantage of Garbled RAM is that large data can be garbled first, and
act as persistent garbled storage (e.g. in the cloud) and later programs
can be garbled and sent to be executed on this garbled database in a
non-interactive manner.

One of the main advantages of cloud computing is not only that it has
large storage but also that it has a large number of parallel processors.
Despite multiple successful efforts on parallelizing (interactive) Obliv-
ious RAM, the non-interactive garbling of parallel programs remained
open until very recently. Specifically, Boyle, Chung and Pass in their
TCC 2016-A [4] have shown how to garble PRAM programs with poly-
logarithmic (parallel) overhead assuming non-black-box use of identity-
based encryption (IBE). The question of whether the IBE assumption,
and in particular, the non-black-box use of such a strong assumption is
needed. In this paper, we resolve this question and show how to garble
parallel programs, with black-box use of only one-way functions and with
only poly-log overhead in the (parallel) running time. Our result works
for any number of parallel processors.

Keywords: PRAM · Garbled RAM · Black-box cryptography · One-
way functions · Secure computation

S. Lu – This material is based upon work supported in part by the DARPA Brandeis
program.
R. Ostrovsky – Research supported in part by NSF grant 1619348, DARPA, US-
Israel BSF grant 2012366, OKAWA Foundation Research Award, IBM Faculty
Research Award, Xerox Faculty Research Award, B. John Garrick Foundation
Award, Teradata Research Award, and Lockheed-Martin Corporation Research
Award. Work done in part while consulting for Stealth Software Technologies, Inc.
The views expressed are those of the authors and do not reflect position of the
Department of Defense or the U.S. Government.

c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part II, LNCS 10402, pp. 66–92, 2017.
DOI: 10.1007/978-3-319-63715-0 3



Black-Box Parallel Garbled RAM 67

1 Introduction

Yao [23] introduced a technique that allows one to “garble” a circuit into an
equivalent “garbled circuit” that can be executed (once) by someone else with-
out understanding internal circuit values during evaluation. A drawback of cir-
cuit representation (for garbling general-purpose programs) is that one can not
decouple garbling encrypted data on which the program operates from the pro-
gram code and inputs. Thus, to run Random Access Machine (RAM) program,
one has to unroll all possible execution paths and memory usage when convert-
ing programs into circuits. For programs with multiple “if-then-else” branches,
loops, etc. this often leads to an exponential blow-up, especially when operating
on data which is much larger than program running time. A classic example is
for a binary search over n elements, the run time of RAM program is logarithmic
in n but the garbled circuit is exponentially larger as it has n size since it must
touch all data items.

An alternative approach to program garbling (that does not suffer from this
exponential blowup that the trivial circuit unrolling approach has) was initi-
ated by Lu and Ostrovsky in 2013 [20], where they developed an approach
that allows to separately encrypt data and separately convert a program into a
garbled program without converting it into circuits first and without expand-
ing it to be proportional to the size of data. In the Lu-Ostrovsky approach,
the program garbled size and the run time is proportional to the original pro-
gram run-time (times poly-log terms). The original paper required a complicated
circular-security assumption but in sequence of follow-up works [11,13,14] the
assumption was improved to a black-box use any one-way function with poly-
logarithmic overhead in all parameters.

Circuits have another benefit that general RAM programs do not have.
Specifically, the circuit model is inherently parallelizable - all gates at the same
circuit level can be executed in parallel given sufficiently many processors. In
the 1980s and 1990s a parallel model of computation was developed for gen-
eral programs that can take advantage of multiple processors. Specifically, a
Parallel Random Access Memory (PRAM), can take advantage of m proces-
sors, executing all of them in parallel with m parallel reads/writes. Indeed, this
model was used in various Oblivious RAM papers such as in the works of Boyle,
Chung, and Pass [4], as well as Chen, Lin, and Tessaro [8] in TCC 2016-A. In
fact, [4] demonstrates the feasibility of garbled parallel RAM under the existince
of Identity-based Encryption. However, constructing it from one-way functions
remains open, and furthermore, to construct it in a black-box manner. The ques-
tion that we ask in this paper is this:

Can we construct garbled Parallel-RAM programs with only
poly-logarithmic (parallel) overhead making only black-box use of

one-way function?

The reason this is a hard problem to answer is that now one has to garble
memory in such a way that multiple garbled processor threads can read in par-
allel multiple garbled memory locations, which leads to complicated (garbled)
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interactions, and remained an elusive goal for these technical reasons. The impor-
tance of achieving such a goal in a black-box manner from minimal assumptions
is motivated by the fact that almost all garbled circuit constructions are built in
a black-box manner. Only the recent work of GLO [11], and the works of Garg
et al. [10] and Miao [21] satisfies this for garbled RAM.

In this paper we show that our desired goal is possible to achieve. Specifically,
we show a result that is tight both in terms of cryptographic assumptions and
the overhead achieved (up to polylog factors): we show that any PRAM program
with persistent memory can be compiled into parallel Garbled PRAM program
(Parallel-GRAM) based on only a black-box use of one-way functions and with
poly-log (parallel) overhead. We remark that the techniques that we develop to
achieve our result significantly depart from the works of [4,11].

1.1 Problem Statement

Suppose a user has a large database D that it wants to encrypt and store in
a cloud as some garbled D̃. Later, the user wants to encrypt several PRAM
programs Π1,Π2, . . . where Πi is a parallel program that requires m processors
and updates D̃. Indeed, the user wants to garble each Πi and ask the cloud to
execute the garbled Π̃ program against D̃ using m processors. The programs
may update/modify that encrypted database. We require correctness in that all
garbled programs output the same output as the original PRAM program (when
operated on persistent, up-to-date D.) At the same time, we require privacy
which means that nothing but each program’s running time and the output
are revealed. Specifically, we require a simulator that can simulate the parallel
program execution for each program, given only its run time and its output.
The simulator must be able to simulate each output without knowing any future
outputs. We measure the parallel efficiency in terms of garbled program size,
garbled data size, and garbled running time.

1.2 Comparison with Previous Work

In the interactive setting, a problem of securely evaluating programs (as opposed
to circuits) was started in the works on Oblivious RAM by Goldreich and
Ostrovsky [16,17,22]. The work of non-interactive evaluation of RAM programs
were initiated in the Garbled RAM work of Lu and Ostrovsky [20]. This work
showed how to garble memory and program so that programs could be non-
interactively and privately evaluated on persistent memory. Subsequent works
on GRAM [11,13,14] improved the security assumptions, with the latest one
demonstrating a fully black-box GRAM from one-way functions.

Parallel RAM. The first work on parallel Garbled RAM was initiated in the
papers of Boyle, Chung and Pass [4] and Chen, Lin, and Tessaro [8] where
they study it in the context of building an Oblivious Parallel RAM. Boyle et
al. [4] show how to construct garbled PRAM assuming non-black-box use of
identity-based encryption. That is, they use the actual code of identity-based
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encryption in order to implement their PRAM garbled protocol. In contrast, we
achieve black-box use of one-way functions only, and while maintaining poly-
logarithmic (parallel) overhead (matching classical result of Yao for circuits)
for PRAM computations. One of the main reasons of why Yao’s result is so
influential is that it used one-way function in a black-box way. Black-box use of
a one-way function is also critical because in addition to its theoretical interest,
the black-box property allows implementers to use their favored instantiation of
the cryptographic primitive: this could include proprietary implementations or
hardware-based ones (such as hardware support for AES).

Succinct Garbled RAM. In a highly related sequence of works, researchers have
also worked in the setting where the garbled programs are also succinct or
reusable, so that the size of the garbled programs were independent of the run-
ning time. Following the TCC 2013 Rump Session talk of Lu and Ostrovsky,
Gentry et al. [15] first presented a scheme based on a stronger notion of differing
inputs obfuscation. At STOC 2015, works due to Koppula et al. [19], Canetti
et al. [7], and Bitansky et al. [3], each using different machinery in clever ways,
made progress toward the problem of succinct garbling using indistinguishability
obfuscation. Recently, Chen et al. [9] and Canetti-Holmgren [6] achieve succinct
garbled RAM from similar constructions, and the former discusses how to garble
PRAM succinctly as well.

Adaptive vs Selective Security. Adaptive security has also become a recent topic
of interest. Namely, the security of GRAM schemes where the adversary can
adaptively choose inputs based on the garbling itself. Such schemes have recently
been achieved for garbled circuits under one-way functions [18]. Adaptive garbled
RAM has also been discovered recently, in the works of Canetti et al. [5] and
Ananth et al. [1].

1.3 Our Results

In this paper, we provide the first construction of a fully black-box garbled
PRAM, i.e. both the construction and the security reduction make only black-
box use of any one-way function.

Main Theorem (Informal). Assuming only the existence of one-way func-
tions, there exists a black-box garbled PRAM scheme, where the size of the
garbled database is Õ(|D|), the size of the garbled parallel program is Õ(T · m)
where m is the number of processors needed and T is its (parallel) run time
and its evaluation time is Õ(T ) where T is the parallel running time of program
Π. Here Õ(·) ignores poly(log T, log |D|, log m,κ) factors where κ is the security
parameter.

1.4 Overview of New Ideas for Our Construction

There are several technical difficulties that must be overcome in order to con-
struct a parallelized GRAM using only black-box access to a one-way function.
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One attempt is to take the existing black-box construction of [11] and to apply
all m processors in order to evaluate their garbling algorithms. However, the
problem is that due to the way those circuits are packed into a node: a circuit
will not learn how far a child has gone until the predecessor circuit is evaluated.
So there must be some sophisticated coordination as the tree is being traversed
or else parallelism will not help beyond faster evaluation of individual circuits
inside the memory tree. Furthermore, circuits in the tree only accommodates a
single CPU key per circuit. To take full advantage of parallelism, we have the
ability to evaluate wider circuits that hold more CPU keys. However, we do
not know apriori where these CPUs will read, so we must carefully balance the
width of the circuit so that it is wide enough to hold all potential CPU keys that
gets passed through it, yet not be too large as to impact the overhead. Indeed,
the challenge is that the overhead of the storage size cannot depend linearly on
the number of processors. We summarize the two main techniques used in our
construction that greatly differentiates our new construction from all existing
Garbled RAM constructions.

Garbled Label Routing. As there are now m CPUs that are evaluating per
step, the garbled CPU labels that pass through our garbled memory tree must
be passed along the tree so that each label reaches its according destination. At
the leaf level, we want there to be no collisions between the locations so that each
reach leaf emits exactly one data element encoded with one CPU’s garbled labels.
Looking ahead, in the concrete OPRAM scheme we will compile our solution
with that of Boyle, Chung, and Pass [4], which guarantees collision-freeness and
uniform access pattern. While this resolves the problem at the leaves, we must
still be careful as the paths of all the CPUs will still merge at points in the tree
that are only known at run-time. We employ a hybrid technique of using both
parallel evaluation of wide circuits, and at some point we switch and evaluate,
in parallel, a sequence of thin circuits to achieve this.

Level-dependent Circuit Width. In order to account for the multiple CPU
labels being passed in at the root, we widen the circuits. Obviously, if we widen
each circuit by a factor of m then this expands the garbled memory size by a
prohibitively large factor of m. We do not know until run-time the number of
nodes that will be visited at each level, with the exception of the root and leaves,
and thus we must balance the sizes of the circuits to be not too large yet not
too small. If we assume that the accesses are uniform, then we can expect the
number of CPU keys a garbled memory circuit needs to hold is roughly halved
at each level. Because of this, we draw inspiration from techniques derived from
occupancy and concentration bounds and partition the garbled memory tree into
two portions at a dividing boundary level b. This level b will be chosen so that
levels above b, i.e. levels closer to the root, will have nodes which we assume
will always be visited. However, we also want that the “occupancy” of CPU
circuits at level b be sufficiently low that we can jump into the sequential hybrid
mentioned above.
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The combination of these techniques carefully joined together allows us to
cut the overall garbled evaluation time and memory size so that the overhead is
still poly-log.

1.5 Roadmap

In Sect. 2 we provide preliminaries and notation for our paper. We then give
the full construction of our black-box garbled parallel RAM in Sect. 3. In Sect. 4
we prove that the overhead is polylogarithmic as claimed, and also provide a
proof of correctness. We prove a weaker notion of security of our construction in
Appendix A, show the transformation from the weaker version to full security
in AppendixB and provide the full security proof in Sect. 5.

2 Preliminaries

2.1 Notation

We follow the notation of [4,11]. Let [n] denote the set {0, . . . , n − 1}. For any
bitstring L, we use Li to denote the ith bit of L where i ∈ [|x|] with the 0th bit
being the highest order bit. We let L0...j−1 denote the j high order bits of L.
We use shorthand for referring to sets of inputs and input labels of a circuit: if
lab = {labi,b}i∈|x|,b∈{0,1} describes the labels for input wires of a garbled circuit,
then we let labx denote the labels corresponding to setting the input to x, i.e. the
subset of labels {labi,xi}i∈|x|. We write x to denote that x is a vector of elements,
with x[i] being the i-th element. As we will see, half of our construction relies on
the same types of circuits used in [11] and we follow their scheme of partitioning
circuit inputs into separate logical colors.

2.2 PRAM: Parallel RAM Programs

We follow the definitions of [4,11]. A m parallel random-access machine is collec-
tion of m processors CPU1, . . . ,CPUm, having local memory of size log N which
operate synchronously in parallel and can make concurrent access to a shared
external memory of size N .

A PRAM program Π, on input N,m and input x, provides instructions to the
CPUs that can access to the shared memory. Each processor can be thought of
as a circuit that evaluates CΠ

CPU[i](state, data) = (state′,R/W, L, z). These circuit
steps execute until a halt state is reached, upon which all CPUs collectively
output y.

This circuit takes as input the current CPU state state and a block “data”.
Looking ahead this block will be read from the memory location that was
requested for in the previous CPU step. The CPU step outputs an updated
state state′, a read or write bit R/W, the next location to read/write L ∈ [N ],
and a block z to write into the location (z = ⊥ when reading). The sequence
of locations and read/write values collectively form what is known as the access
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pattern, namely MemAccess = {(Lτ ,R/Wτ
, zτ , dataτ ) : τ = 1, . . . , t}, and we can

consider the weak access pattern MemAccess2 = {Lτ : τ = 1, . . . , t} of just the
memory locations accessed.

We work in the CRCW – concurrent read, concurrent write – model, though
as we shall see, we can reduce this to a model where there are no read/write
collisions. The (parallel) time complexity of a PRAM program Π is the maximum
number of time steps taken by any processors to evaluate Π.

As mentioned above, the program gets a “short” input x, can be thought of
the initial state of the CPUs for the program. We use the notation ΠD(x) to
denote the execution of program Π with initial memory contents D and input x.
We also consider the case where several different parallel programs are executed
sequentially and the memory persists between executions.

Example Program Execution Via CPU Steps. The computation ΠD(x)
starts with the initial state set as state0 = x and initial read location L = 0
as a dummy read operation. In each step τ ∈ {0, . . . T − 1}, the computa-
tion proceeds by reading memory locations Lτ , that is by setting dataread,τ :=
(D[Lτ [0]], . . . ,D[Lτ [m − 1]]) if τ ∈ {1, . . . T − 1} and as 0 if τ = 0. Next it exe-
cutes the CPU-Step Circuit CΠ

CPU[i](state
τ [i], dataread,τ [i]) → (stateτ+1[i], Lτ+1[i],

datawrite,τ+1[i]). Finally we write to the locations Lτ by setting D[Lτ [i]] :=
datawrite,τ+1[i]. If τ = T − 1 then we output the state of each CPU as the
output value.

2.3 Garbled Circuits

We give a review on Garbled Circuits, primarily following the verbiage and nota-
tion of [11]. Garbled circuits were first introduced by Yao [23]. A circuit garbling
scheme is a tuple of PPT algorithms (GCircuit,Eval). Very roughly GCircuit is
the circuit garbling procedure and Eval the corresponding evaluation procedure.
Looking ahead, each individual wire w of the circuit will be associated with two
labels, namely labw

0 , labw
1 . Finally, since one can apply a generic transformation

(see, e.g. [2]) to blind the output, we allow output wires to also have arbitrary
labels associated with them. We also require that there exists a well-formedness
test for labels which we call Test, which can trivially be instantiated, for example,
by enforcing that labels must begin with a sufficiently long string of zeroes.

–
(
C̃

)
← GCircuit

(
1κ, C, {(w, b, labw

b )}w∈inp(C),b∈{0,1}
)
: GCircuit takes as input

a security parameter κ, a circuit C, and a set of labels labw
b for all the input

wires w ∈ inp(C) and b ∈ {0, 1}. This procedure outputs a garbled circuit C̃.
– It can be efficiently tested if a set of labels is meant for a garbled circuit.
– y = Eval(C̃, {(w, labw

xw
)}w∈inp(C)): Given a garbled circuit C̃ and a garbled

input represented as a sequence of input labels {(w, labw
xw

)}w∈inp(C), Eval
outputs an output y in the clear.
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Correctness. For correctness, we require that for any circuit C and input x ∈
{0, 1}n (here n is the input length to C) we have that:

Pr
[
C(x) = Eval(C̃, {(w, labw

xw
)}w∈inp(C))

]
= 1

where
(
C̃

)
← GCircuit

(
1κ, C, {(w, b, labw

b )}w∈inp(C),b∈{0,1}
)
.

Security. For security, we require that there is a PPT simulator CircSim such
that for any C, x, and uniformly random labels

({(w, b, labw
b )}w∈inp(C),b∈{0,1}

)
,

we have that:
(
C̃, {(w, labw

xw
)}w∈inp(C)

)
comp≈ CircSim (1κ, C, C(x))

where
(
C̃

)
← GCircuit

(
1κ, C, {(w, labw

b )}w∈out(C),b∈{0,1}
)

and y = C(x).

2.4 Oblivious PRAM

For the sake of simplicity, we let the CPU activation pattern, i.e. the processors
active at each step, simply be that each processor is awake at each step and we
only are concerned with the location access pattern MemAccess2.

Definition 1. An Oblivious Parallel RAM (OPRAM) compiler O, is a PPT
algorithm that on input m,N ∈ N and a deterministic m-processors PRAM
program Π with memory size N , outputs an m-processor program Π′ with mem-
ory size mem(m,N) · N such that for any input x, the parallel running time
of Π′(m,N, x) is bounded by com(m,N) · T , where T is the parallel runtime of
Π(m,N, x), where mem(·, ·), com(·, ·) denotes the memory and complexity over-
head respectively, and there exists a negligible function ν such that the following
properties hold:

– Correctness: For any m,N ∈ N, and any string x ∈ {0, 1}∗, with probability
at least 1 − ν(N), it holds that Π(m,N, x) = Π′(m,N, x).

– Obliviousness: For any two PRAM programs Π1,Π2, any m,N ∈ N, any two
inputs x1, x2 ∈ {0, 1}∗ if |Π1(m,N, x1)| = |Π2(m,N, x2)| then MemAccess21

is ν-close to MemAccess22, where MemAccess2 is the induced access pattern.

Definition 2. [Collision-Free]. An OPRAM compiler O is said to be collision
free if given m,N ∈ N, and a deterministic PRAM program Π with memory size
N , the program Π′ output by O has the property that no two processors ever
access the same data address in the same timestep.

Remark. The concrete OPRAM compiler of Boyle et al. [4] will satisfy the above
properties and also makes use of a convenient shorthand for inter-CPU messages.
In their construction, CPUs can “virtually” communicate and coordinate with
one another (e.g. so they don’t access the same location) via a fixed-topology
network and special memory locations. We remark that this can be emulated as
a network of circuits, and will use this fact later.
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2.5 Garbled Parallel RAM

We now define the extension of garbled RAM to parallel RAM programs. This
primarily follows the definition of previous garbled RAM schemes, but in the
parallel setting, and we refer the reader to [11,13,14] for additional details. As
with many previous schemes, we have persistent memory in the sense that mem-
ory data D is garbled once and then many different garbled programs can be
executed sequentially with the memory changes persisting from one execution
to the next. We define full security and reintroduce the weaker notion of Unpro-
tected Memory Access 2 (UMA2) in the parallel setting (c.f. [11]).

Definition 3. A (UMA2) secure garbled m-parallel RAM scheme consists of
four procedures (GData, GProg, GInput, GEval) with the following syntax:

– (D̃, s) ← GData(1κ,D): Given a security parameter 1κ and memory D ∈
{0, 1}N as input GData outputs the garbled memory D̃.

– (Π̃, sin) ← GProg(1κ, 1log N , 1t,Π, s, told): Takes the description of a parallel
RAM program Π with memory-size N as input. It also requires a key s and
current time told. It then outputs a garbled program Π̃ and an input-garbling-
key sin.

– x̃ ← GInput(1κ, x,sin): Takes as input x where x[i] ∈ {0, 1}n for i = 0, . . . , m−
1 and an input-garbling-key sin, outputs a garbled-input x̃.

– y = GEvalD̃(Π̃, x̃): Takes a garbled program Π̃, garbled input x̃ and garbled
memory data D̃ and outputs a vector of values y[0], . . . , y[m − 1]. We model
GEval itself as a parallel RAM program with m processors that can read and
write to arbitrary locations of its memory initially containing D̃.

Efficiency. We require the parallel run-time of GProg and GEval to be t ·
poly(log N, log t, log m,κ), and the size of the garbled program Π̃ to be m · t ·
poly(log N, log t, log m,κ). Moreover, we require that the parallel run-time of
GData should be N · poly(log N, log t, log m,κ), which also serves as an upper
bound on the size of D̃. Finally the parallel running time of GInput is required
to be n · poly(κ).

Correctness. For correctness, we require that for any program Π, initial mem-
ory data D ∈ {0, 1}N and input x we have that:

Pr[GEvalD̃(Π̃, x̃) = ΠD(x)] = 1

where (D̃, s) ← GData(1κ,D), (Π̃, sin) ← GProg(1κ, 1log N , 1t,Π, s, told), x̃ ←
GInput(1κ, x, sin).

Security with Unprotected Memory Access 2 (Full vs UMA2). For full
or UMA2-security, we require that there exists a PPT simulator Sim such that
for any program Π, initial memory data D ∈ {0, 1}N and input vector x, which
induces access pattern MemAccess2 we have that:

(D̃, Π̃, x̃)
comp≈ Sim(1κ, 1N , 1t, y,MemAccess2)
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where (D̃, s) ← GData(1κ,D), (Π̃, sin) ← GProg(1κ, 1log N , 1t,Π, s, told) and x̃ ←
GInput(1κ, x, sin), and y = ΠD(x). For full security, the simulator Sim does not
get MemAccess2 as input.

Security for multiple programs on persistent memory. In the case where
there are multiple PRAM programs being executed in sequence, we consider the
garbled memory being initially garbled and then garbled programs can then be ran
on the persistent memory in sequence. That is to say, (D̃, s) ← GData(1κ,D) is
used to generate an initial garbled memory, then given programs Π1, . . . ,Πu, with
running times t1, . . . , tu we produce garbled programs produced by (Π̃i, s

in
i ) ←

GProg(1κ, 1log N , 1ti ,Π, s,
∑

j<i tj), where the last parameter governs the sequen-
tial ordering as a program can only start running at its given time. Given inputs
(x1, . . . , xu we can produce garbled inputs x̃i ← GInput(1κ, xi, s

in
i ). Finally,

we have outputs evaluated by running the programs on the persistent memory
yi = GEvalD̃i−1(Π̃i, x̃i), where D̃i is the updated persistent memory after step i.
If each program induces some memory access pattern MemAccess2i, then

(D̃, {Π̃i}, {x̃i})
comp≈ Sim(1κ, 1N , 1T , {yi}, {MemAccess2i})

Similarly, for full security, the simulator Sim does not get MemAccess2 as
input.

3 Construction of Black-Box Parallel GRAM

3.1 Overview

We first summarize our construction at a high level. An obvious first point
to consider is to ask where the difficulty arises when attempting to parallelize
the construction of Garg, Lu, and Ostrovsky (GLO) [11]. There are two main
issues that go beyond that considered by GLO: first, there must be coordination
amongst the CPUs so that if different CPUs want access to the same location,
they don’t collide, and second, the control flow is highly sequential, allowing only
one CPU key to be passed down the tree per “step”. In order to resolve these
issues, we build up a series of steps that transform a PRAM program into an
Oblivious PRAM program that satisfies nice properties, and then show how to
modify the structure of the garbled memory in order to accommodate parallel
accesses.

In a similar vein to previous GRAM constructions, we want to transform
a PRAM program first into an Oblivious PRAM program where the memory
access patterns are distributed uniformly. However, a uniform distribution of m
elements would result in collisions with non-negligible probability. As such, we
want an Oblivious PRAM construction where the CPUs can utilize a “virtual”
inter-CPU communication to achieve collision-freeness. Looking ahead, in the
concrete OPRAM scheme we are using of Boyle, Chung, and Pass (BCP) [4],
this property is already satisfied, and we use this in Sect. 5 to achieve full security.
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A challenge that remains is to parallelize the garbled memory so that each
garbled time step can process m garbled processors in parallel assuming the
evaluator has m processors. In order to pass control from one CPU step to the
next, we have two distinct phases: one where the CPUs are reading from memory,
and another is when the CPUs are communicating amongst themselves to pass
messages and coordinating. Because the latter computation can be done with an
apriori fixed network of polylog(m,N) size, we can treat it as a small network
of circuits that talk to only a few other CPUs that we can then garble (recall
that in order for one CPU to talk to another when garbled, it must have the
appropriate input labels hardwired, so we require low locality which is satisfied
by these networks). The main technical challenge is therefore being able to read
from memory in parallel.

In order to address this challenge, we first consider a solution where we widen
each circuit by a factor of m so that m garbled CPU labels (or keys as we will
call them) can fit into a circuit at once. This first attempt falls short for several
reasons. It expands the garbled memory size by a factor of m, and although keys
can be passed down the tree, there is still the issue of how fast these circuits are
consumed and how it would affect the analysis of the GLO construction.

To get around the size issue, we employ a specifically calibrated size halving
technique: because the m accesses are a random m subset of the N memory
locations, it is expected that half the CPUs want to read to the left, and the
other half to the right. Thus, as we move down the tree, the number of CPU
keys a garbled memory circuit needs to hold can be roughly halved at each
level. Bounding the speed of consumption is a more complex issue. A counting
argument can be used to show that at level i, the probability that a particular
node will be visited is 1−(

N−N/2i

m

)
/
(
N
m

)
. As N/2i and m may vary from constant

to logarithmic to polynomial in N , standard asymptotic bounds might not apply,
or would result in a complicated bound. Because of this, we draw inspiration from
techniques derived from occupancy and concentration bounds and partition the
garbled memory tree into two portions at a dividing boundary level b. This level
b will be chosen so that levels above b, i.e. levels closer to the root, will have
nodes which we assume will always be visited. However, we also want that at
level b, the probability that within a single parallel step more than B = log4(N)
CPUs will all visit a single node is negligible.

It follows then that above level b, for each time step, one garbled circuit at
each node at each level will be consumed. Below level b, the tree will fall back to
the GLO setting with one major change: level b+1 will be the new “virtual” root
of the GLO tree. We must ensure that b is sufficiently small so that this does not
negatively impact the overall number of circuits. The boundary nodes at level
b will output B garbled queries for each child (which includes the location and
CPU keys), which will then be processed one at a time at level b+1. Indeed, each
subtree below the nodes at level b will induce a sequence of at most B reads,
where each read is performed as in GLO, all of them sequential, but different
subtrees will be processed in parallel. This allows us to cut the overall garbled
evaluation time down so that the parallel overhead is still poly-log. After the



Black-Box Parallel Garbled RAM 77

formal construction is given in this section, we provide a full cost analysis of
this in Sect. 4, along with the proof of correctness. This construction will then
be sufficient to achieve UMA2-security and se will prove in AppendixA, and as
mentioned above, we show full security in Sect. 5. We now state our goal/main
theorem and spend the rest of the paper providing the formal construction and
proof.

Theorem (Main Theorem). Assuming the existence of one-way functions, there
exists a fully black-box secure garbled PRAM scheme for arbitrary m-processor
PRAM programs. The size of the garbled database is Õ(|D|), size of the gar-
bled input is Õ(|x|) and the size of the garbled program is Õ(mT ) and its m-
parallel evaluation time is Õ(T ) where T is the m-parallel running time of pro-
gram P . Here Õ(·) ignores poly(log T, log |D|, log m,κ) factors where κ is the
security parameter.

3.2 Data Garbling: (D̃, s) ← GData(1κ, D)

We start by providing an informal description of the data garbling procedure,
which turns out to be the most involved part of the construction. The formal
description of GData is provided in Fig. 5. Before looking at the garbling algo-
rithm, we consider several sub-circuits. Our garbled memory consists of four
types of circuits and an additional table (inherited from the GLO scheme) to
keep track of previously output garbled labels. As described in the overview,
there will be “wide” circuits near the root that contains main CPU keys, a
boundary layer at level b (to be determined later) of boundary nodes that tran-
sition wide circuits into thin circuits that are identical to those in the GLO
construction. We describe the functionality of the new circuits and review the
operations of the GLO style circuits.

Conceptually, the memory can be thought of as a tree of nodes, and each
node contains a sequence of garbled circuits. For the circuits, which we call Cwide,
above level b, their configuration is straightforward: for every time step, there
will be one circuit at every node corresponding to that time step. Below level
b, the circuits are configured as in GLO, via Cnode and Cleaf with the difference
being that there will be a fixed multiplicative factor of more circuits per node
to account for the parallel reads. At level b, the circuits Cedge will serve as a
transition on the edge between wide and thin circuits as we describe below.

The behavior of the circuits are as follows. Cwide takes as input a parallel CPU
query which consists of a tuple (R/W, L, z, cpuDKey). This is interpreted as a
vector of indicators to read or write, the location to read or write to, the data to
write, and the key of the next CPU step for the CPU that initiated this query.
On the k-th circuit of this form at a given node, the circuit has hardwired within
it keys for precisely the k-th left and right child (as opposed to a window of child
keys focused around k/2 as in the GLO circuit configuration). This circuit routes
the queries to the left or right child depending on the location L and passes the
(garbled) query down appropriately to exactly one left and one right child. The
formal description is provided in Fig. 1.
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Fig. 1. Formal description of the wide memory circuit.

Fig. 2. Formal description of the memory circuit at the edge level between wide and
narrow circuits.

Cedge operates similarly and routes the query, but now must interface with
the thin circuits below that only accept a single CPU key as input. As such, it
will take as input a vector of queries and outputs labels for multiple left and
right children circuits. Looking ahead, the precise number of children circuits
this will execute will be determined by our analysis, but will be known and fixed
in advance for GData. The formal description is provided in Fig. 2.

Finally, the remaining Cnode and Cleaf behave as they did in the GLO scheme.
Their formal descriptions are provided in Figs. 3 and 4. As a quick review, cir-
cuits within a node process the query L and activates either a left or a right
child circuit (not both, unlike the circuits above). As such, it must also pass
on information from one circuit to the subsequent on in the node, providing it
information on whether it went left or right, and provides keys to an appropriate
window of left and right child circuits. Finally, at the leaf level, the leaf processes
the query by either outputting the stored data encoded under the appropriate
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Fig. 3. Formal description of the nonleaf, thin memory circuit with key passing. This
is identical to the node circuit in [11].

Fig. 4. Formal description of the leaf Memory Circuit. This is identical to
Cleaf[i, k, dKey, qKey] in [11]. See the next page for Fig. 5 describing the full GData
algorithm.
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Fig. 5. Formal description of GData.

CPU key, or writes data to its successor leaf circuit. This information passing is
stored in a table as in the GLO scheme.

3.3 Program Garbling: (Π̃, sin) ← GProg(1κ, 1log N , 1t,Π, s, told)

As we assumed, the program Π is a collision-free OPRAM program. We con-
ceptually identify three distinct steps that are used to compute a parallel CPU
step: the main CPU step itself (where each processor takes an input and state,
and produces a new state and read/write request), and two types of inter-CPU
communication steps that routes the appropriate read/write values before and
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Fig. 6. Formal description of the step circuit.

Fig. 7. Formal description of GProg.

after memory is accessed. We compile them together as a single large circuit
which we describe in Fig. 6.

Then each of the t parallel CPU steps are then garbled in sequence as with
previous GRAM constructions. We provide the formal garbling of the steps in
Fig. 7.

3.4 Input Garbling: x̃ ← GInput(1κ, x, sin)

Input garbling is straightforward: the inputs are treated as selection bits for the
m-vector of labels. We give a formal description of GProg in Fig. 8.

3.5 Garbled Evaluation: y ← GEvalD̃(Π̃, x̃)

The GEval procedure gets as input the garbled program Π̃ which we write as(
told, {C̃τ}τ∈{told,...,told+t−1}, cpuDKey

)
, the garbled input x̃ = cpuSKey and

random access into the garbled database D̃ = ({C̃i,j,k}i∈[d+1],j∈[2i],k∈[Ki],
{Tab(i, j)}i>b,j∈[2i]) as well as m parallel processors. In order to evaluate a gar-
bled time step τ , it evaluates every garbled circuit where i = 0 . . . b, j ∈ [2i], k = τ
using parallelism to evaluate the wide circuits, then it switches into evaluating
B( 1

2 + δ) + κ sequential queries of each of the subtrees below level b as in GLO.
Looking ahead, we will see that 2b ≈ m and so we can evaluate the different
subtrees in parallel. A formal description of GEval is provided in Fig. 9.
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Fig. 8. Formal description of GInput.

Fig. 9. Formal description of GEval.

4 Cost and Correctness Analysis

4.1 Overall Cost

In this section, we analyze the cost and correctness of the algorithms above,
before delving into the security proof. We work with d = log N , b =
log(m)/ log(4/3), ε = 1

log N ,γ = log3 N , and B = log4 N . First, we observe from
the GLO construction, that |Cnode| and |C leaf| are both poly(log N, log t, log m,κ),
and that the CPU step (with the fixed network of inter-CPU communication) is
m · poly(log N, log t, log m,κ).

It remains to analyze the size of |Cwide| and |Cedge|. Depending on the level
in which these circuits appear, they may be of different sizes. Note, if we let
W0 = m and Wi = �( 1

2 + δ)Wi−1� + κ, then |Cwide| at level i is of size (Wi +
2Wi+1) · poly(log N, log t, log m,κ). We also note |Cedge| has size at most 3B ·
poly(log N, log t, log m,κ) = poly(log N, log t, log m,κ).

We calculate the cost of the individual algorithms.

Cost of GData. The cost of the algorithm GData(1κ,D) is dominated by
the cost of garbling each circuit (the table generation is clearly O(N) ·
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poly(log N, log t, log m,κ)). We give a straightforward bound of Kb+1+i ≤(
1
2 + ε

)i (BN/m + iκ) and Wi ≤ (
1
2 + ε

)i (m + iγ).
We must be careful in calculating the cost of the wide circuits, as they cannot

be garbled in poly(log N, log t, log m,κ) time, seeing as how their size depends
on m. Thus we require a more careful bound, and the cost of garblings of Cnode

(ignoring poly(log N, log t, log m,κ) factors) is given as

b∑
i=0

2iN/mWi +
d−1∑

i=b+1

2iKi

≤ N/m

b∑
i=0

(1 + 2ε)i(m + bγ) +
d−b−2∑

i=0

2i+b+1Kb+1+i

≤ N/me2bε(m + bγ) + 2b+1e2dε(BN/m + dκ)

Plugging in the values for d, b, ε, γ,B, we obtain N ·poly(log N, log t, log m,κ).

Cost of GProg. The algorithm GProg(1κ, 1log N , 1t, P, s, told) computes t val-
ues for cpuSKeys,cpuDKeys, and qKeys. It also garbles t Cstep circuits and out-
puts them, along with a single cpuSKey. Since each individual operation is
m ·poly(log N, log t, log m,κ), the overall space cost is poly(log N, log t, log m,κ) ·
t · m, though despite the larger space, it can be calculated in m-parallel time
poly(log N, log t, log m,κ) · t.

Cost of GInput. The algorithm GInput(1κ, x, sin) selects labels of the state key
based on the state as input. As such, the space cost is poly(log N, log t, log m,κ) ·
m, and again can be prepared in time poly(log N, log t, log m,κ).

Cost of GEval. For the sake of calculating the cost of GEval, we assume that
it does not abort with an error (which, looking ahead, will only occur with
negligible probability). At each CPU step, one circuit is evaluated per node
above and including level b. At some particular level i < b the circuit is wide
and contains O(Wi) gates (but shallow, and hence can be parallelized). From
our analysis above, we know that

∑b
i=0 2iWi ≤ ∑b

i=0(1 + 2ε)i(m + bγ) ≤
e2bε(m + bγ), and can be evaluated in poly(log N, log t, log m,κ) time given
m parallel processors. For the remainder of the tree, we can think of vir-
tually spawning 2b+1 processes where each process sequentially performs B
queries against the subtrees. The query time below level b is calculated from
GLO of having amortized poly(log N, log t, log m,κ) cost, and therefore incurs
2b+1 · B · poly(log N, log t, log m,κ) cost. However, 2b+1 ≤ m and therefore can
be parallelized down to poly(log N, log t, log m,κ) overhead.

4.2 Correctness

The arrangement of the circuits below level b follows that of the GLO scheme,
and by their analysis, the errors overflow errors OVERCONSUMPTION-ERROR-I and
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OVERCONSUMPTION-ERROR-II do not occur except with a negligible probability.
Therefore, for correctness, we must show that KEY-OVERFLOW-ERROR never occurs
except with negligible probability, both at Cwide and Cedge.

Claim. KEY-OVERFLOW-ERROR with probability negligible in N .

Proof. The only two ways this error is thrown is if a wide circuit of a parent of
level i attempts to place more than Wi CPU keys into a child node at level i, or
an edge circuit fails the bound w ≤ B. We show that this cannot happen with
very high probability. In order to do so, we first put a lower bound on Wi and
then show that the probability that a particular query will cause a node at level
i to have more than Wi CPU keys is negligible. We have that

Wi = (
1
2

+ ε)im +
i−1∑
j=0

(
1
2

+ ε)jγ ≥ m

2i
+

2mε

2i
+ γ

Our goal is to bound the probability that if we pick m random leaves that
more than Wi paths from the root to those leaves go through a particular node
at level i. Of course, the m random leaves are chosen to be uniformly distinct
values, but we can bound this by performing an easier analysis where m are
chosen uniformly at random with repetition.

We let X be a variable that indicates the number of paths that take a par-
ticular node at level i. We can treat X as a sum of m independent trials, and
thus expect μ = m

2i hits on average. We set δ = 2ε + γ
μ . Then by the strong form

of the Chernoff bound, we have:

Pr[X > Wi] ≤ Pr[X >
m

2i
+

2mε

2i
+ γ]

≤ Pr[X > μ(1 + δ)] ≤ exp
[
− δ2μ

2 + δ

]

≤ exp
[
−δμ

(
δ

1 + δ

)]
≤ exp

[
−(2εμ + γ)

(
2ε + γ/μ

2 + 2ε + γ/μ

)]

≤ exp
[
−(2εμ + γ)

(
2ε

3

)]
≤ exp

[
−2

3
(2ε2μ + εγ)

]

Since εγ = log3 N
log N , this is negligible in N .

Finally, need to show that Wb ≤ B so that Cedge does not cause the error.
Here, we use the upper bound for Wb, and assume log N > 4. We calculate:

Wb ≤
(

1
2

+ ε

)b

(m + bγ) ≤
(

1
2

+
1
4

)b

(m + bγ)

≤
(

3
4

)log(m)/ log(4/3)

(m + bγ) ≤ 1
m

(m + bγ)

≤ log4 N = B

��



Black-Box Parallel Garbled RAM 85

5 Main Theorem

We complete the proof of our main theorem in this section, where we combine
our UMA2-secure GPRAM scheme with statistical OPRAM. First, we state a
theorem from [4]:

Theorem 4 (Theorem from [4]). There exists an activation-preserving and
collision-free OPRAM compiler with polylogarithmic worst-case computational
overhead and ω(1) memory overhead.

We make the additional observation that the scheme also produces a uni-
formly random access pattern that always chooses m random memory locations
to read from at each step, hence a program compiled under this theorem satisfies
the assumption of our UMA2-security theorem. We make the following remark:
Remark on Circuit Replenishing As with many previous garbled RAM
schemes such as [11,13,14], the garbled memory eventually becomes consumed
and will needed to be refreshed as they are being consumed across multiple pro-
grams. Our garbled memory is created for N/m timesteps and for the sake of
brevity we refer the reader to [12] for the details of applying such a technique.

Then, by combining Theorem4 with Theorem 6 and Lemma 7, we obtain our
main theorem.

Theorem 5 (Main Theorem). Assuming the existence of one-way functions,
there exists a fully black-box secure garbled PRAM scheme for arbitrary m-
processor PRAM programs. The size of the garbled database is Õ(|D|), size of
the garbled input is Õ(|x|) and the size of the garbled program is Õ(mT ) and its
m-parallel evaluation time is Õ(T ) where T is the m-parallel running time of
program P . Here Õ(·) ignores poly(log T, log |D|, log m,κ) factors where κ is the
security parameter.
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A UMA2-security Proof

In this section we state and prove our main technical contribution on fully black-
box garbled parallel RAM that leads to our full theorem. Below, we provide our
main technical theorem:

Theorem 6 (UMA2-security). Let F be a PRF and (GCircuit,Eval,CircSim)
be a circuit garbling scheme, both of which can be built from any one-way function
in black-box manner. Then our construction (GData, GProg, GInput, GEval) is
a UMA2-secure garbled PRAM scheme for m-processor uniform parallel access
programs running in total time T < N/m making only black-box access to the
underlying OWF.

Proof.
Informally, at a high level, we can describe our proof as follows. We know

that below level b, the circuits can all be properly simulated due to the fact
they are constructed identically to that of GLO (except there are simply more
circuits). On the other hand, circuits above this level have no complex parent-
to-child wiring, i.e. for each time step, every parent contains exactly the keys
for its two children at that time step and not any other time step. Furthermore,
circuits within a node above level b do not communicate to each other. Thus,
simulating these circuits are straightforward: at time step told, simulate the root
circuit C̃0,0,τ then simulate the next level down C̃1,0,τ and C̃1,1,τ and so forth.

The formal analysis is as follows. Since we are proving UMA2-security, we
know ahead of time the number of time steps, the access locations, and hence
the exact circuits that will be executed and in which order. Of course, we are
evaluating circuits in parallel, but as we shall see, whenever we need to resolve
the ordering of two circuits are being executed in parallel, we will already be
working in a hybrid in which they are independent of one another, and hence we
can arbitrarily assign an order (lexicographically). Let CircSim be the garbled
circuit simulator, and let U be the total number of circuits that will be evaluated
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in the real execution. We show how to construct a simulator Sim and then give
a series of hybrids Ĥ0,H0, . . . , HU , ĤU such that the first hybrid outputs the
(D̃, Π̃, x̃) of the is the real execution and the last hybrid is the output of Sim,
which we will define. The construction will have a similar structure of previous
garbling hybrid schemes, and for the circuits below level b we use the same
analysis as in [11], but still the proof will require new analysis for circuits above
level b. H0 is the real execution with the PRF F replaced with a uniform random
function (where previously evaluated values are tabulated). Since the PRF key
is not used in evaluation, we immediately obtain Ĥ0

comp≈ H0.
Consider the sequence of circuits that would have been evaluated given

MemAccess. This sequence is entirely deterministic and therefore we let S1, . . . ,
SU be this sequence of circuits, e.g. S1 = C̃0(the first parallel CPU step circuit),
S2 = C̃0,0,0(the first root circuit), . . .. Hu simulates the first u of these circuits,
and generates all other circuits as in the real execution.

Hybrid Definition: (D̃, Π̃, x̃) ← Hu

The hybrid Hu proceeds as follows: For each circuit not in S1, . . . , Su, generate
it as you would in the real execution (note that GData can generate circuits
using only, and for each circuit Su, . . . , S1 (in that order) we simulate the circuit
using CircSim by giving it as output what it would have generated in the real
execution or what was provided as the simulated input labels. Note that this
may use information about the database D and the inputs x, and our goal is to
show that at the very end, Sim will not need this information.

We now show Hu−1
comp≈ Hu. Either Su is a circuit in the tree, in which case

let i be its level, or else Su is a CPU step circuit. We now analyze the possible
cases:

1. i = 0 : In a root node, the only circuit that holds its qKey is the previous step
node, which would have already been simulated, so the output of CircSim is
indistinguishable from a real garbling.

2. 0 < i ≤ b : In a wide or edge node, the only circuit that holds its qKey is the
parent circuit from the same time step. Since this was previously evaluated
and simulated, we can again simulate this circuit with CircSim.

3. i = b + 1 : In the level below the edge node, the circuits are arranged as
in the root of the GLO construction. However, the qKey and rKey inputs
for these circuits now can either come from the parent (edge circuit) or a
predecessor thin circuit in the same level. These can be handled in batches
of B, sequentially, because every node still has a distinct parent that holds
its qKey (that will never be passed on to subsequent parents, as edge circuits
do not pass information from one to the next), as well as its immediate
predecessor which will already have been simulated. Thus, again we can invoke
CircSim.
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4. i > b + 1 : Finally, these nodes all behave as in the GLO construction, and
it similarly follows by the analysis of their construction, these nodes can all
also be simulated.

In the final case, if Su is a CPU step circuit, then only the CPU circuit of the
previous time step has its cpuSKey. On the other hand, its cpuDKey originated
from the previous CPU step, but was passed down the entire tree. Due to the
way we order the circuits, we ensure that all parallel steps have been completed
before this circuit is evaluated, and this ensures that any circuit that passed
a cpuDKey as a value have already been simulated in an earlier hybrid. Thus,
any distinguisher of Hu−1 and Hu can again be used to distinguish between the
output of CircSim and a real garbling.

After the course of evaluation, there will be of course unevaluated circuits in
the final hybrid ĤU . As with [11], we use the same circuit encryption technique
(see Appendix B in [12] for a formal proof) and encrypt these circuits so that
partial inputs of a garbled circuit reveal nothing about the circuit.

Therefore, our simulator Sim(1κ, 1N , 1t, y, 1D,MemAccess = {Lτ , zread,τ ,
zwrite,τ}τ=0,...,t−1) can output the distribution ĤU without access to D or x. We
see this as follows: the simulator, given MemAccess can determine the sequence
S1, . . . , SU . The simulator starts by first replacing all circuits that won’t be
evaluated by replacing them with encryptions of zero. It then simulates the
Su in reverse order, starting with simulating SU using the output y, and then
working backwards simulates further ones ensuring that their output is set to
the appropriate inputs.

��

B UMA2 to Full Security

In this section, we describe how to achieve multi-program full security from
UMA2 security by applying a Oblivious PRAM scheme. We mention that this
transformation is an adaptation of the UMA2-to-full transformation of the GLO
solution into PRAM setting. As such, we will paraphrase much of the proof
found in [12] though in the context of parallel programs.

Lemma 7. Assume there exists a UMA2-secure Garbled PRAM scheme for pro-
grams with uniform memory access, and a statistically secure ORAM scheme
with uniform memory access that protects the access pattern but not necessarily
the contents of memory. Then there exists a fully secure Garbled Parallel RAM
scheme.

Proof. We note that although we consider uniform memory access, we do not
require the memory access to be strictly uniform, c.f. [12] for a discussion on
leveled uniformity. Thus, we focus on the simpler case of uniform access and the
proof extends to the current setting of statistical Oblivious PRAM. We show the
existence of such a GPRAM scheme by explicitly constructing the new GPRAM
scheme in a black-box manner as follows. Let (GData, GProg, GInput, GEval) be a
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UMA2-secure GPRAM and let (OData,OProg) be an Oblivious PRAM scheme.
We construct a new GPRAM scheme (ĜData, ĜProg, ĜInput, ĜEval) as follows:

– ĜData(1κ,D): Execute (D∗) ← OData(1κ,D) then (D̃, s) ← GData(1κ,D∗).
Output D̂ = D̃ and ŝ = s. Note that OData does not require a key as it is a
statistical scheme.

– ĜProg(1κ, 1log N , 1t,Π, ŝ, told): Execute Π∗ ← OProg(1κ, 1log N , 1t,Π) followed
by (Π̃, sin) ← GProg(1κ, 1log N ′

, 1t′
,Π∗, ŝ, told

′), where the primed variables
are the growth in size due to the Oblivious PRAM transformation. Output
Π̂ = Π̃, ŝin = sin.

– ĜInput(1κ, x, ŝin): Note that x is a valid (parallel) input for the oblivious
program Π∗. Execute x̃ ← GInput(1κ, x, ŝin), and output x̂ = x̃.

– ĜEval
̂D
(Π̂, x̂): Execute y ← GEval

̂D(Π̂, x̂) and output y.

We now prove that (ĜData, ĜProg, ĜInput, ĜEval) is a fully secure Garbled
PRAM scheme. Suppose Π1, . . . ,Πu are a sequence of programs with running
times t1, . . . , tu, and let Tj =

∑
i<j ti denote the sum of the running times

of the first j − 1 programs. Let D ∈ {0, 1}N be any initial memory data, let
x1, . . . , xu be inputs and (y1, . . . , yu) be the outputs of the sequential execu-
tion of the programs on D. Let (D̂0, ŝ) ← ĜData(1κ,D), and for i = 1 . . . u:
(Π̂i, ŝin

i ) ← ĜProg(1κ, 1log N , 1ti ,Πi, ŝ, Ti), x̂i ← ĜInput(1κ, xi, ŝin
i ). Finally,

we consider the sequential execution of the garbled programs for i = 1 . . . u:

y′
i ← ĜEval

̂Di−1
(Π̂i, x̂i) which updates the garbled database to D̂i.

Correctness. We argue that

Pr[(y′
1, . . . , y

′
u) = (y1, . . . , yu)] = 1.

This follows directly from our underlying evaluation algorithms: ĜEval exe-
cutes the underlying GPRAM scheme for evaluation, the correctness of the
underlying scheme guarantees that (y′

1, . . . , y
′
u) = (Π∗

1(x1), . . . ,Π∗
u(xu))D∗

. Then
by the correctness of the underlying OPRAM scheme, (Π∗

1(x1), . . . ,Π∗
u(xu))D∗

=
(Π1(x1), . . . ,Πu(xu))D = (y1, . . . , yu).

Security. For any programs Π1, . . . ,Πu, database D, and inputs x1, . . . , xu, let

RealD,{Πi,xi} = (D̂0, Π̂i, x̂i

u

i=1)

We show how to construct a simulator Sim such that for all D, {Πi, xi}, we
have that RealD,{Πi,xi} comp≈ Sim(1κ, 1N , {1ti , yi}). We let OSim be the Oblivi-
ous PRAM simulator, and USim be the simulator for the UMA2-secure GPRAM
scheme. We describe Sim as follows.

1. Compute (N ′,MemAccess) ← OSim(1κ, 1N , {1ti , yi}u
i=1). We note that we

run a multi-program OPRAM simulator which then statistically simulates
MemAccess across all programs though not D∗ (only its size).
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2. Compute (D̃, {Π̃i, x̃i}u
i=1) ← USim(1κ, 1N ′

, {1t′
i , yi}u

i=1,MemAccess), where
as before, the primed variables are the expanded ones resulting from applying
OPRAM.

3. Output (D̂0, Π̂i, x̂i

u

i=1) = (D̃, {Π̃i, x̃i}u
i=1).

We show that the simulated output is computationally indistinguishable from
the real distribution. For any D, {Πi, xi}, we define a series of hybrid distribu-
tions Hyb0,Hyb1,Hyb2 with Hyb0 being the real distribution, Hyb2 being the
simulated distribution, and argue that for j = 0, 1 we have Hybj

comp≈ Hybj+1.

– Hyb0: This is the real distribution RealD,Πi,xi}.
– Hyb1: Use the correctly generated (D∗) from ĜData and Π∗

i from ĜProg and
execute (Π∗

1(x1), . . .
,Π∗

u(xu))D∗
to obtain {yi} and a sequence of memory accesses MemAccess.

Run (D̃, {Π̃i, x̃i}u
i=1) ← USim(1κ, 1N ′

, {1t′
i , yi}u

i=1,MemAccess) and output
(D̂0, Π̂i, x̂i

u

i=1) = (D̃, {Π̃i, x̃i}u
i=1).

– Hyb2: This is the simulated distribution Sim(1κ, 1N , {1ti , yi}u
i=1).

We now demonstrate indistiguishability.
Hyb0

comp≈ Hyb1 : Let A be a PPT distinguisher between these two hybrids
for some D, {Πi, xi}. By way of contradiction, we demonstrate an algorithm B
that breaks the UMA2-security of the underlying GPRAM scheme. First, B runs
(D∗) ← OData(1κ,D),Π∗

i ← OProg(1κ, 1log N , 1ti ,Πi) and declares D∗, {Π∗
i , xi)}

as the challenge database, programs and inputs for the UMA2-security GRAM
game. The UMA2-security challenger then outputs (D̃′, {Π̃′

i, x̃
′
i}) and B must

output a guess whether it is real or simulated. B sets (D̂′, {Π̂′
i, x̂

′
i}l) =

(D̃′, {Π̃′
i, x̃

′
i}u

i=1) and internally invokes this as the challenge to A. B then outputs
the same guess as A.

Observe that if the UMA2-challenger outputs real values, then (D̂′, {Π̂′
i, x̂

′
i})

is distributed identically as if it were generated from Hyb0, and if the UMA chal-
lenger outputs simulated values, then (D̂′, {Π̂′

i, x̂
′
i}u

i=1) is distributed identically
as if it were generated from Hyb1. Therefore, A distinguishes with the same
probability as B, which is negligible by the UMA2-security of the underlying
GPRAM scheme.

Hyb1

comp≈ Hyb2 :Let A be a PPT distinguisher between these two hybrids
for some D, {Πi, xi}. Again, by way of contradiction, B that breaks the secu-
rity of the underlying OPRAM scheme that proceeds as follows. First, B
announces D, {Πi, xi} as the challenge database, programs, and inputs for the
OPRAM security game. The OPRAM challenger then outputs a challenge mem-
ory access pattern for the programs (MemAccess′) which can be real or simulated.
Then, B computes (y1, . . . , yu) = (Π1(x1), . . . ,Πu(xu))D and runs the UMA2-
simulator (D̃′, {Π̃′

i, x̃
′
i}u

i=1) ← USim(1κ, 1N ′
, {1t′

i , yi},MemAccess′). Next, B sets
(D̂′, {Π̂′

i, x̂
′
i}u

i=1) = (D̃′, {Π̃′
i, x̃

′
i}u

i=1) and passes this to A. B then outputs the
same guess as A.
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Observe that if the OPRAM challenger outputs the real values, then the
tuple (D̂′, {Π̂′

i, x̂
′
i}) is distributed identically as if it were generated from Hyb1,

and alternatively, if the OPRAM challenger outputs simulated values, then
(D̂′, {Π̂′

i, x̂
′
i}) is distributed identically as if it were generated from Hyb2. There-

fore, A distinguishes with the same probability as B, which is negligible by the
security of the underlying OPRAM scheme. ��
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