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Abstract. Format-preserving encryption (FPE) produces ciphertexts
which have the same format as the plaintexts. Building secure FPE is
very challenging, and recent attacks (Bellare, Hoang, Tessaro, CCS ’16;
Durak and Vaudenay, CRYPTO ’17) have highlighted security deficien-
cies in the recent NIST SP800-38G standard. This has left the question
open of whether practical schemes with high security exist.

In this paper, we continue the investigation of attacks against FPE
schemes. Our first contribution are new known-plaintext message recov-
ery attacks against Feistel-based FPEs (such as FF1/FF3 from the NIST
SP800-38G standard) which improve upon previous work in terms of
amortized complexity in multi-target scenarios, where multiple cipher-
texts are to be decrypted. Our attacks are also qualitatively better in
that they make no assumptions on the correlation between the targets
to be decrypted and the known plaintexts. We also surface a new vul-
nerability specific to FF3 and how it handles odd length domains, which
leads to a substantial speedup in our attacks.

We also show the first attacks against non-Feistel based FPEs. Specifi-
cally, we show a strong message-recovery attack for FNR, a construction
proposed by Cisco which replaces two rounds in the Feistel construc-
tion with a pairwise-independent permutation, following the paradigm
by Naor and Reingold (JoC, ’99). We also provide a strong ciphertext-
only attack against a variant of the DTP construction by Brightwell and
Smith, which is deployed by Protegrity within commercial applications.
All of our attacks show that existing constructions fall short of achieving
desirable security levels. For Feistel and the FNR schemes, our attacks
become feasible on small domains, e.g., 8 bits, for suggested round num-
bers. Our attack against the DTP construction is practical even for large
domains. We provide proof-of-concept implementations of our attacks
that verify our theoretical findings.
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1 Introduction

A format-preserving encryption (FPE) scheme is a deterministic symmetric
encryption mechanism which preserves the format of the data, i.e., the cipher-
text has the same format as the plaintext. For instance, a valid SSN is encrypted
into a valid SSN, a valid credit-card number is encrypted into a valid credit-card
number, etc. The first known constructions date back to Brightwell and Smith [6]
and Black and Rogaway [4], and a formal treatment was later given by Bellare,
Ristenpart, Rogaway, and Stegers [2]. The widespread interest in FPE from
industry stems for its usage in the financial sector to encrypt credit-card num-
bers, as well as its ability to add encryption to legacy databases and applications
without violating existing format constraints. FPE has been used and deployed
by several companies, e.g., Voltage, Veriphone, Ingenico, Protegrity, Cisco, as
well as by major credit-card payment organizations. While precise numbers are
not known, it is safe to assume that vast amounts of data are currently encrypted
with FPE in industrial settings.

However, building secure FPE is a challenging question, largely because
(1) the domain is usually non-binary, and standard cryptographic primitives,
e.g., AES, operate on fixed-length binary domains, and (2) the domain can be
small, and it is hard to devise schemes where the domain size is not a security
parameter. For example, the ANSI ASC X9.124 standard adopted by the finan-
cial industry envisions applications with domains as small as two decimal digits.
While provably-secure schemes do exist [11,13,15], they consistently fail to meet
practical efficiency demands. Consequently, practical designs have been validated
via cryptanalysis only, and NIST has recently standardized [9] two constructions,
FF1 [3] and FF3 [5], both based on Feistel networks. Recent works have however
cast some doubt on the security of these constructions, which appear to be far
from the initial desiderata set by NIST’s selection process, which required 128
bits of security. (Indeed, one construction, FF2 [16], was dropped for far less
severe attacks [10] than those by now known to exist against all Feistel-based
constructions.) This state of affairs is particularly alarming, given the large-scale
usage of FPE.

In a nutshell, this paper will take FPE cryptanalysis even further, provid-
ing more evidence that practical FPE constructions with high security are still
beyond reach. This is particularly important as existing standards (NIST SP
800-38G, ANSI ASC X9.124) are being revised in view of recent attacks. We
will strengthen prior attacks, and also present new attacks against practical
constructions (employed in industry) which do not follow the Feistel paradigm.

EXISTING CRYPTANALYSIS. Let us first review recent cryptanalytic attacks
against FPE. Formally, an FPE scheme F is a pair of deterministic algorithms
(F.E,F.D), where F.E : F.Keys x F.Twk x F.Dom — F.Dom is the encryption algo-
rithm, F.D : F.Keys x F.Twk x F.Dom — F.Dom the decryption algorithm, F.Keys
the key space, F.Twk the tweak space, and F.Dom the domain. For every key
K € F.Keys and tweak T € F.Twk, the map F.E(K,T,-) is a permutation over
F.Dom, and F.D(K,T,-) reverses F.E(K,T,").
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Table 1. Attack parameters and effectiveness. This is for balanced-Feistel FPE
with domain {0,1}?" (n > 3) and r rounds, with N = 2". Our attack LD does not limit
the number of targets p, and thus p can be O(NQ). In contrast, BHT’s attack can only
handle a single target. Both attacks achieve high advantage, as shown in the second
row. The third and fourth rows respectively show the running time and the number
of ciphertexts for the attacks, with a generic number p of targets for LD, and a single
target for BHT’s attack. The fifth and sixth row shows the amortized time and the
number of ciphertexts per target, if p = 2(IN?). The seventh row shows the maximum
number of ciphertexts per tweak that each attack requires, and the last row shows the
needed correlation between known messages and the target messages for each attack.

Our attack LD BHT’s attack [1]
Advantage 1-1/N 1-2/N
Running time O(n' N™2 + N"2np) | O(n- N"7?)
Total ciphertexts O(n*>N""2 + N"3np) O(n-N"72)
Time per target O(n-N""2) O(n-N""%)
Ciphertexts per target | O(n - N™7%) O(n-N"2)
Ciphertexts per tweak | O(y/n - N) 3
Known msg vs target | No correlation Same right half

Bellare, Hoang, and Tessaro (BHT) [1] recently introduced a framework
for known-plaintext message-recovery attacks on FPE. More concretely, they
introduce the notion of a message sampler, an algorithm XS that returns a
tuple ((Th,X1),...,(To,Xq),Z*, a) that consists of @) distinct tweak-message
pairs (T3, X;), a target message Z*, and (possibly) some auziliary information
a € {0,1}*. Then, an attacker against XS attempts to recover Z* given

(Tla FE(K7 TlaXl))v s (TQa FE(K7 TQ7XQ))7 a

for a secret key K. The attacker’s advantage is obtained by subtracting from
its success probability that of the best possible trivial attacker that only gets
Ti,...,Tg and a. Therefore, any message sampler with a corresponding attacker
achieving substantial advantage within feasible computational constraints is
effectively a break, since the scheme fails to satisfy some ideal property to be
expected.

For example, for the balanced r-round Feistel construction with domain Zy X
Zy (meaning the domain size is N2), where N = 2" BHT provide a sampler and
an attack which succeed with O(n - N"~2) ciphertexts, where in particular these
ciphertexts consist of the encryption of three messages (one of which is the target
one) under O(n- N"~2) distinct tweaks.! (The attack is summarized in Table 1.)
While the attack is generic, when applied to the setting of NIST’s standardized

! BHT actually give three attacks with different complexity, but only one of them
can fully recover the target message; the other two can only recover a half of the
target. Since our attack can recover all target messages in their entirety, here we
only compare our attack with the Full-Message Recovery attack of BHT.
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constructions FF1/FF3, which use » = 10 and r = 8, respectively, the attack
becomes particularly threatening for small domains. The fact that the number
of ciphertexts is larger than the domain size N is no contradiction — the point
is that the number of ciphertexts per tweak is small, and this makes a generic
message recovery without the ciphertexts only possible with small probability.

We also point out the work by Durak and Vaudenay (DV) [8]. They give
a message-recovery attack against FF3 which uses only two tweaks, yet their
attack is due to a flaw in the tweaking mechanism used in FF3, rather than
being a generic issue of Feistel. In contrast, BHT’s attacks succeed even if the
flaw behind DV’s attack is fixed.

NIST has temporarily discouraged the use of FF3 as the result of DV’s
attack?, whereas a draft update of the ANSI ASC X9.124 standard addition-
ally suggests double encryption on small domains as a result of BHT’s attacks.

OUR CONTRIBUTIONS. The BHT attacks can be mitigated by increasing the
number of rounds of the constructions. However, this raises the question of
whether the attacks are the best possible, and whether new, stronger attacks,
are possible. Similarly, plain Feistel is not the only approach used in practice for
FPE. For example, Cisco presented a variant of Feistel, called FNR [7], which
appears to bypass the BHT attacks. Protegrity is another very active company
in the FPE domain and uses a different construction [12], called DTP (from
“Data-type preserving” encryption), based on Brightwell and Smith’s [6] con-
struction. It is well possible that these constructions are not affected by attacks,
and may end up being superior to NIST-standardized constructions.

Our first contribution will be new attacks against Feistel-based FPE that
improve upon BHT in settings where multiple messages can be recovered, as
well as only requiring weaker correlations in the known messages for which the
FPE construction is evaluated. We will then provide an attack against FNR, thus
showing it too fails to provide sufficient security. Finally, we provide a strong
ciphertext-only attack against DTP. In particular, while our attacks against
Feistel and FNR relies on weaknesses for small domains, our attack against
DTP works even on large domains.

We complement our attacks with proof-of-concept implementations that val-
idate experimentally our theoretical findings.

NEW ATTACKS AGAINST FEISTEL-BASED FPE. We strengthen the attacks from
BHT by considering the setting where the attacker is given multiple target mes-
sages Z7,...,Z, it is trying to recover. This captures for example an attempt
by the attacker to compromise a large fraction of an FPE-encrypted database,
as opposed to an individual record in it. Clearly, this task should be harder than
recovering a single target, and a good FPE scheme should guarantee that the
cost of recovering p messages is roughly p times that of recovering one message.
Indeed, this is true when mounting BHT’s attacks, as the only option is to apply
the attack to each target.

2 https://csre.nist.gov/News /2017 /Recent-Cryptanalysis-of-FF3.
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We will show however that for the r-round Feistel construction with domain
Zyr X Zn, multiple targets can be recovered much faster, in fact with a number
of ciphertexts comparable to what is needed for a single target. As summarized
in Table 1, for the special case M = N = 2™, the amortized number of cipher-
texts per target is only O(n - N"73), as opposed to O(n - N"~2) when using
BHT repeatedly. A further advantage of our attack is that the known plaintexts
revealed to the attacker are not correlated with the target messages — whereas
BHT assumed a fairly artificial setting where (partially) known plaintexts exhibit
strong correlations with the target message.

More concretely, the attacker is supplied 7 known distinct messages
X1,...,X,, and we have p targets Zi,...,Z,. Then, the attacker gets encryp-
tions of these 7 + p messages (assumed to be distinct) under ¢ known tweaks
Ti,...,T, (thus, the attacker sees ¢ x (7 +p) ciphertexts). The goal is to recover
all of Z1,...,Z,. The only assumptions here are that (1) The right halves of
Xi,..., X, cover all of Zy, and (2) Zi,...,Z, have (as a tuple) sufficient min-
entropy conditioned on X1, ..., X;,T1,...,T,, say at least §. Because of this, the
probability that an ideal adversary that does not learn the ciphertexts recovers
all of Zy,...,Z, here is at most 2-9 In contrast, we give an attack which recov-
ers them with high probability whenever ¢ is large enough. See Table 1 for the
exact complexities when M = N = 2™,

We stress that unlike the BHT attacks, the attacker is not aware of any
correlation between the known plaintexts Xi,..., X, and the target plain-
texts Z1,...,Z,. Of course, every right half of Z;,...,Z, will appear among
X1,...,X,, but the attacker does not know which of the inputs have matching
right halves. Also, we point out that the restriction of all right halves appear-
ing in Xq,...,X, is not as artificial as it may at first appear. If these inputs
are drawn uniformly at random (under the constraint of being distinct), and
7 = O(N/n), then we can show that all right halves are going to appear with
high probability by a variant of the so-called “coupon collector” argument. Even
more importantly, if they do not cover all of Zy, our attacks recovers all of the
Zi,...,2Z, whose right halves overlap with those of X;,..., X;.

THE DANGER OF ASYMMETRY. We note that the complexity of our attack is not
symmetric in M and N. In particular, the attack’s performance improves with
a smaller N and a larger M. This is particularly problematic for FF3, which in
the case of odd-length domains (e.g., {0,...,9}%) would exactly create such a
convenient asymmetry, setting M = 100 and N = 10. This feature was already
present in the left-half attack of BHT, but went unobserved.

THE FNR CONSTRUCTION. Cisco proposed the FNR construction [7] as an app-
roach to encrypt IP addresses. While we are not aware whether FNR was indeed
used, it adopts a potentially interesting idea which seemingly prevents our and
BHT’s attacks against Feistel. Essentially, it uses Naor and Reingold’s [14] idea
of replacing the two outer rounds of the Feistel construction with a pairwise
independent permutation while retaining security.

Initially, it is not clear how existing attacks against Feistel can be used when a
pairwise-independent permutation is used. We show however that this approach
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too fails, and in fact, in terms of our attacks, FNR with r-rounds appear to be
as secure as plain Feistel with r 4+ 2 rounds, somehow matching (though in a
different and unexplored context) the initial intuition by Naor and Reingold.

THE DTP SCHEME AND ITS INSECURITY. Another solution is the DTP scheme
put forward by Protegrity [12], which is a variation of the scheme by Smith and
Brightwell [6] and which has been argued to be potentially superior to FPE.3
In particular, reframing it in our language, DTP requires a distinct tweak per
encryption, thus potentially achieving higher security by preventing detection of
equal plaintexts being encrypted. However, we give an attack that only requires
multiple encryptions of the same target message with different tweaks (and is
thus compatible with the envisioned usage scenario). The attack differs from
those against Feistel-based FPE, but again is in the same spirit of using encryp-
tions under multiple tweaks to amplify subtle statistical deviations. We have
confirmed that a variant of this scheme, called DTP-2, is still deployed by Pro-
tegrity, even though it is being phased out to be replaced with FF1.

Abstractly, the main issue of DTP is that it encrypts individual digits of
the plaintext 125 ...x, (Where z; € Z4) as ¢; < x; + z; (mod d), where the
z;'s are pseudorandom elements of Zp. For example, one could use d = 10
(to encrypt decimal numbers) and D = 256 (e.g., the z;’s are individual bytes
from an AES output). Then, it is not hard to see that the ¢; values are not
pseudorandom anymore, and there is in fact a noticeable statistical deviation.
This is because z; € {0,1,...,5} is more likely to occur than z; € {6,...,9}.
Our recent interactions with Protegrity indicate that d = 62 is more commonly
used (to accommodate for the alphabet {a,...,z,A4,...,7,0,...,9}), and this
introduces even more important biases. As we show below in Table4, there is a
factor 10 improvement in the number of ciphertexts required by our attack when
switching from d = 10 to d = 62.

Our attack is stronger than those against Feistel and FNR as it also works on
large input spaces — the problem being exploited here is the mapping between
binary outputs (corresponding to the choice of D) to elements in another alpha-
bet (by reducing mod d). The observation that encryptions are biased is not novel
(cf. e.g. https://en.wikipedia.org/wiki/Format-preserving_encryption), but our
attacks highlights how such biases can be exploited for full-message recovery in
a multi-tweak scenario.

We note that the spec (as well as the original description in [6]) allow for some
key-dependent pre-processing of the plaintext which Protegrity makes explicitly
optional if tweaks are chosen uniformly at random. The version without pre-
processing is the version we attack here. With pre-processing, our attack does
not apply, but note that [6] acknowledges the pre-processing itself only suffices
to deter “casual attacks” and this is unlikely a strong countermeasure.

3 http://www.protegrity.com /role-of-standards-nist- data-security/.
4 The findings of this paper have been in particular shared with Protegrity.
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2 Preliminaries

NOTATION. We let & denote the empty string. If y is a string then |y| denotes
its length and y[i] denotes its i-th bit for 1 <14 < |y|. If X is a finite set, we let
x «s X denote picking an element of X uniformly at random and assigning it
to x. Algorithms may be randomized unless otherwise indicated. Running time
is worst case. If A is an algorithm, we let y «— A(z1,...;r) denote running A
with random coins r on inputs zj,... and assigning the output to y. We let
y s A(x1,...) be the result of picking r at random and letting y «— A(x1,...;r).
We let [A(x1,...)] denote the set of all possible outputs of A when invoked with
inputs z1, . . .. By Pr[G] we denote the probability of the event that the execution
of game G results in the game returning true. If D is a set then Perm(D) denotes
the set of all permutations on D. Let exp(z) denote e®, where e is the base of
the natural logarithm.

FPE. An FPE scheme F specifies a pair of deterministic algorithms (F.E, F.D),
where F.E:F.Keys x F.Twk x F.Dom — F.Dom is the encryption algorithm,
F.D: F.Keysx F.Twk x F.Dom — F.Dom the decryption algorithm, F.Keys the key
space, F.Twk the tweak space, and F.Dom the domain. For every key K € F.Keys
and tweak T € T, the map F.E(K,T,-) is a permutation over F.Dom, and
F.D(K,T,-) reverses F.E(K,T,").

CHERNOFF BOUND. Our results heavily rely on the well-known Chernoff bounds.
We recall the details of Chernoff bounds below.

Lemma 1 (Chernoff bounds). Let Yi,...,Y; be independent Bernoulli ran-

dom variables with Pr[Yy = 1] = -+ = Pr[Y; = 1] = p. Then,
—e2lp
> <
Pr[Yl—i— —1—}/27(1—1—6)6/47exp(2+€)f0ranye>0, and
—e2(

Pr{Y1+-~-—|—Yg§(1—e)€u}gexp( N)forany0<e<1.

2

3 Message Recovery Framework

Here we give a new formalization of message-recovery attacks, generalizing the
definition of Bellare, Hoang, and Tessaro (BHT) [1] for attacking multiple target
messages.

A HIGH-LEVEL INTUITION. Under our framework, there are 7 known messages
and p target messages. An adversary A will receive the ciphertexts of those, each
under multiple tweaks, and has to recover at least d < p targets to win the game,
where d is a parameter of the message-recovery game. For example d = 1 means
that as long as the adversary recovers a single target message, it wins the game,
and d = p means that the adversary has to recover all targets to win.

Following BHT, we aim for a generalized framework that can capture BHT’s
attack, where known messages are correlated with the targets. Thus in our



228 V. T. Hoang et al.

notion, the known messages and the target messages, and also the tweaks, are
generated via a message sampler XS. The adversary A receives the tweaks and
the ciphertexts, and some auxiliary information that contains information about
the known messages, and possibly some partial information about the targets.
We stress that only the sampler knows the target messages, and the adversary A
just knows some partial information of the target messages that the auxiliary
information reveals.

The framework above allows samplers that output target messages that are
trivial to guess. Thus for any FPE scheme, there is an adversary that with high
probability can recover target messages produced by those degenerate samplers
by merely guessing, but of course this does not imply a vulnerability of the
FPE scheme. Following BHT, we define the d-target advantage Adv{ys 4(A) of
adversary A against FPE scheme F and sampler XS as the difference between (i)
the chance that A can recover at least d targets, and (ii) the probability of the
best strategy of guessing that many targets given just the auxiliary information
(but not the ciphertexts). Hence for an FPE scheme F, if one can construct
an efficient adversary A and an efficient sampler XS such that Advgys 4(A) is
large, it means that this particular FPE scheme F is indeed vulnerable.

Our notion only models non-adaptive attacks and requires adversaries to
recover at least d targets. However, recall that here we are giving an attack
notion, and thus these restrictions only make our attacks better. On the other
hand, if an FPE scheme meets our notion, it does not necessarily mean that the
scheme is secure for real-world usage. Below, we will formalize our framework.

SAMPLERS AND GUESSING PROBABILITY. A message sampler is an algorithm
XS that returns ((T1, X1),. .., (T, Xq), Z1,- - -, Zp, a) that consists of () tweak-
message pairs (T;, X;), p target messages Z;, and some auziliary information
a € {0,1}*. Note that encryption schemes of FPEs are deterministic, and thus
it is trivial to detect repetition among the pairs (11, X1),...,(Tg, Xq) given
their ciphertexts. Therefore, following BHT, we require the distinctness con-
dition that the @ pairs (T1,X1),..., (T, Xg) be distinct. Define the d-target
message-guessing (mg) advantage against a sampler XS as

Advyg , = = max Pr[GJE 4(S)],

where game Gy& (S) is defined in the top panel of Fig. 1. This is the probability
of the best possible way at guessing at least d target messages given the tweaks
and auxiliary information. For the Special case d = p, meaning that one has to
guess all target messages, we write Advyé instead of Advyé . To account for
the efficiency of attacks, besides the number of ciphertexts Q, we also consider
the number of ciphertexts per recovered target q; = @/d. This is the amortized
data complexity.

MESSAGE-RECOVERY NOTION. Let F be an FPE scheme. Let XS be a mes-
sage sampler such that 71,...,7g € F.Twk and X,...,Xq,Z1,...,2Z, €
F.Dom for any ((T1,X1),...,(Tg,Xq), Z1,. .., Zp,a) in [XS]. Define the d-target
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message-recovery (mr) advantage of A against F, XS as
Ad"?,rxs,d(A) = Pr[Gan,rxs,d(A)] - AdV)ng,d .

The mr game Pr[GE%s ;(A)] is defined in the bottom panel of Fig. 1, measuring
A’s advantage at recovering at least d target messages given the tweaks, cipher-
texts, and auxiliary information. For d = p, meaning that the adversary has to
recover all targets, we write Adv§'ys(A) instead of Advgys ,(A).

Game G¥¢ ,(S)

(Ty, X1),...,(Tg, XQ), Z1,. .., Zp,a) <8 XS

(Z1,...,Z;) «sS(Th,...,Tq,a); t< min{d,p}

Return (341 < -+ <4 such that (Z;, = Z;)) AN--- N (Zs, = Z},))
Game Gfxs 4(A)

K «sF.Keys; (T1,X1),...,(Ta,X0), Z1, .., Zp,a) <5 XS
Fori=1,...,Q doY; « F.E(K, T}, X;)

(Z1,...,Z;) s A((Th, Y1), ..., (Tq,Yq), a); t + min{d, p}
Return (341 < --- <14y such that (Z;;, = Z;)) A -+ A (Zs, = Z7,))

Fig. 1. Games defining message-recovery notion of an FPE scheme F, parameterized
by a message sampler XS.

RELATION TO BHT’S NOTION. BHT s notion is the special case of the definition
above where the number of target message p is 1. However, in practice, it is not
economical to collect a lot of known message-ciphertext pairs to recover just a
single target message. If we can instead spend the same amount of resource but
recover multiple messages, the cost will be amortized by the number of recovered
targets, cheapening the attack. Thus compared to BHT’s definition, ours gives
a more realistic attack model.

REMARKS. Most existing notions in the cryptanalytic literature only define
codebook-recovery attacks, but our attacks or BHT’s attack do not fit into this
category. Bellare, Ristenpart, Rogaway, and Stegers (BRRS) [2] define a message-
recovery notion for FPEs, but again (i) this notion considers just a single target
message, and (ii) more importantly, the number of ciphertexts under this notion
cannot exceed the domain size. Thus BRRS’s notion also fails to capture our
attack or BHT’s attack.

4 Attacking Feistel-Based FPE

In this section, we first recall the Feistel-based FPE constructions, as in NIST
standards FF1 or FF3, and then give a message-recovery attack on a generic
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FPE scheme. Compared to BHT’s attacks [1], our attack can deal with a gen-
eral number of target messages and recover all of them, and thus have better
amortized cost. Moreover, we do not require any correlation between the known
messages and the targets.

Zym ZN
FE(K,T,X) [ Lo | | Ry
(L, R) — X B‘—EHA’,T
For i =1 to r do
If (i mod 2 = 1) then L + LB F;(K, T, R) [ L | | R,
Else R+ RB F;(K,T, L) K ]
Return (L, R) & i
(.1 [ =

F.D(K,T,Y)
(L,R)+Y B«—‘EHR'T
For i =rto 1 do
If i mod 2 = 1 then L « LB Fy(K, T, R) (L ] | By
Else R+ RE Fy(K,T,L) r
Return (L, R)

Fig. 2. Left: The code for the encryption and decryption algorithms of F =
Feistel[r, M, N,B, PL], where PL = (7,K, Fi,...,F;). Right: An illustration of
encryption with » = 4 rounds.

FEISTEL-BASED CONSTRUCTIONS. Most existing FPE schemes, including the
FF1 and FF3 standards [9], are based on Feistel networks. Following BHT, we
specify Feistel-based FPE in a general, parameterized way. This allows us to
refer to both schemes of ideal round functions for the analysis, and schemes of
some concrete round functions for realizing the standards.

We associate to parameters r, M, N,H, PL an FPE scheme F = Feistel[r,
M,N,H,PL]. Here r > 2 is an integer, the number of rounds, and B is an
operation for which (Zys,HB) and (Zy,H) are Abelian groups. We let B denote
the inverse operator of H, meaning that (X HY)BY = X for every X and Y.
Integers M, N > 1 define the domain of F as F.Dom = Zj; x Zy. The parameter
PL = (7,K,Fi,..., F,)specifies the set T of tweaks and a set K of keys, meaning
F.Twk = 7 and F.Keys KC, and the round functions Fi,...,F, such that
F,:KXT xZy —Zypifiisodd, and F; : KX 7T X Zpy — Zp if i is even. The
code of F.E and F.D is shown in Fig. 2.

Classical Feistel schemes correspond to the boolean case, where M = 2" and
N = 2" are powers of two, and H is the bitwise xor operator &. The scheme is
balanced if M = N and unbalanced otherwise. For X = (L, R) € Zp; X Zn, we
call L and R the left segment and right segment of X, respectively. We write
Left(X) and Right(X) to refer to the left and right segments of X respectively.
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For simplicity, we assume that 0 is the zero element of the groups (Zys,H) and
(Zn,m).

For analysis, the round functions are modeled as truly random. Formally,
let T = {0,1}*, and let K be the set RF(7,r, M, N) of all tuples of functions
(G1,...,G)suchthat G; : T XZy — Zypy ifiisodd, and G; : T x Zpr — Zy ifd
is even. Then for 1 < i < r define F;(K,-,-) = G;(-,-), where (Gy,...,G,) — K.
We write Feistel[r, M, N, H] to denote Feistel[r, M, N,H, PL], for the particular
choice PL = (7,K, Fy, ..., F.) above.

Schemes in the standards [9] specify the round functions using AES. Using
the standard assumption that AES is a PRF, one can focus on attacking Feistel-
based schemes of ideal round functions, with small differences in the advantage.

SETUP. We give a message-recovery attack on a generic Feistel-based FPE F =
Feistel[r, M, N,H, PL]. Like the prior work of BHT [1], we only consider the
case that r is even, as NIST standards only use r = 8 (for FF3) or » = 10
(for FF1). Under our attack, there are 7 known messages Xi,...,X; and p
targets Z1,...,Z,. The adversary is given the encryption of those 7+ p distinct
messages under g tweaks T1,...,T;, for an appropriately large ¢q. Due to the
distinctness requirement, X1,...,X;, Z1,..., Z, must be distinct. The auxiliary
information is (X1, ..., X;, p, q). The only requirement in our attack is that with
high probability, the right halves of the known messages X7, ..., X, cover at least
d of the right halves of the targets. We have no restriction on the number p of
targets or the parameter d, (except the unavoidable constraint that d < p) so
potentially p can be as large as M N — 7. Our attack will recover d targets out
szl,...,Zp.

A special important case in our attack is that the right halves of Xy,..., X
cover everything in Zy; in this case we can recover all targets. At the first
glance, this requirement seems contrived, and thus it is unclear how the
adversary can mount such an attack. However, we will show that for 7 =
[min{24/MN In(N),2N In(N)}], if the known messages are sampled uniformly
without replacement from Zj; x Zy then they will meet the requirement above.
Concretely, if we want to recover PINs, meaning M = N = 100, we need to
obtain [2N+/In(N)] = 430 random known messages. In contrast, BHT’s attack
needs to obtain two known messages, but one of those must have the same right
half as the target.

To explain the bound [min{2y/M N In(N),2N In(N)}] above, note that this
is the well-known coupon collector’s problem: there are IV types of coupons and
a collector wishes to collect all of them. In the classical setting, in each draw, the
collector is given a uniformly random type of coupon, and it will take @(N In(N))
draws, with very high probability, for the collector to get all N types. In our
setting, the coupons are the values of the right halves of the known messages,
but in each draw, the type of the given coupon is not exactly uniformly random.
In fact, since known messages must be distinct, each draw is slightly biased
towards new types of coupons. Thus in our setting, to get all types of coupons
with high probability, the number of draws is smaller than the classical result,
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about O(Ny/In(N)) in the balanced case M = N. This intuition is formalized
in Lemma 2 below; the proof is in the full version.

Lemma 2 (Biased coupon collector’s problem). Let M > 2 and N >
2 be integers and let 7 = [min{2\/MN In(N),2N In(N)}]. Let Xy,..., X, be
sampled uniformly without replacement from the set Zp; X Zn. Then we have
{Right(X}),...,Right(X,)} = Zx with probability at least 1 —1/N.

From Lemma 2 above, the requirement of our attack is quite mild, yet it is
powerful, recovering as many targets as possible. In contrast, in BHT’s attack,
there is only a single target (meaning p = 1), and the first known message must
have the same right half as the target message. Of course in our attack, for each
target Z;, there is some known message X; of the same right half as Z;, but the
adversary does not know what is j.

THE ATTACK. We formalize the attack via the message-recovery framework, by
specifying a class SC1,, 4 5,9 of samplers, and then giving a lower bound on the mr-
advantage of the attack for any sampler in this class. First, let DC1, 4 45,9 be the
class of all algorithms D that outputs ¢ distinct tweaks T1,...,T, € {0,1}*, and
distinet X1,...,X;, Z1,...,Zy € Zy X Zy such that (1) with probability at least
1—4, there are d or more indices k such that Z;, € {Right(X3),...,Right(X,)}
and (2) given Xy,...,X,,T1,...,Ty, for any subset {rq,...,7q} C {1,...,7},
for any Z7,...,2Z5 € Zy x Zn\{X1,...,X;}, the conditional probability that
Zpy = 2%,..., Zr, = Z} is at most 2795 To any such D, we associate the sampler

Sampler XS[D]

(Tl,...,Tq,Xl,...,X.,-,Zl,...,Zp) —sD

a (Xla s 7X'rap7q)

Return ({(T3, X;), (T3, Zk) | i < ¢, <7,k < p}, Z1,.... Zp,q)

The sampler above returns the pairs (T}, X;) and (T, Zx) for every i < ¢ and
every j < 7, and k < p, where the targets are Zi,...,Z,. The number of
ciphertexts @ is (7 4 p)g, and the number of ciphertexts per recovered target ¢;
is (T+p)g/d. Let SC1, 4 450 = {XS[D] | D € DC1,, 4.4,6,6}- We would expect that
adversaries will have low mr-advantage, even if ¢ is big. However, the Left-half
Differential (LD) attack, given in Fig. 3, can recover d targets out of Z1,..., Z,
in O(pgN) time. Theorem 3 below gives a lower bound on the mr-advantage of
LD.

The bound in Theorem 3, for the special case d = p, is illustrated in Fig. 4. For
example, for FF1, the attack is only reasonably feasible in very few domains,
say one-byte strings (M = N = 16) or two-decimal strings (M = N = 10),
but recall that FF1 and FF3 are supposed to provide 128-bit security whenever
the domain size M N is at least 100. For FF3, since there are fewer rounds, the
attack is faster, and thus becomes feasible in more domains.

5 For the special case where Z1, ..., Z,p are sampled uniformly without replacement
from (Znr x ZN)\{X1,..., X}, then § = O(d - log(MN)).
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Adversary LD({(T3, Ci 5), (T3, Ci 1) Yo gk, @)
J1<i<q1<j<7,1<k<p
(X1,...,X+,p,q) < a; S,Dom +
Forj=1,...,7do

If Right(X;) ¢ Dom then S < SU {j}; Dom < Dom U {Right(X;)}
For k < 1 to p do // Recover target Z

Forj €S, s € Zy do Vjs <0

Fori<« 1togq,j€S do

s < Left(C; ;) B Left(C;, ;) BLeft(X;); Vi, Vjs+1

Let Vs o« =max{Vjs |j € S,s € Zm}; Zr + (s, Right(X;~))

Return (Z1,...,Zp)

Fig. 3. The Left-half Differential attack.
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Fig.4. The mr advantage of the Left-half Differential attack for binary
strings of 8-12 bits (top) and decimal strings of 2-4 digits (bottom). The z-axis
shows the log, base 2, of the number ¢ of tweaks (which is also roughly g¢, the number
of ciphertexts per recovered target), and the y-axis shows AdvEgseeirr,mr,n,m,xs (LD),
for XS that outputs 7 = [min{2/M N In(N), 2N In(N)}]| known messages X1,..., X,
and p = M N — 7 targets; those M N messages are sampled uniformly without replace-
ment from Zys X Zn. Here we aim to recover all targets, namely d = p. On the left, we
use the parameters of the FF1 standard. On the right, we use parameters of FF3.

Theorem 3. Let M, N > 4 and let p,q > 1 be integer. Let > 4 be an even
integer such that N("=2/2 > 2M  and let d be an integer such that 1 < d < p.

2
Let F = Feistel[r, M, N,H], and let A = (1 - ﬁ) (1 - ﬁ) Then for any
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0<6 <1 and any 8 > 0, and for any sampler XS in the class SClp q.4.5.0,

mr _)‘Mq _)‘Mq —
AdVF,XS,d(LD) 2 1-— 5 — d . exp(W) — MNd . exp(m> -2 o .

IDEAS OF THE ATTACK. Our attack is based on an observation by BHT that for
any two messages X and X'’ of the same right half, if we encrypt them under the
same tweak to obtain ciphertexts C' and C’ respectively, then Left(C)BLeft(C")
is most likely to be Left(X) B Left(X’). This observation is formally stated in
Lemma 4 below.

Lemma 4 ([1]). Let F = Feistel[r, M, N,H|. Fiz distinct X, X' € Zy; X Zn of
the same right segment, a tweak T € F.Twk, and an even integert € {2,4,...,r}.
Pick K «—sF.Keys. Let Ly and L} be the the left segment of the round-t output
of X and X' under F(K,T,-), respectively. Then

(a) Pr[Ly B L, = Ly B L) > N + A,

(b) Pr[L,B L, = Z) < 35—, for any Z € Zy\{Lo B L}}.
The probabilities above are taken over a sampling K «s F.Keys.

Consider a target Zj such that Right(Z;) € {Right(X;),...,Right(X;)}.°
Among the known messages Xi,...,X,, there will be some X;- of the same
right segment as Zj. Suppose that somehow we know j*. Then obviously we can
recover the right segment of Z;. To recover the left segment of Zj, we will use
the above observation of BHT. For all ciphertexts C' and C” of X« and Zj, under
the same tweak respectively, one can guess Left(Z;) as Left(C’) B Left(C) B
Left(X;-). However, compared to a random guessing, this is only slightly better;
the improvement in the advantage is about % To amplify the advantage,
we consider ciphertexts C; and C! of X;+ and Z; under many tweaks T}, and
output the majority value of those Left(C!) B Left(C;) B Left(X-).

Since the algorithm above assumes that we are given the index j*, we are
left with the task of finding j*. We first narrow down our search by considering
a smallest possible subset S of {1,...,7} such that {Right(X;) | j € S} =
{Right(X3),...,Right(X,)}. Such a set S will contain j*, but we still do not
know which is the right one, among |S| possible values. Next, we try the strategy
above for every j € S to see which gives us the best majority value. Specifically,
for every j € S, we consider ciphertexts C;; and C}, of X, and Z; under
tweaks T} respectively. For every i € {1,...,q}, let U; ; < Left(C})BLeft(C;)H
Left(X;). We then find the majority value of Uy j,...,Uy ; together with the
number V; of its occurrences among those ¢ values. Finally, in the election for
J*, each candidate j has V; votes. The winner is the candidate of the most votes.

5 We stress that the adversary does not need to know that Right(Zx) €
{Right(X4),...,Right(X,)}; it will blindly use the same algorithm for all targets,
but will happen to recover Zj correctly.
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The code in Fig.3 implements the algorithm above as follows. For each
s € Zn and each j € S, we count the number Vj ; of the occurrences of s in
Uijs...,Uq ;. We then find (5*, s*) such that Vj» » = max{Vj, | j € S,s € Zn}.
The value s* is the left segment of Zj,, and the right segment of X ;- is also the
right segment of Zj.

To justify the way we pick j* above, we need to understand the distribution
of Vj s, for every j € Zy\{j*} and s € Zy. Each such message X, will have
a different right segment from Zj. The following Lemma 5 tells us that if we
encrypt X; and Zj under the same tweak to get ciphertexts C' and C’ respec-
tively, then Left(C’) B Left(C) is uniformly distributed over Zj;. The proof is
given in the full version.

Lemma 5. Let F = Feistel[r, M, N,H]. Fiz distinct X, X' € Zp; X Zy of dif-
ferent right segments, a tweak T € F.Twk, and an even integer t € {2,4,...,7}.
Pick K «—sF.Keys. Let Ly and L} be the the left segment of the round-t output
of X and X' under F(K,T,-), respectively. Then for any Z € Zy, we have
Pr[L;BL, =27 = ﬁ, where the probability is taken over a random sampling
K s F.Keys.

On the one hand, from Lemma 4, the expected value of Vj« o~ is at least
q(p + A), where p = # and A = % On the other hand, by using
Lemma 5, the expected value of each other Vj ; is at most gu. We will show that
it is unlikely for Vj« 4« to get below the threshold ¢(p+ A/2), and any other Vj
is unlikely to get beyond that threshold.

Table 2. Comparison of our Left-half Differential attack, and BHT’s attack
on Feistel[r, M, N,H] on parameters of FF1 and FF3. The first column shows
the domain Zys X Zy. The second and third columns show estimated values of ¢:—
the number of ciphertexts per recovered target—needed for our attack, for FF1 and
FF3, respectively, to achieve advantage 0.9. (For our attack, ¢ is also approximately ¢,
the number of tweaks.) We use 7 = [min{2/M N In(N),2N In(N)}| known messages
Xi,...,Xr and p = MN — 7 targets; those M N messages are sampled uniformly
without replacement from Zys x Zn. Our attack aims to recover all targets, namely
d = p. The fourth and fifth columns show estimated values of ¢ needed for BHT’s
attack, for FF1 and FF3, respectively, to achieve advantage 0.9.

Domain | Our cost ¢ | Our cost ¢; | BHT’s cost ¢ | BHT’s cost ¢
(for FF1) | (for FF3) (for FF1) (for FF3)
(0,1} 935 927 938 930
{07 1}9 244 226 244 238
{0,...,9)2 930 924 934 927
{0,...,9}° 956 921 956 949

DIsCUSSION. A concrete comparison of our attack and BHT’s attack is shown
in Table 2. When the domain length is odd, FF1 and FF3 have different ways to
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interpret what are M and N. For example, for domain {0, ...,9}3 (namely 3-digit
numbers), FF1 uses M = 10 and N = 100, whereas FF3 uses M = 100 and N =
10. An interesting observation is that in those odd domains, our attack does not
improve BHT’s attack for FF1, but significantly improves BHT’s attack for FF3.
For example, for domain {0, ..., 9}® above, both attacks use ¢; = 2°¢ for FF1, but
for FF3, our attack only needs ¢, = 22!, whereas BHT’s attack requires g, = 24°.
Thus our attack (i) shows that FF3’s way of partitioning odd domains is inferior
to that of FF1, and (ii) underscores that for tiny domains, the round counts
that FF1 and FF3 use are not enough, as BHT’s attack already pointed out. In
other words, our attack surfaces weaknesses which might have eliminated these
algorithms from consideration during standardization,” and they significantly
reduce confidence in these algorithms, which are widely deployed.

The recent FF3 attack by Durak and Vaudenay (DV) [8] can recover the
entire codebook for quite bigger domains, such as PINs (M = N = 100). How-
ever, this attack is adaptive, meaning that the adversary must choose the next
known message based on prior ciphertexts, which is very hard to mount in prac-
tice. Moreover, DV’s attack can be easily fixed without performance penalty by
restricting the tweak space. In contrast, to thwart our attack or BHT’s attack,
for tiny domains one has to add a few more rounds, which is widely perceived
as a drawback for performance-hungry applications.

EXPERIMENTS. As a proof of concept, we implement our Left-half Differential
attack, and evaluate its message-recovery rate against FF3. Each experiment
was run using 64 threads in a server of Intel(R) Xeon(R) CPU E5-2699 v3
2.30 GHz CPU and 256 GB RAM. Our implementation, written in Go, uses
FF3 source code from Capital One.® We evaluate our attack on three domains:
{0,1}7 (namely M = 16 and N = 8), {0,...,9}% (namely M = N = 10),
and {0,...,9}® (namely M = 100 and N = 10); each on several values of g,
the number of tweaks. For each domain Zj); x Zy and each choice of ¢, we
fix 7 = [min{2y/MN In(N),2N In(N)}] known messages whose right segments
cover Zy, and run the attack for 100 trials. In particular, we use 7 = 33 for
{0,1}7, 7 = 31 for {0,...,9}%, and 7 = 96 for {0,...,9}3. While the known
messages are fixed for all 100 trials, we use p = M N — 7 target messages, and
randomly shuffle the targets for each trial. Here we aim to recover all targets,
namely d = p.

The results of our experiments, given in Table 3, are consistent with (and
even slightly better than) Theorem 3. For example, for domain {0, ...,9}2, the-
oretically, one would need to use about ¢ = 224 tweaks to recover all targets with
probability nearly 1, and our experiments confirm that using ¢ = 224 indeed gives
100% recovery rate. However, even for ¢ = 223, in every trial we can recover all
targets, and the average running time to recover target messages for each trial
is about 5.92min. If one instead uses ¢ = 222, then the recovery rate drops to
86%, meaning that in 86 out of 100 trials, we can recover all targets.

" Recall that FF2 was eliminated due to a theoretical attack using 2% ciphertexts.
8 Capital One’s code is available at https://github.com/capitalone/fpe.
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Table 3. Empirical results of our Left-half Differential attack against FF3.
For each domain (shown in the first column), we run experiments with two values of ¢
(the number of tweaks) as indicated in the second and fifth columns. The recovery
rates corresponding to these two values of ¢ are given in the third and sixth columns,
respectively. Finally, the average running time (in minutes) of each experiment is given
in the fourth and seventh columns.

Domain | Number of | Recovery | Time | Number of | Recovery | Time

tweaks, ¢ rate | (min) | tweaks, ¢ rate | (min)

{0,1}7 220 100% | 0.9 2!? 66% | 0.46
{0,...,9}? 223 100% | 5.92 222 86% | 3.06
{0,...,9}? 220 100% | 8.72 219 66% 5.3

Our experiments above empirically confirm the correctness of our attack for
tiny domains. Below, we will give a formal proof to rigorously justify our attack
for all domains.

PROOF OF THEOREM 3. First we show that Advyé < 29 Consider an arbi-
trary simulator S. To win the game, S must find the first target Z;. The simulator
is only given the tweaks and the auxiliary information (X1, ..., X, p, ¢), and has
to guess correctly at least d components of (Z1, ..., Z,). From the definition of 6,
the chance that the simulator’s guess is correct is at most 2%, Next, we show
that

—AMgq —-AMgq )
12 N2 9. Nr—2

Let S C {1,...,7} be a set such that {Right(X;) | j € S} =
{Right(X3),...,Right(X;)}. With probability at least 1 — ¢, at least d tar-
gets will have their right halves in {Right(X;) | j € S}. Fix a target Z; such
that Right(Z;) € {Right(X;) | j € S}. By union bound, it suffices to show
that the chance the adversary fails to recover Z; is at most

Pr[GEis(LD)] = 1 -3 — d - exp( ) = MNd-exp(

—AMgq )

exp<ﬂ) + MN - exp(m

12 N7—2
Recall that for every j € S and every s € Zy, we keep track of the number Vj ; of
the occurrences of s among the values Uy j, ..., Uy ;, where U; j < Left(C] ;) B
Left(C; ;) B Left(X;). Let j* be the element of S such that Right(X;-) =
Right(Z;), and let s* « Left(Z;). The adversary can recover Zj, if Vj« ;- is the
maximum of {V;, | j € S,s € Zy}. Let p — 14— and A — % We
will give (i) an upper bound for the probability that Vj s, with (j,s) # (5%, s%), is
bigger than the threshold g(u+A/2), and (ii) an upper bound for the probability
that Vj« s« is smaller than that threshold. Both (i) and (ii) are handled using
Chernoff bounds.

Proceeding into details, fix (j, s) # (j*, s*). For each ¢ < g, let Y; be the Bernoulli
random variable such that Y; = 1 if and only if U; ; = s. The random variables
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Yi,...,Y, are independent and identically distributed (as they are produced
from a Feistel network of ideal round functions, under distinct tweaks), and
Vis=Y1+--+Y, Let v =Pr[Y; =1 < pand e = % > %. Note that
AJp < M/NC=2/2 <1/2, and A%/ = AM/N"2. Then

v A < A A - AM
2+€ 4/e+2 7 8u/A+2 8+2A/u T 9 N2

Since (1 +e€)v =v+ A/2 < pn+ A/2, by Chernoff bound,

Pr[V;s > q(u+ A/2)] < Pr[Yi + -+ Y, > q(1 +€)v]

—€e2uq —AMgq
< < —_— ] . 1
con(0) sen(0)
Next, for each 7 < g, let Y;* be the Bernoulli random variable such that ¥;* =1 if
and only if U; j~ = s*. Again, the random variables Y7",..., Y are independent

and identically distributed, and Vj« o« = Y{* +--- + Y*. Let v* = Pr[Yy" = 1] >
A+ p and let €f = ﬁ. Then 0 < €* < 1. Moreover,
A? A? A? M
Ap+A) 41+ A/p) 6 6- N2

Since (1 — €*)v* > (1 - ﬁ) (A4 u) =p+ A/2, by Chernoff bound,

Pr[Vje oo < q(u+A/2)] < Pr[Yy +-- 4+ Y/ < q(1—€)v7]
—(e")’vq —AMgq
< — | < _— ] .
= exP( 2 ) = eXp(m : N'r—2) 2)

From Egs. (1) and (2), the chance that the adversary LD fails to recover Zj, is
at most

PriVi- o« <qlu+4/2)] + > Pr[Vj.>q(p+A/2)]
(G:9)#G"5%)

< exp(ﬂ%) + MN-exp(&i}%%) )

5 Attacking FNR

In this section, we attack the Flexible Naor-Reingold (FNR) scheme proposed
by Cisco [7], which is defined only for the boolean case.” It is based on Naor-
Reingold generalization of Feistel networks [14], using a pairwise independent
permutation and a boolean Feistel-based FPE scheme.

9 While the FNR paper [7] mentions that the scheme can be used to encrypt credit-
card numbers, it is unclear how this is possible, as the specific instantiation there
only works for binary data.
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FNR _CONSTRUCTION. Recall that a family P of permutations on {0, 1}* is pair-
wise independent if for any X, X', Y,Y" € {0,1}* such that X # X’ and Y #Y’,

1
/ !
Pr[r(3) = V) A (r(X) = Y] = e

In FNR, the family P is instantiated as By, the set of all pairs (Bg, B1) such
that By is an invertible binary matrix of size £ x ¢, and B; is a binary vector of
length ¢. For each m € P, w(X) = (By - X)® By, where the input X is viewed as
a binary vector of length ¢, (By, B1) is the matrix representation of 7, and the
multiplication By - X is in GF(2).

In an FNR scheme F = FNR[r, m,n, PL], the domain is {0,1}" x {0,1}".
The parameter PL = (7,K, F,...,F,) specifies the tweak space 7 and a
Feistel-based FPE scheme F = Feistel[r, 2™ 2" &, PL] as defined in Sect. 4.
The key space is B+ X K. On key K = (By, By, IN() and tweak T', to encrypt
a message X, one first interprets (Bg, By) as a permutation 7 : {0,1}"" —
{0,1}™*" computes U « m(X) and V « F.E(f(,T, U), and returns (V).
Decryption is defined likewise. The code of the encryption and decryption
schemes of FNR[r, m,n,PL] is given in Fig. 5. If the underlying Feistel-based
FPE scheme is Feistel[r, 2™, 2" &] (meaning ideal round functions), then we
write FNR[r, m,n] for the corresponding FNR scheme. For input length ¢, the
FNR specification only uses the m = [{/2] and n = ¢ — m, meaning that
the Feistel network is a (near)-balanced one. The suggested instantiation in [7]
uses r = 7.

The FNR spec [7] specifies the round functions using AES. Again, using the
standard assumption that AES is a good PRF, one can focus on attacking FNR
schemes of ideal round functions, with small differences in the advantage.

THE ATTACK. We now attack the scheme FINR[r, m, n] scheme for an odd integer
r > 7, with [m — n| < 1. This is exactly the setting specified by the FNR spec.
While FNR also uses a Feistel network, at the first glance, it is unclear how to use
the ideas in Sect. 4, because the pairwise independent permutation in FNR will
hide the pairwise bias described in Lemma 4. However, we will exploit the fact
that the FNR scheme uses the same pairwise independent permutation across
different tweaks.

Under our attack, there are 7 = {min{? : 2(m+”)/2\/ln(2)n,2”+11n(2)n}-‘
known messages Xi,...,X; sampled uniformly without replacement from
{0,1}™*" and there are p targets Z1, ..., Z,. The adversary is given the encryp-
tion of those 7 4+ p messages under ¢ tweaks 11,...,7,, for an appropriately
large ¢, and the auxiliary information is (X1,..., X;,p, ¢). From the distinctness
requirement, these 7+ p messages must be distinct. We have no other restriction
on the number p of targets, so potentially p can be as large as 2™+ — 7. Our
attack will recover all of Z1, ..., Z,, meaning d = p. The number of examples @
is (7 + p)gq, and the number of examples per target g; is (7/p + 1)q.

We formalize the attack via the message-recovery framework, by specify-
ing a class SC2, ¢ of samplers, and then giving a lower bound on the mr-
advantage of the attack for any sampler in this class. First, let DC2, 4 be the
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FER.T.X) | T
(BQ,Bl,f?)%K Bo
(L,R) <~ U + (By - X)®B: uw |
For i =1 to r do I
If (¢ mod 2 = 1) then [ Lo ] R,
L+ L@Fi(K, T, R) % [ k—r. T
Else R + R®F;(K,T, L) -
V < (L,R); Y + By - (V&B) [ o | R
Return Y
1\’.’1'—@
F.D(K,T,Y) . [ m
(B07B17K)<_K e—rK, T
(L,R) « V + (Bo - Y)®B 1

For i =rto 1 do l

. Ls I R
If ({ mod 2 = 1) then
L+ L&F,(K,T,R) L B
Else R < RGFi(K,T, L) ™ B
U+« (L,R); X + B3\ (U®By) Lo

Return X l 0% l

Fig. 5. Left: The code for the encryption and decryption algorithms of F =
FNR|r,m,n,PL], where PL = (7, K, F1,..., F}). In implementation, for (L, R) « U,
typically L is the leftmost m-bit substring of U, and R is the rightmost n-bit substring
of U. However, in Cisco implementation, L and R are the strings obtained via the
odd and even bits of U, respectively. Right: An illustration of encryption with » = 3
rounds, where ® denotes the matrix multiplication.

class of all algorithms D that outputs ¢ distinct tweaks Ti,...,7, € {0,1}*,
and distinet Xi,...,X,,Z1,...,2Z, € {0,1}™"" such that (1) Xy,...,X,
are sampled uniformly without replacement from {0,1}™*" and (2) given
X1, X7, Th, ..o, Ty, for any fixed Z7, ..., Z7, the conditional probability that
Zy=Z7,...,Zp = Z; is at most 279 To any such D, we associate the sampler

Sampler XS[D]

(Tl,...,Tq,Xl,...,X.,-,Zl,...,Zp) —sD

a (le-"7XTap7q)

Return ({(T“X])a (THZ/C) | i < q;j < T7k < p}7217 . '7Zp7a)

The sampler above return the pairs (T3, X;) and (T}, Zy) for every ¢ < ¢,j <,
and k < p, where the targets are Z1,...,Z,. Let SC2,,9o = {XS[D] | D €
DC2, 40}. The Full-message Differential (FD) attack, given in Fig. 6, can recover
all targets Z1,...,Z, in O(pqr) time. Theorem 6 below gives a lower bound on
the mr-advantage of LD; the proof is postponed further below. The bound is
illustrated in Fig. 7.
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Adversary FD({(TM Ci,j), (Tla C':Jv) | 1< qvj <, k < p}a a)

(X1, Xrypoq) = a5 = 1/27770 A e s

For k < 1 to p do // Recover target Zj
Forje{l,...,7},s€{0,1}"™" do Vj s+ 0
For i« 1togq, j« 1to7do s« Ciy®Ci; Vis<+ Vis+1
Find smallest j* s.t. there is only one s € {0,1}™" with Vj« s < q(u+ A/2).
Let Vj» s+ = max{Vj s | s € {0,1}"}; Zj + s*BX;+
Return (Z1,...,2Zp)

Fig. 6. The Full-message Differential attack.

—_— — —

08 - ' } i
06 - 1 g i
04 . ; E

02 F 3 : 8 bits - - - -
! 10 bits
12 bits -+

0 ! N ! L
25 30 35 40 45 50 55 60

Fig.7. The mr advantage of the Full-message Differential attack on
FNR|[r,n,n] for r = 7 and n = 4,5, 6. This is the balanced setting m = n. The z-axis
shows the log, base 2, of the number ¢ of tweaks (which is also roughly g¢, the number
of ciphertexts per recovered target), and the y-axis shows AdVENg(rn,n)xs(FD), for

XS that outputs 7 = [2""'1 1n(2)n—‘ known messages and p = 22" — 7 targets; those

T, M,Mn

22" messages are sampled uniformly without replacement from {0, 1}*".

Theorem 6. Let m,n > 3 and g > 1 be integers such that |m —n| < 1, and let
2

r > 7 be an odd integer. Let F = FNR[r,m,n|. Let A = (1 — znilq) (1 — ﬁ)

Then for any 8 > 0 and for any sampler XS in the class SC2;, 49,

mr 1 m+n q m—+n —q
AdvE%s(FD) > 1= oo — 2" - exp( gr—ostbrs ) = 27" exp (i )

,Aq

—Aq _
_om+n . A S R - T ) - 0
2 P exp(9 : 2n+(r72)m) P exp(l2 : 2n+(T72)m) 277,

IDEAS OF THE ATTACK. For a random variable W € {0,1}™%" we say that it
has a singular distribution if there is exactly one string Z € {0,1}™"" such
that Pr[W = Z] < 1/2™%"; otherwise the distribution is non-singular. Let = =
(Bo, B1) be the pairwise independent permutation in the key of the FNR scheme.
Suppose that one encrypts distinct messages X and X’ on a tweak 7. Then the
strings Y « w(X) and Y’ — 7(X’) become inputs to a near-balanced, boolean
Feistel network, and let U and U’ be the corresponding outputs of the Feistel
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network. Our attack is based on the following observation that is formalized in
Lemma 7 below; see the full version for the proof. Specifically, if Y and Y’ have
the different right segments then the distribution of U®U’ is non-singular; in
fact, there are 2™ values Z € {0,1}"%" such that Pr[UsU’' = Z] < 1/2m+",
Let C and C’ be the ciphertexts of Y and Y’ under the FNR scheme, respectively.
Then C « 7~ Y(U) and C' «— 7~ Y(U’), and C&C’ = By' - (UaU’). Thus the
distribution of C@®C” is also non-singular.

In contrast, suppose that Y and Y’ have the same right segments.
Then Pr[U@U’ = Z] is significantly larger than 1/2™%" for every Z €
{0,1}m+t7\{0™*"}, and thus the distribution of U®U’, and also that of
C®C’, are singular in this case. Moreover, the distribution of U®U’ peaks at
YaY' = By - (X®X'), and consequently, the distribution of C®C’ peaks at
By' By (XoX') = XoX'.

Lemma 7. Let r > 7 be an odd integer and let m,n > 2 be integers such that
|m —n| < 1. Let F = Feistel[r,2™ 2" &|. Fiz distinct X, X' € {0,1}"*", a
tweak T € F.Twk. Pick K «sF.Keys. For each integer t, let X; and X, be the
the round-t output of X and X' under F(K,T,-), respectively. Then for any odd
integer t > 7,

(a) If X and X' have different right segments then for any non-zero Z €
{O7 1}m+n’

Pr[X,®X] = Z]

= Sorn i Right(Z) =07

1 1
r .
Pr[X:@X,=Z] > S + 5 52T otherwise .

(b) If X and X' have the same right segments then for any non-zero Z €
{071}m+n’

1 1
I _
Pr[Xt@Xt - Z] 2 om+n + 2. 22(m+n) .
Moreover,
Pr[X:®X/=Z7] < L L if Z #+ XX’
XX, = 2] < gmin 1 (2m — 1)2(t=1)(m+n)/2 if 2 # XeX,
1 1-1/(2m -1
Pr[X;® X, = Z] > /( ) otherwise .

— om+n _ on . 9(t—1)m/2
The probabilities above are taken over a sampling K «s F.Keys.

Based on the observation above, we can attack the FNR scheme as follows.
The adversary receives the encryptions of known messages Xi,..., X, and tar-
gets Z1,...,Zy, under tweaks T1,...,T;. Fix £ < p; we now explain how to
recover Zj. Let C;; and C’;,k be the ciphertexts of X; and Z;, under tweak Tj,
respectively. To recover a target Zy, for each j < 7, we plot the frequency his-
togram for the values Ci,j@Csz, for every i = 1,...,q, and call it the histogram
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of X;. From the observation above, if 7(X;) and 7(Zy) have different right seg-
ments and ¢ is big enough then the h1stogram for X; is non-singular, meaning
that it has multiple short columns, relative to the height q/2™*", In contrast,
if m(X;) and 7(Zy) have the same right segments then the histogram for X; is
singular, containing exactly one short column (of height 0). Moreover, in this
case, the tallest column corresponds to the value X;®Zj.

Since X1, ..., X, are sampled uniformly without replacement from {0, 1}"+"
and 7 is a permutation on {0,1}™*" the strings Y7 « 7(X1),..., Y, «— m(X;)
are also sampled uniformly without replacement from {0,1}™*™. From the
Biased Coupon Collector’s problem (Lemma 2), {Right(Y7),..., Right(Y;)} =
{0, 1}"™ with probability at least 1—1/2". Hence there must be some j* such that
Y;- and 7(Z;) have the same right segment. We can find such a j* by checking
if its histogram is singular. Let s* be the value for the tallest column in the
histogram of X;-. We then can recover Z; by way of Z, «— s*®Xj-

PROOF OF THEOREM 6. First we show that Advys < 2~ ¢, Consider an arbi-
trary simulator §. To win the game, & must guess all targets, given the tweaks
and the auxiliary information. From the definition of 6, the chance that the
simulator’s guess is correct is at most 2-¢. Next, we show that

Pr{Gls(FD)]

n m-n —q m-+n —4q
21—1/2 -2 pexp(m>—2 p~eXP(W)

gm+n —Ag —A\q

- p«exp(m) fp~exp(m> '

Let Y « 7(Xy),...,Y, «— n(X;). Since X1, ..., X, are sampled uniformly with-
out replacement from {0, 1}™*" and  is a permutation on {0, 1}™*" the strings
Y1, ..., Y, are also sampled uniformly without replacement from {0, 1}™*". From
the Biased Coupon Collector’s problem, {Right(Y7),...,Right(Y;)} = {0,1}",
with probability at least 1 — 1/2™. By union bound, it suffices to prove that for
any k < p, the FD attack fails to recover the target Z; with probability at most

32. 23(m+n)) +2 €xp 48 . 23(m+n)

—Ag —Ag
m—+n
+2 ’ eXp(g . 2n+(r—2)m) + exp(12 . 2n+(r—2)m> :

gmtn . exp(

Let C; ; and C’ be the ciphertexts for known messages X; and target Z; under
tweak Tl, respectlvely Let B, ;s be the Bernoulli random variable such that
B; s = 1 if and only if C; ;&C! , = s Now in the hlstogram for Xj, the
height of the column for each value s is V,S = By s+ -+ By s Note that
for each fixed (j, s), the random variables By j, ..., quj,s are independent and
identically distributed. Let p «+ 1/2m%" and A « From Chernoff
bound,

(i) Forevery (j,s),if Pr(B; js = 1] < pthen Vs > q(pu+A/2) with probability

at most exp(miim). That is, a supposedly short column is likely to

—r
2.22(m+n)

remain short.
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(ii) For every (j,s), if Pr[By,j s = 1] > p+ A, we have V; s < q(p + A/2) with
probability at most exp m). That is, a supposedly tall column will

be likely to remain tall.

Now, consider j such that 7(X;) and 7(Zj) have different right segments. Since
X; # Z, and FNR is a permutation, the histogram for X; will surely have
one column of height 0, namely the column corresponding to 7(0™*"). To cor-
rectly identify the histogram as non-singular, we need one more supposedly short
column of this histogram to remain short. From the claim (i) above and from
Lemma 7, this happens for every such j with probability at least

e N _gmin (—7‘1)
1—7 exp(32.23(m+n))21 2 exp 55 9min) )

Next, consider the smallest j* such that 7(X;-) and 7(Zy) have the same right
segment. Since X;« # Zj and FNR is a permutation, the histogram for Xj-
will surely have one column of height 0, namely the column corresponding to
7(0™*™). To correctly identify the histogram as singular, we need every suppos-
edly tall column of this histogram to remain tall. From the claim (ii) above and
from Lemma 7, this happens with probability at least

_gm+n 1
1-2 exp(48.23(m+n)) .
By a union bound, we can realize j* via checking the singularity of histograms
with probability at least

m+n —q m+n —q
L= 2 e it ) =2 o0 (i) - O

Now, once we find j*, we need to ensure that the peak column indeed corresponds

y 1/(2m -1 « _ 1-1/(2m—2
to the value X;«®Z;. Let p* = 5 + 2(T_/E)(m+n))/2 and A* = anm/g

From Chernoff bound and Lemma 7,

(ili) For every s # Z,®X;«, Pr[B; j« s = 1] < p*, and thus the probability that
Vix s > q(p* + A*/2) is at most exp(W’\ﬁz)m). That is, it is unlikely
that the column corresponding to s is the peak, as it remains lower than
q(p* + A7/2).

(iv) For s* = Zy®X;+, Pr[By j« o = 1] > p* + A*, and thus Vj- o < g(p* +
A*/2) with probability at most exp(W)(‘f,W). That is, the column

corresponding to Z,®X;- is likely to be the peak, as it remains higher
than g(p* + A*/2).

From (iii) and (iv), the chance that in the histogram of X;«, the peak column
indeed corresponds to X;-®Zj, is at least

-\ —\q
1-2 € p(g . 2n+(7“72)m> € p(12 . 2n+(r72)m> : (4)
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From Egs. (3) and (4), the chance that the attack can recover the target Zj is
at least

_ om+n | —q _ om+n | —q )
1-2 eXp(32-23(m+n>) 2 eXp(48.23<m+n>

_omin exp<—7*q> B exp(——Aq)
9.9on+(r—2)m 12 . on+(r=2)m J °

This completes the proof.

6 Attacking DTP

In this section, we will attack the DTP scheme, by Protegrity Corp. [12], which
resembles the seminal FPE construction by Brightwell and Smith [6].

DTP cONSTRUCTION. The DTP scheme has several variants, but here we only
consider the simplest and also the most efficient one. Under this version, it
requires that each time we encrypt a message, we need to pick a fresh random
tweak. Thus in this setting, tweaks serve the same role as initialization vectors
in traditional modes of encryption like CBC.

The scheme F = DTP[r,d, D, m,n, PL] has message space Z' and tweak space
Z%,, with d < D and n > r. The parameter PL = (K, F') specifies the key space
K and the round function F': K x Z'}, — Z,. For example, if we want to encrypt
credit-card numbers (CCNs) then m = 16, and there are two possible values
for d:

(i) Conventionally, one views CCNs as a sequence of decimal digits, and thus
d = 10.

(ii) Protegrity prefers to interpret CCNs as a sequence of (case-sensitive)
alphanumeric characters for seemingly better security, and thus d = 62.

Under the specification in [12], one then instantiates the round function F' from
AES, interpreting {0,1}'?% as Z1%; (meaning n = 16 and D = 256). The code
for the encryption and decryption of F is given in Fig. 8. The DTP specification
always uses D = 256 if d < 256, and D = 216 if d is bigger. The parameter r
specifies how many input characters that one encrypts per one call to the round
function F'. Initially, Protegrity used » = 1; this version is known internally as
DTP-1. Eventually, they moved to r = 3 for faster speed, and also claimed better
security; this is the current version, known as DTP-2 (Fig.9).

If we consider an ideal round function then K is the set of all functions G :
7}, — 71, and Fk(-) is defined as the function G(-) that the key K encodes.
We write DTP|[r,d, D, m,n] to denote the DTP construction of this particular
choice of PL = (K, F)). As mentioned above, since the DTP spec instantiates
the round function via AES, using the standard assumption that AES is a good
PRF, one can focus on attacking DTP schemes of ideal round functions, with
small differences in the advantage.
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F.E(K,T,X) F.D(K,T,Y)
1 xm = X; T T; t+ |m/r] |y1- o ym < Y; Th < T; t+ |m/r]
Fori=1tot do Fori=1tot do
21+ zn 4 Fr(Th); k<« (i —1)r 21+ zn  Fr(Th); k<« (1 —1)r
For j =1 tor do For j =1 tor do
Yr+j < (Thyj + 2;) mod d Tt < (Ye+s — 2;) mod d
Tig1 4 Zrg1 " ZnThil - Thir Tit1 4 Zr41 ZnThi1 " Thopr
// Encrypt the trailing digits /| Decrypt the trailing digits
21 2n < Fr(Tiq1) z1- - 2n <= Fr(Tiy1)
For j =1 to (m mod r) do For j =1 to (m mod r) do
Yertj < (Tertj + 2;) mod d Tiryj  (Yrts — 2j) mod d
Return y1 - - ym Return 1 -+ -z

Fig.8. Code for the encryption and decryption algorithms of F =
DTP(r,d, D,m,n,PL], where PL = (K, F).

[ la]e]a)
Fx

Fx

mm—

L**J\—li | ——

Ts

EE) ]

Yi|Y2| Y2 Ys|Ys

Fig. 9. Illustration of the encryption scheme of F = DTP[r,d, D, m,n,PL], where
PL = (K, F), for r = 3 and m = 5, and H means the addition in mod d.

THE ATTACK. We now give an attack on a general DTP([r, d, D, m,n] scheme in
which d is not a divisor of D. Many applications of DTP use d = 10 or d = 62 (for
examples, encrypting credit-card numbers, social-security numbers, or PINs),
and in that case, D = 256, falling into our setting. In this attack, we consider
only a single target Z. There is no known message, and the auxiliary information
is null. The adversary is given the encryption of Z under tweaks T1,..., Ty, for
an appropriately large q. The number @) of ciphertexts is ¢, and so is the number
of ciphertexts per recovered target. We assume that Z is uniformly random,
independent of the tweaks, so that the message-guessing advantage is low.

Formally, let DC3, be the class of all algorithms D that outputs distinct
tweaks T1,...,T, € (Zp)"™. To any such D, we associate the following sampler
XS[D]
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Adversary DD((T1,Ch), ..., (Tq,Cq),a)
For i <1 to m do

For k € Zq do Vi < 0

Forj«1togdoci--cm < Cy; Vo, < Ve, +1

r < D modd

Find the r largest numbers Vi, ,..., Vs, in {Vi | k € Zq}

Find z; € Zg such that {s; | 1<j<r}={(z+j)modd|1<j<r}
Z 21+ 2zZm; Return Z

Fig. 10. The Digit-wise Differential attack.

1 T T

0.8 — 0.8 |-

0.6 - Radix=10 — 0.6 - Radix =62

04 | 4 04

02| 4digits ---- 02+
10 digits

Ify digits T

4chars ---- A
9 chars
16 chars -

0 VA T 0 L
17 17.5 18 185 19 19.5 20 205 21 14 14.5 15 15.5 16 16.5 17 17.5 18

Fig.11. The mr advantage of the Digit-wise Differential attack on
DTP|3,10,256,m,16] (left) and DTP[3,62,256,m,16] (right) for m = 4,9, 16.
These are parameter choices for PINs, social security numbers, and credit-card num-
bers. The z-axis shows the log, base 2, of the number ¢ of ciphertexts, and the y-axis
shows Advprp(3,4,256,m,16),xs(PD) for XS € SC3,.

Sampler XS[D]
(T17' . 7Tq) s D7 a J—7 Z s (Zd)m
Return (11, Z2),...,(1y, Z), Z,a)

The sampler above runs D to generate the tweaks, and then samples a uni-
formly random target. Define SC3, = {XS[D] | D € DC3,}. Since the target is
uniformly random and the auxiliary information is null, one would expect that
the adversary has low mr-advantage, even if ¢ is big. However, our Digit-wise
Differential (DD) attack, given in Fig. 10, will recover the target message for any
sampler in SC3, within O(mdlog(d) + ¢gm) time. Theorem 8 below gives a lower
bound on the mr-advantage of DD; the proof is in the full version. The bound is
illustrated in Fig. 11.

Theorem 8. Let D > d > 1 be integers such that d is not a divisor of D. Let
m,n,r > 1 be integers such that n > r, and let F = DTP[r,d, D, m,n]. Let
s =D mod d. Then for any sampler XS in SC3,,

~[m/r])? —q(d — s)?
AdvExs(DD) 21— (qz ~[DT/L—1) Tmee EXP(QDdz]l()d ¥ d)— s))
—qs? ) 1

—m(d—s) - eXp(m am
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IDEAS OF THE ATTACK. For simplicity, let us start with the special important
case d = 10 and D = 256. Let Z = 21 ---z,,, where each z; is a number in
{0,...,9}. For simplicity, assume that the ¢ - [m/r] inputs to F are distinct, so
that the outputs of F' are independent, which holds with high probability. We
now explain how the attack can recover, say the first digit z; of the target Z, but
the same idea works for any digit z; of Z. The way the encryption works is to pick
a random number B «s {0,...,255}, and then outputs ¢; < 21 + (B mod 10)
as the first digit of the ciphertext. The problem here is that B mod 10 is not
uniformly distributed in {0, 1,. .., 9} In fact, for a € {0,1,...,9}, the probability

that B = a is exactly [256/101 _ 26 jf o < 6, and this probablhty however is

256 256
only M = 256 otherwise. Hence for any fixed number z; € {0,1,...,9} and

any number a € {0,1,...,9}, the probability that ¢; < 21 + (B mod 10) is a
is exactly 2 256 if a € {21 mod 10,21 + 1 mod 10,..., 2, + 5 mod 10}, and is ﬁ
otherwise. Thus if we encrypt the target Z with a large enough number of times
and plot the frequency histogram of the first digit of the ciphertexts, then what
we obtain is a 10-column histogram, with 6 tall columns and 4 short ones. These
6 tall columns will be consecutive (possibly with a wrap-around), and the first
one corresponds to the value 2.

Now suppose that we want to deal with generic D and d, but d is not a divisor
of D. Let Z = z1 -+ zp,, where each z; is a number in Z,. Consider, say the first
digit z; of Z. The encryption works by picking a random number B «s Zp and
then outputs ¢; « 21 + (B mod d) as the first digit of the ciphertext. Again
because d is not a divisor of D, the random variable B mod d is not uniformly
distributed in Z4. In fact, for a € Zg4, the probability that B = a is exactly %

if a < D mod d, and this probability however is only LD/ 4 otherwise. By the
same argument as the special case above, if we encrypt the target Z with a large
enough number of times and plot the frequency histogram of the first digit of
the ciphertexts, then what we obtain is a histogram, with D mod d tall columns.
These tall columns will be consecutive (possibly with a wrap-around), and the
first one corresponds to the value z.

DiscussioN. As Theorem 8 suggests, the security of DTP-2 (namely r = 3) is
not better than that of DTP-1 (namely r» = 1). Moreover, Protegrity’s decision
to prefer d = 62 over d = 10 actually makes security worse. As shown in Table4,
if one interprets a CCN as a sequence of 16 decimal digits, then one would
need to obtain roughly 575,000 ciphertexts to recover a CCN with advantage at
least 0.9. In contrast, if one interprets a CCN as a sequence of 16 alphanumeric
characters, then one would only need about 53, 000 ciphertexts to recover a CCN
with advantage at least 0.9.

EXPERIMENTS. We implement our Digit-wise Differential attack in C++ and
evaluate its message-recovery rate against both DTP-1 and DTP-2, for domains
27, with m € {4,9,16} and d € {10,62}. (For DTP-1, we only use d = 10.)
Each experiment for domain Z}' was run using m threads in a server of Intel(R)
Xeon(R) CPU E5-2699 v3 2.30 GHz CPU and 256 GB RAM. For each setting,
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Table 4. Comparison of security of DTP-2 over the choice of the radix d,
on PINs, social security numbers, and credit-card numbers. The first column
shows the value of d. The other columns show the estimated number of ciphertexts
needed for our attack to achieve advantage 0.9 as suggested by Theorem 8.

Radix d | PINs (m = 4) | SSNs (m = 9) | CCNs (m = 16)
10 460, 000 525,000 575,000
62 46,000 51,000 53,000

Table 5. Empirical results of the Digit-wise Differential attack on DTP-1.
For each domain (shown in the first column), we run experiments with two values of ¢
(the number of tweaks) as indicated in the second and fifth columns. The recovery
rates corresponding to these two values of ¢ are given in the third and sixth columns,
respectively. Finally, the average running time (in milliseconds) of each experiment is
given in the fourth and seventh columns.

Domain | Number of | Recovery | Time | Number of | Recovery | Time
tweaks, ¢ rate (ms) | tweaks, ¢ rate (ms)

Zio 218 100% 2.9 217 98% 1
VAT 100% 3 91% 1.49
AL 100% | 3.5 83% | 1.87

Table 6. Empirical results of the Digit-wise Differential attack on DTP-2.

Domain | Number of | Recovery | Time | Number of | Recovery | Time
tweaks, ¢ rate (ms) | tweaks, ¢ rate (ms)

Zo 218 100% 3 2'7 95% 1
Z3% 100% | 3.08 90% | 1.53
VAN 100% | 3.58 83% 1.97
Za 216 100% | 0.01 2'° 91% | 0.01
73 100% 1.03 78% 0.02

VA 100% | 1.17 68% 1

we run our attack for several choices of ¢ (the number of tweaks), each for 100
trials, and report the average running time and the empirical recovery rate.

Our experimental results for DTP-1, given in Table5, are quite consistent
with Theorem 8. For example, for domain Z1§ (namely CCNs), theoretically one
would need q = 2! tweaks to recover the target with probability nearly 1, and
our experiments confirm that using ¢ = 2! indeed gives 100% recovery rate.
However, empirically, we find that ¢ = 2'® is enough to achieve 100% recovery
rate, and each trial takes just 3.5 ms on average. If one instead uses ¢ = 2'7, the
recovery rate drops to 83%.



250 V. T. Hoang et al.

The experimental results for DTP-2 are given in Table6, confirming the
theoretical observations in Table4: (1) DTP-2 is just as insecure as DTP-1, and
(2) Using radix d = 62 instead of d = 10 exacerbates the insecurity: for example,
for Z$S (namely CCNs), using ¢ = 2'% is already enough to achieve 68% recovery
rate, and using ¢ = 26 results in 100% recovery rate.
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