
New State Recovery Attack on RC4

Alexander Maximov and Dmitry Khovratovich

Laboratory of Algorithmics, Cryptology and Security
University of Luxembourg

6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
Alexander.Maximov@ericsson.com, Dmitry.Khovratovich@uni.lu

Abstract. The stream cipher RC4 was designed by R. Rivest in 1987,
and it is a widely deployed cipher. In this paper we analyse the class
RC4-N of RC4-like stream ciphers, where N is the modulus of opera-
tions, as well as the length of internal arrays. Our new attack is a state
recovery attack which accepts the keystream of a certain length, and re-
covers the internal state. For the reduced RC4-100, our attack has total
complexity of around 293 operations, whereas the best previous attack
(from Knudsen et al.) needs 2236 of time.

The complexity of the attack applied to the original RC4-256 depends
on the parameters of specific states (patterns), which are in turn hard
to discover. Extrapolated parameters from smaller patterns give us the
attack of complexity about 2241, and it is much smaller than the com-
plexity of the best known previous attack 2779. The algorithm of the new
attack was implemented and verified on small cases.

Keywords: RC4, state recovery attack, key recovery attack.

1 Introduction

RC4 [Sch96] is a stream cipher designed by Ron Rivest in 1987, and since then it
has been implemented in many various software applications to ensure privacy
in communication. It is one of the most widely deployed stream ciphers and
its most common application is to protect Internet traffic in the SSL protocol.
Moreover, it has been implemented in Microsoft Lotus, Oracle Secure SQL, etc.
The design of RC4 was kept secret until 1994 when it was anonymously leaked
to the members of the Cypherpunk community. A bit later the correctness of
the algorithm was confirmed.

In this paper we study a family RC4-N of RC4 like stream ciphers, where N
is the modulus of operations. The internal state of RC4 is two registers i, j ∈ ZN

and a permutation S of all elements of ZN . Thus, RC4 has a huge state of
log2(N

2N !) bits. For the original version, when N = 256, the size of the state is
≈ 1700 bits. This makes any time-memory trade-off attacks impractical. RC4-
256 uses a variable length key from 1 to 256 bytes for its initialisation.

The initialisation procedure of RC4 has been thoroughly analysed in a large
number of various papers, see e.g. [MS01,Man01,PP04]. These results show that
the initialisation of RC4 is weak, and the secret key can be recovered with a small

D. Wagner (Ed.): CRYPTO 2008, LNCS 5157, pp. 297–316, 2008.
c© International Association for Cryptologic Research 2008

298 A. Maximov and D. Khovratovich

portion of data/time. Because of these attacks, RC4 can be regarded as broken.
However, if one would tweak the initialisation procedure, the cipher becomes
secure again.

The simplicity of the keystream generating algorithm of RC4 has attracted
many cryptanalysis efforts. In most analyses the scenario assumes that keystream
of some length is given, and either a distinguishing ([Gol97, FM00, Max05,
Man05]) or a state recovery ([KMP+98]) attack is of interest. A state recov-
ery attack can be used to determine the actual security level of a cipher, if the
initial internal state is considered as a secret key. The first state recovery attack
was proposed by Knudsen et al in 1998 [KMP+98]. This had a computational
complexity of 2779. Some minor improvements were found in other literature,
e.g. [MT98], but still, there is no attack even close to 2700. One interesting
attempt to improve the analysis was recently done in [Man05]. However, that
attack is only a potential one 1, and the pretending time complexity claimed was
around 2290.

In this paper we propose a new state recovery attack on RC4-N . For the
original design RC4-256 the total time complexity of the attack is less than 2579,
and under some realistic assumptions (see Section 6) a complexity would drop
to 2241 (2272 under pessimistic extrapolations), requiring keystream of a similar
length. This would mean that there is no additional gain in using a secret key
longer than 30 bytes. We also show that in general if the secret key is of length
N bits or longer the new attack is faster than exhaustive key search.

The idea of the new attack is as follows. The algorithm searches for a place
in the keystream where the probability of a specific internal state, compliant with
a chosen pattern, is high. Afterwards, the new state recovery algorithm is used
together with a small portion of data (around 2N output words) in order to
recover the internal state of the cipher in an iterative manner. This algorithm
has been implemented and verified for small values of N , it has determined the
correct internal state in every simulation run. The success rate of the full attack
is shown to be at least 98%. For large values of N , where simulations were
impossible, an upper bound for the average complexity of the attack is derived
and calculated.

In the precomputation stage we search for a proper pattern to use in the
attack. However, in this paper we skip a detailed analysis of that complexity
since it is upper bounded by the time needed for the main stage of the attack
(see Appendix B).

This paper is organized as follows. In Section 2 the new iterative state re-
covery algorithm is described in detail. Afterwards, Section 3 introduces various
properties of a pattern that are needed for the recovering algorithm. An effective
searching algorithm to find such patterns is also proposed in Appendix B (due
to the page limitation and clarity of presentation). Section 4 describes several

1 Mantin detects a large number of bytes of the state, and then applies Knudsen’s
attack given those bytes. However, this would reduce the complexity only if the
knowns were located in a short window all together while this is not the case. This
fact is confirmed in [Man05] (Section “State Recovery Attack”).

New State Recovery Attack on RC4 299

techniques to detect specific states by observing the keystream, and also intro-
duces additional properties of a pattern needed for detection purposes. Theo-
retical analysis of the state recovery algorithm and derivation of its complexity
functions are performed in the full version of this paper [MK08]. All pieces of the
attack are then combined in Section 5. Finally, we perform a set of simulations
of the attack, summarize the results and conclude in Section 6. The paper ends
with suggestions for further improvements and open problems in Section 7.

1.1 Notations

All internal variables of RC4 are over the ring ZN , where N is the size of the
ring. To specify a particular instance of the cipher we denote it by RC4-N . Thus,
the original design is RC4-256. Whenever applicable, + and − are performed in
modulo N . At any time t the notation at denotes the value of a variable a at time
t. The keystream is denoted by z = (z1, z2, . . .), where zi is a value 0 ≤ zi < N .
In all tables probabilities and complexities will be given in a logarithmical form
with base 2.

1.2 Description of the Keystream Generator RC4-N

The new attack targets the keystream generation phase of RC4 and, thus, the
initialisation procedure will not be described. We refer to, e.g., [Sch96] for a full
description of RC4. After the initialisation procedure, the keystream generation
algorithm of RC4 begins. Its description is given in Figure 1.

Internal variables:
i, j – integers in ZN

S[0 . . . N − 1] – a permutation of integers 0 . . . N − 1
S[·] is initialised with the secret key
The keystream generator RC4-N
i = j = 0
Loop until we get enough symbols over ZN∣

∣
∣
∣
∣
∣
∣
∣

(A) i = i + 1
(B) j = j + S[i]
(C) swap(S[i], S[j])
(D) zt = S[S[i] + S[j]]

Fig. 1. The keystream generation algorithm of RC4-N

2 New State Recovery Algorithm

2.1 Previous Analysis: Knudsen’s Attack

In [KMP+98] Knudsen et al. have presented a basic recursive algorithm to re-
cover the internal state of RC4. It starts at some point t in the keystream z

300 A. Maximov and D. Khovratovich

given k known cells of the permutation St, which helps the recursion to cancel
unlikely branches. The idea of the algorithm is simple. At every time t we have
four unknowns:

jt, St[it], St[jt], S−1
t [zt]. (1)

One can simply simulate the pseudo random generation algorithm and, when nec-
essary, guess these unknown values in order to continue the simulation. The re-
cursion steps backward when a contradiction is reached due to previously wrong
guesses. Additionally, it can be assumed that some k values are a priori known
(guessed, given, or derived somehow), and this may reduce the complexity of
the attack significantly. An important note is that the known k values should
be located in a short window of the “working area” of the keystream, otherwise
they cannot help to cancel hopeless branches.

The precise complexity of the attack was calculated in [KMP+98], and several
tables for various values of N and k were given in Appendices D.1 and D.2
of [Man01]. As an example, the complete state recovery attack on RC4-256
would require time around 2779.

2.2 Our Algorithm for State Recovery

In this section we propose an improved version of the state recovery algorithm.
Assume that, at some time t in a window of length w + 1 of the keystream z,
all the values jt, jt+1, jt+2, . . . , jt+w are known. This means that for w steps the
values St+1[it+1], . . . , Si+w[it+w] are known as well, since they are derived as

St+1[it+1] = jt+1 − jt, ∀t. (2)

Consequently, w equations of the following kind can be collected:

S−1
k [zk] = Sk[ik] + Sk[jk], k = t + 1, . . . , t + w, (3)

where only two variables are unknown,

S−1
k [zk], Sk[jk], (4)

instead of four in Knudsen’s attack, see (1). Let the set of consecutive w equations
of the form (3) be called a window of length w.

Since all js in the window are known, then all swaps done during these w steps
are known as well. This makes it possible to map the positions of the internal
state St at any time t to the positions of some chosen ground state St0 at some
ground time t0 in the window. For simplicity, let us set t0 = 0.

Our new state recovery algorithm is a recursive algorithm, shown in Figure 2.
It starts with a collection of w equations, and attempts to solve them. A single
equation is called solved or processed if its corresponding unknowns (4) have been
explicitly derived or guessed. During the process, the window will dynamically
increase and decrease. When the length of the window w is long enough (say,
w = 2N), and all equations are solved, the ground state S0 is likely to be fully
recovered.

Now we give a more detailed description of the different parts of the algorithm.

New State Recovery Attack on RC4 301

Iterative
Recovering

Window
Expansion

Find and Guess the
Maximum Clique

Contradiction?

Are all
equations in the window

solved?

Are new
equations available?

Guess One S[i]

no

no

yes

yes

no

recursion
backward

recursion
forward

recursion
forward

1.

4.

3.

2.

yes

Fig. 2. New state recovery algorithm

Iterative Recovering (IR) Block. The Iterative Recovering block receives
a number a of active equations (not yet processed) in the window of length w
as input, and tries to derive the values of St[jt]s and S−1

t [zt]s. To do that, the
IR block goes through two steps iteratively, until no more new derivations are
possible. If all previous guesses were correct, then all newly derived values (cells
of the ground state) will be correct with probability 1. Otherwise, when the IR
block finds a contradiction the recursion steps backward. The two steps are as
follows.

A. Assume that, for one of the active equations its output symbol zt is already
allocated somewhere in the ground state. I.e., the value S−1

t [zt] is known,
and the second unknown St[jt] can explicitly be derived using (3).
A contradiction arises if (a) St[jt] is already allocated and it is not equal to
the derived value; (b) the derived value already exists in some other cell.

B. Already allocated values may give the value of St[jt] in another equation.
Consequently, a new value S−1

t [zt] can be derived via (3), which might pos-
sibly cause a contradiction.

Find and Guess the Maximum Clique (MC) Block. If no more active
equations can explicitely be solved, S−1

t [zt] for one t has to be guessed. The
Find and Guess the Maximum Clique block analyses given active equations,
and chooses the element that gives the maximum number of new derivations in
consecutive recursive calls of the IR block. This element is then guessed.

The analysis is very simple. Let a active equations be vertices vt in a graph
representation. Two vertices vt′ and vt′′ are connected if zt′ = zt′′ and/or St′ [jt′]

302 A. Maximov and D. Khovratovich

and St′′ [jt′′] refer (like pointers) to the same cell of the ground state. Guess-
ing any unknown variable in any connected subgraph solves all equations in-
volved in that subgraph. Therefore, let us call these subgraphs cliques. The
MC block searches for a maximum clique, and then guess one S−1

t [zt] for one
of the equations belonging to the clique. Afterwards, the IR block is called
recursively.

Window Expansion (WE) Block. Obviously, the more equations we have
the faster the algorithm works. Therefore, a new equation is added to the system
as soon as the missing value S[i] in the beginning or in the end of the window
is derived. The Window Expansion block checks for this event and dynamically
extends the window. Sometimes several equations are added at once, especially
on the leafs of the recursion.

Guess One S[i] (GSi) Block. If there are no active equations but the ground
state S0 is not yet fully determined, the window is then expanded by a direct
guess of S[i], in front or in back of the window. Then the WE, IR and MC blocks
continue to work as usual. Additional heuristics can be applied for choosing which
side of the window to be expanded for a larger success.

Appendix A provides an example that shows the steps of the outlined
algorithm.

3 Precomputations: Finding Good Patterns

The algorithm presented in the previous section is used in the full state recovery
attack as a part of it. Every time when the algorithm is running at some point
of the keystream, its effectiveness depends on certain properties of the current
internal state. Although these properties are not visible for the intruder, she may
have a good guess about places in the keystream where the internal state has
good properties (see Section 4), and apply the state recovery algorithm only at
those places.

In this section we will define patterns (see Definition 1), they determine huge
sets of internal states with common properties. If, for instance, a pattern has
a large window then this certainly helps decreasing the complexity of the al-
gorithm. However, the probability that the internal state is compliant with a
certain pattern decreases with the number of conditions put on the pattern.

In this section we discuss properties of patterns that influence on the com-
plexity of the attack, and also study their availability. We have also developed
an efficient algorithm for finding these paterns, and it is located in Appendix B.

3.1 Generative States

Let us start with several definitions, some of which were previously defined
in [MS01,Man01,Man05].

New State Recovery Attack on RC4 303

Definition 1 (d-order pattern). A d-order pattern is a tuple

A = {i, j, P, V }, i, j ∈ ZN , (5)

where P and V are two vectors from Z
d
N with pairwise distinct elements. At

a time t the internal state is said to be compliant with A if it = i, jt = j,
and d cells of the state St with indices from P contain corresponding values
from V . ��

The example in Figure 4 in Appendix A illustrates how a 5-order pattern allows
to receive a window of length 15. However, the higher the order, the less the
probability of such a constraint to happen. Thus, we are interested in finding a
low order pattern which generates a long window.

Definition 2 (w-generative pattern). A pattern A is called w-generative
if for any internal state compliant with A the next w clockings allow to derive w
equations of the form (3), i.e., consecutive w + 1 values of js are known. ��

Table 1 demonstrates a 4-order 7-generative pattern A={-7,-8,{-6, -5, -4, 0}, {6,
-1, 2, -2}}, that supports the above definitions. Eight equations involve symbols
of the keystream zt+1, . . . , zt+8 associated with a certain time t. We say that the
keystream is true if the internal state at time t is compliant with the pattern,
otherwise we say the keystream is random.

Let another pattern B be derived from A as

B = A + τ = {i + τ, j + τ, P + τ, V }, (6)

for some “shift” τ . The pattern B is likely to be w-generative as well. This
happens when the properties of A are independent of N , which is the usual case.

3.2 Availability

We have done a set of simulations in order to find maximum w-generative d-order
patterns, denoted by Md. The results are given in Table 7(a) in Appendix C.

Table 1. An example of a 4-order 7-generative pattern

it jt S[i] S[j] S[i] + S[j] zt −6 −5 −4 −3 −2 −1 0 1 2 3 4 5
−7 −8 – – – – 6 −1 2 x1 x2 x3 −2 x4 x5 x6 x7 x8

−6 −2 6 x2 6 + x2 ∗ x2 −1 2 x1 6 x3 −2 x4 x5 x6 x7 x8

−5 −3 −1 x1 −1 + x1 ∗ x2 x1 2 −1 6 x3 −2 x4 x5 x6 x7 x8

−4 −1 2 x3 2 + x3 ∗ x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

−3 −2 −1 6 5 x8 x2 x1 x3 6 −1 2 −2 x4 x5 x6 x7 x8

−2 −3 −1 6 5 x8 x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

−1 −1 2 2 4 x7 x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

0 −3 −2 −1 −3 −2 x2 x1 x3 −2 6 2 −1 x4 x5 x6 x7 x8

1 ∗ x4 ∗ ∗ ∗

304 A. Maximov and D. Khovratovich

Table 2. Dependency of the maximum w from d, simulated and approximated values

Real values from our simulations Approximated values
d = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

wmax = 6 10 15 21 27 31 37 42 50 55 61 68 76 82 88 94 100 106 112 118

Searching for a high order pattern is a challenging task since the computational
complexity grows exponentially with d. The best result achieved in our work is
a 14-order 76-generative pattern M14.

Table 2 shows the dependency of a maximum achievable generativeness wmax

from the order d. We can note that this dependency is almost linear, and it
converges to wmax = 6d + λ as d → ∞. We make the following conjecture.

Conjecture 1. The rate of wmax

d ≈ 6 as d → ∞.2 ��

That conjecture allows us to make a prediction about certain parameters for
patterns with large d. These could not be found due to a very high precom-
putation complexity, but they are needed to analyse the attack for large N
(N = 128 . . .256 in Table 3). However, given those parameters, d and w, we can
derive theoretical complexities of the attack on average 3. This has been done
in [MK08]. An efficient search algorithm for patterns with desired properties is
given in Appendix B.

4 Detection of Patterns in the Keystream

In the previous section we have studied properties of a pattern that are desirable
for the state recovery algorithm to work fast and efficient. We have also shown
(in Appendix B) how these patterns can be found, and introduced an efficient
searching algorithm.

In this section we show how the internal state of RC4, compliant to a chosen
pattern, can be detected by observing the keystream. If the detection is very
good, then the state recovery algorithm might only have to be executed once, at
the right location in the keystream.

The detection mechanism itself can be trivial (no detection at all), in which
case the algorithm has to be run at every position of the keystream. On the
other hand, a good detection may require a deep analysis of the keystream,
where specific properties of the pattern can be used efficiently.
2 Indeed, the “jump” of wmax as d increments by one is the sequence Γ={4, 5, 6, 6, 4,

6, 5, 8, 5, 6, 7, 8, . . .}. Obviously, for small d this “jump” is small, and it is notable
that the “jump” increases for larger d. In our simulations heuristics were used (see
Appendix B) when searching patterns for d ≥ 6. This means that our “jumps” in
the sequence Γ could possibly be larger if an optimal searching technique is applied,
since our heuristic cannot guarantee that we get a pattern with the longest window.
This suggests that the ratio w → 6d as d → ∞ seems quite a fair conjecture.

3 Because the relation w = 6d + λ is a subject of discussions, we show in Table 4 that
even more pessimistic conjectures do not affect the total complexity very much.

New State Recovery Attack on RC4 305

4.1 First Level of Analysis

The internal state of RC4 compliant to a d-order pattern A can be regarded as
an internal event with probability

Pr{Eint} = N−d−1. (7)

When the internal event occurs, there is an external event Eext observed in
the keystream, which is associated with the pattern A, i.e., Pr{Eext|Eint} = 1.
Applying Bayes’ law we can derive the detection probability Pdet of the pattern
A in the keystream as

Pdet = Pr{Eint|Eext} =
Pr{Eint}
Pr{Eext}

. (8)

Our goal in this section is to study possible external events with high Pdet in
order to increase the detection of the pattern.

Definition 3 (l-definitive pattern). A w-generative pattern A is called l-
definitive if there are exactly l out of w equations with determined S[j]s. ��

It means that in l equations S[i] + S[j] are known. If, additionally, z′ = S[S[i] +
S[j]] is also known, then the correct value of zt = z′ at the right position t of
the keystream z detects the case “the state at time t is possibly compliant to
the pattern”. Otherwise, when zt
= z′, it says that “the state at time t cannot
be compliant to the pattern”.

For detection purposes a large l (up to d) is important. From our experiments
we found that, however, a large l can be achieved via a slight reduction of the
parameter w. This leads us to one more conjecture.

Conjecture 2. For any d and w = wmax − λ there exist a pattern with l = d,
where λ is relatively small 4. ��

In the following definition we introduce other properties of a pattern that are
important for its good detection via the keystream.

Definition 4 (bα, bβ, bγ-α,β,γpredictive pattern). Let us have an l-definitive
pattern A and consider only those equations where S[j]s are determined. Then,
the pattern A is called bα-αpredictive if for bα of the l equations S[S[i] + S[j]]
is determined. For the remaining l − bα equations two additional definitions are
as follows. The pattern A is called bβ-βpredictive if for bβ pairs of the l − bα

equations the unknowns S[S[i]+S[j]]s must be the same. The set of bβ pairs must
be of full rank. The pattern A is called bγ-γpredictive if the l − bα equations
contain exactly bγ different variables of S[S[i] + S[j]]. ��
4 Table 6(a) in Appendix C contains patterns Xs with l = d where w is still large,

which supports the above conjecture. Indeed, Table 5 in Appendix B shows how
the number of available patterns grows when relaxing the condition put on w. I.e.,
a slight reduction of w increases the chance of finding a pattern with d = l. This
makes the conjecture fair.

306 A. Maximov and D. Khovratovich

These types of predictiveness are other properties of a pattern visible in the
keystream. For example, it is not only necessary to search for known z′ values (bα

of such), but one can also require that certain pairs of the keystream symbols (bβ

of such) are equal zt′ = zt′′ , which also helps to detect the pattern significantly.
The parameter bα is usually quite moderate and to have it larger than 15 is

quite difficult. However, the other criteria are more flexible and can be large.
These new parameters follow the constraint

bα + bβ + bγ = l ≤ d. (9)

Consider the remaining w − l equations of the pattern A where S[j]s are not
determined. Let at time instances t1 and t2 one pair of these equations be such
that the S[i] values and the S[j] pointers are equal. If the distance Δt = t2 − t1
is small, it is likely that the output z1 is the same as z2. The probability of this
event is

Pr{z1 = z2|Δt} >

(

1 − Δt

N

)

·
(

1 − 1
N

)Δt

≈ exp
(

−2Δt

N

)

. (10)

Definition 5 (bθ-θpredictive pattern). A pattern A is called bθ-θpredictive
if the number of such pairs (described above) is bθ. Let the time distances of these
pairs be Δ1, . . . , Δbθ

, then the cumulative distance is the sum Πθ = ΣiΔi ��

These four types of predictiveness are direct external events for a pattern. One
should observe the keystream and search for certain bα symbols, check another
bβ and bθ pairs of symbols that they are equal, and also check that a group of bγ

symbols are different from the values of V and from each other. Thus, we have

Pr{Eext} = N−bα−bβ−bθ ·
[

(N − d)!
N bγ (N − d − bγ)!

]

Pr{Eint} ≈ N−d−1 · e−2Πθ/N .

(11)

The example in Table 1 is a 4-definitive bα = 1, bβ = 1, bγ = 2, bθ = 0-
predictive pattern. For detection one has to test that zt+6 = −2, zt+3 = zt+4, and
zt+4, zt+5 are different from the initial values at V and zt+4
= zt+5. I.e., when,
for example, N = 64, the detection probability is 64−5 ÷ (64−2 · 60 · 59/642) ≈
64−2.96 5.

4.2 Second Level of Analysis

In fact, the first level of analysis allows to detect a pattern with probability at
most N−1 (because j is not detectable), whereas with the second level of analysis
it can be 1. Let us introduce a technique that we call a chain of patterns.

5 Since γ-predictiveness has a minor influence on detection, we skip this parameter in
future calculations.

New State Recovery Attack on RC4 307

Definition 6 (chain of patterns A → B, distance, intersection). Let us
have two patterns A = {ia, ja, Pa, Va} and B = {ib, jb, Pb, Vb}. An event when
two patterns appear in the keystream within the shortest possible time distance
σ is called chain of patterns, and is denoted as A → B if B appears after A.

The chain distance σ between two patterns A and B is the shortest possible
time between A’s ending and B’s beginning of their windows, i.e.,

σ = ib − (ia + wa) mod N. (12)

The intersection of A and B is the number ξ of positions in A that are
reused in B. These positions must not appear as S[i] during σ clockings while
the chain distance between A and B is approached. ��

For example, let A = {0, 0, {1, 3, 5, 6, 7, 8, 22, 23}, {2, 8, −3, −2, 1, 7, 4, −9}} and
B = {34, 34, {35, 36, 37, 38, 39, 44, 48, 52}, {8, −2, 1, 2, 4, −5, 5, 3}}. After wa =
30 clockings the first pattern becomes A′ = {30, 28, {15, 28, 30, 35, 36, 37, 38, 39},
{−3, −9, 7, 8, −2, 1, 2, 4}}. Obviously, the last ξ = 5 positions can be reused in
B, and after σ = 4 clockings a new pattern B (wb = 34) can appear if jt+34 = jb.
The probability that the chain A → B appears is N−9 · N−4, multiplied by the
probability that 5 elements from A′ stay at the same locations during the next 4
clockings. This is much larger than the trivial N−9 · N−9. Thus, a more general
theorem can be stated.

Theorem 1 (chain probability). The probability of a chain A → B to appear
is

PA→B = Pr{Eint} ≈ N−(da+db+2−ξ) · e−2(Πθa+Πθb)/N · e−ξ. (13)

Proof. In [Man01] it has been shown that ξ elements stay in place during N
clockings with an approximate probability e−ξ. The remaining part comes from
an assumption that the internal state is random, from where the proof follows.

��
Obviously, the probability of the external event for the chain is

Pr{Eext} = N−(bαa+bβa+bθa)−(bαb+bβb+bθb), (14)

which can be smaller than Pr{Eint} (see Y4 in Table 6 in Appendix C), confusing
the equation (8). This happens since Pr{Eext} is calculated assuming that the
keystream is random. However, in RC4 only a portion of the observed external
probability space can appear (which is another source for a distinguishing attack,
but it is out of scope of this paper). Therefore, in the case when Pr{Eext} <
Pr{Eint} we simply assume that the detection probability is 1.

Table 6 in Appendix C presents a few examples with a good trade-off (based on
our intuition) between w and detectability for various d. Since the computation
time for searching such patterns with multiple desired properties is really huge,
only a few examples for small d were given. However, we believe that for large d
it is possible to detect such patterns with a high probability, up to 1, applying
the two proposed levels of analysis.

308 A. Maximov and D. Khovratovich

5 Complete State Recovery Attack on RC4

5.1 Attack Scenario and Total Complexity

Recall pattern detection techniques from Section 4. In the attack scenario an
adversary analyses the keystream at every time t, and applies the state recovery
algorithm if the desired internal event (pattern) is detected. In all cases except
one the recovering algorithm deals with a random keystream.

Proposition 1 (Total Attack Complexities). Let the detection probability
be Pdet, then the total time CT and data CD complexities of the attack are

CT = Pr{Eint}−1 + (P−1
det − 1) · CRand + 1 · CTrue,

CD = Pr{Eint}−1. ��
(15)

5.2 Success Rate of the Attack

The complexities CTrue and CRandom are upper bounds for the average time the
algorithm requires. It means that for some cases it could take more time than
these bounds. In order to guarantee the upper bound of the total (not aver-
age) time complexity one can terminate the algorithm after, for example, Cthr

operations. In this case the success rate of the attack can be determined.
Figure 3 shows density and cumulative functions for the time complexity of

an example attack scenario. It shows that around 98% of all simulations of
the attack have time smaller than the average 229.28 (vertical line). When the
keystream is random the termination makes the average time bound CRandom even
smaller, since the random case is likely to be repeated very many times and the
second term in (15) can only decrease.

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

k

P
r{

C
T
r
u
e

=
2k

}

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

k

P
r{

C
T
r
u
e

<
2k

}

Fig. 3. Probability density (left) and cumulative (right) functions of the time CTrue in
logarithmical form (k = log2 CTrue). The scenario is N = 64, M8 and 2000 samples.

New State Recovery Attack on RC4 309

The plots in Figure 3 also show that even if the termination of the algorithm
is done on the level Cthr =

√
CTrue (≈ 215), the success rate of the attack is still

very high. I.e., the state recovery algorithm on RC4-64 can be done in time 215

with success probability 35%! If a similar situation happens for large N (e.g.,
N = 256), then the full time complexity can be significantly decreased (perhaps,
down to a square root of the estimated average complexity), and the success
probability can still be very large.

6 Simulation Results and Conclusions

We have selected a set of test cases with various parameters and patters, and
derived total data and time complexities of the new attack. Table 3 presents the
results of this work. For example, when N = 64, the total complexity of the new
attack is upper bounded by 260, if the pattern X9 is used. This is much faster
than, for example, Knudsen’s attack, which complexity for this case is 2132.6.
Even if d = 9 elements of the state are known, Knudsen’s attack needs 298.1 of
time, which is still much higher. The complexity of a potential attack recently
discussed by I. Mantin in [Man05] is also higher. As it was shown in Section 5.2,
the success rate of the new attack is at least 98%.

Table 3 also contains intermediate probabilities and complexities for the at-
tack, including theoretical (Δ = 0) and attuned (Δ = 2) values for CRand and
CTrue. When it was possible, the real attack on a true keystream was simulated
(real complexities for CTrue are shown in italic). In these simulations the complete
state of RC4 was successfully recovered for every randomly generated keystream
compliant with the corresponding pattern.

For larger N , patterns of a high order are needed to receive an attack of low
complexity. The largest pattern that we could find in this work is M14, and this
was applied to attack RC4-N with N = 128, 160, 200, 256. These attack scenarios
are those that we have in our hands already. However, the complexities received
are not optimal, but they are still lower than in Knudsen’s attack. Conjecture 1
and also discussions in Section 4 make it possible to approximate the parameters
of a hypothetical pattern that is likely to exist (– patterns). To be secure, we
relate d and w as w = 6d−6. The remaining parameters were chosen moderate as
well. As the result, we obtained an attack on RC4-256 with the (upper bounded)
total complexity of 2241.7, and this is the best state recovery attack known at
the moment.

Since Conjecture 1 is discussible, we show in Table 4 that even pessimistic
relations between w and d do not increase the attack complexity of approximated
scenarious () significantly. In general, we have noted the following tendency. For
RC4-N with a secret key of length N bits or longer, the new attack can recover
the internal state much faster than an exhaustive search. This observation can
also be seen from the results in Table 3.

As the last point of the discussions we note that the key recovery attack
can be easily converted from a state recovery attack. There are several papers
dealing with recovering the secret key from a known internal state [MS01,Man01,

310 A. Maximov and D. Khovratovich

Table 3. Simulation results and comparisons with previous attacks

N N = 64 N = 100 N = 128 N = 160 N = 200 N = 256

�

M8 Y8 X9 X11 M13 M14 � M14 � M14 � M14 �

d

w

l

bα

bβ

bγ

bθ

Πθ

Pint

Pext

Pdet

C
R
a
n
d

C
T
r
u
e

CK(0)

CK(d)

CD

CT

Table 4. Complexities of the attack on RC4-256 for various relations w = ξd + λ. All
scenarious show much better attack complexity than the best previous one 2779.

optimistic realistic pessimistic
N = 256 w = 6.5d − 17 w = 6d − 6 w = 6d − 12 w = 5d w = 4d

d, w d = 29, w = 171 d = 29, w = 168 d = 30, w = 168 d = 33, w = 165 d = 39, w = 156
keystream 240.0 240.0 248.0 272.0 320.0

time 224.9 241.1 243.3 265.9 327.1

BC08]. However, this part works much faster than currently known state recovery
attacks, and, therefore, we just refer to these papers without giving details.

7 Further Improvements and Open Problems

Pattern detection improvements. With a chain of patterns described in Sec-
tion 4 one could reach a good detection. However, not only forward direction of

New State Recovery Attack on RC4 311

chaining can be considered, but also backward one. Additionally, there is a possi-
bility to analyse longer sequences of patterns in order to have a good detectabil-
ity. Another idea is to use unusual recyclable patterns in a similar manner as
in [Man05]. The difference is that these patterns are both recyclable and have a
long window. For example, A = {0, −4, {6, 4, 1, 5, 3}, {0, 1, 7, −2, −1}}.

State recovery algorithm improvement. The GSi block can choose the corner
(left or right) of the window to be extended by an additional heuristic analysis of
the current situation during the process. Another improvement is achieved if the
MC block could speculatively run the recursion for additional 1-3 extra forward
steps for every possible guess, and, afterwards, make such a guess for which the
number of sub branches is the minimum. The average time of the attack for this
strategy is reduced.

Derivation and statistics. Our investigation showed that the derived theoret-
ical upper bound gives a much larger complexity than the one received from the
real simulations of the attack. Obviously, a better analysis of the algorithm’s
complexity is needed. This would allow a more accurate estimation of the total
complexity, and it might improve the complexities in Table 3 significantly. An-
other interesting problem is to determine the density function of the recovering
algorithm, likewise in Figure 3. This may allow us to decrease the complexity in
square root times, maintaining a high success rate.

Other open problems. The search for patterns of a higher order with long
windows is another challenging open question. We have shown that there are
chains of patterns with short distances. The first pattern is used for the recover-
ing algorithm, and the second one is for detection. However, another interesting
question is whether or not the second pattern can also be used in the recovering
algorithm.

Acknowledgements

We thank Martin Hell, Lars Knudsen, Matt Robshaw and also anonymous re-
viewers for their valuable comments and efforts which helped us to improve this
paper significantly. This work was partly supported by University of Luxembourg
and Ericsson AB.

References

[BC08] Biham, E., Carmeli, Y.: Efficient reconstruction of rc4 keys from internal
states. In: Fast Software Encryption 2008. Lecture Notes in Computer
Science. Springer, Heidelberg (to appear, 2008)

[FM00] Fluhrer, S.R., McGrew, D.A.: Statistical analysis of the alleged RC4
keystream generator. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978,
pp. 19–30. Springer, Heidelberg (2001)

[Gol97] Golić, J.D.: Linear statistical weakness of alleged RC4 keystream genera-
tor. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238.
Springer, Heidelberg (1997)

312 A. Maximov and D. Khovratovich

[KMP+98] Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Anal-
ysis methods for (alleged) RC4. In: Ohta, K., Pei, D. (eds.) ASIACRYPT
1998. LNCS, vol. 1514, pp. 327–341. Springer, Heidelberg (1998)

[Man01] Mantin, I.: Analysis of the stream cipher RC4. Master’s thesis, The Weiz-
mann Institute of Science, Department of Applied Math and Computer
Science, Rehovot 76100, Israel (2001)

[Man05] Mantin, I.: Predicting and distinguishing attacks on RC4 keystream gen-
erator. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
491–506. Springer, Heidelberg (2005)

[Max05] Maximov, A.: Two linear distinguishing attacks on VMPC and RC4A and
weakness of RC4 family of stream ciphers. In: Gilbert, H., Handschuh,
H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 342–358. Springer, Heidelberg
(2005)

[MK08] Maximov, A., Khovratovich, D.: New state recovery attack on RC4 (ac-
cessed May 27, 2008) (2008), http://eprint.iacr.org/2008/017

[MS01] Mantin, I., Shamir, A.: Practical attack on broadcast RC4. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg
(2002)

[MT98] Mister, S., Tavares, S.E.: Cryptanalysis of RC4-like ciphers. In: Tavares,
S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 131–143. Springer,
Heidelberg (1999)

[PP04] Paul, S., Preneel, B.: A new weakness in the RC4 keystream generator
and an approach to improve the security of the cipher. In: Roy, B., Meier,
W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg
(2004)

[Sch96] Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source
Code in C, 2nd edn. John Wiley&Sons, New York (1996)

A Example Support for the State Recovery Algorithm

Figure 4 illustrates an example of the process of the IR block. In the example we
start with specific values of i and j, and also d = 5 cells of the state S are filled
with certain values, whereas the remaining cells are unknown. This constraint
allows to collect w = 15 equations of the form (3). The keystream is given in the
rightmost column of the table.

The first iteration, in Figure 4(b), finds that z6 = 4 and z8 = −2 are already
allocated, thus solving equations 6 and 8 (s4 = 10, s9 = 5). Afterwards, given
s9 = 5, the IR block solves the equation 14 and successfully checks for a con-
tradiction, in Figure 4(c). Finally, after the step (e) four additional cells of the
state S were derived with probability 1.

When the IR block is processed, the input to the MC block is the maximum
clique of size 4 equations with 5 unknowns, shown in Figure 4(f). It means that
guessing only one unknown determines four other ones. Furthermore, the space
of possible guesses is significantly reduced due to the higher probability of a
contradiction to occur.

New State Recovery Attack on RC4 313

St t

it+1 jt+1 S[i] S[j] z

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s3

s3 s1 s2 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s1

s3 s1 s2 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s2

s3 s1 s2 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s10

s3 s1 s2 s10 s4 s5 s6 s7 s8 s9 s11 s12 s13 s14 s15 s6

s3 s1 s2 s10 s6 s4 s5 s7 s8 s9 s11 s12 s13 s14 s15 s4

s3 s1 s2 s10 s6 s4 s5 s7 s8 s9 s11 s12 s13 s14 s15 s5

s3 s1 s2 s10 s6 s4 s5 s7 s8 s9 s11 s12 s13 s14 s15 s9

s3 s1 s2 s10 s6 s4 s5 s9 s7 s8 s11 s12 s13 s14 s15 s7

s3 s1 s2 s10 s6 s4 s5 s9 s7 s8 s11 s12 s13 s14 s15 s8

s3 s1 s2 s10 s6 s4 s5 s9 s7 s8 s11 s12 s13 s14 s15 s7

s3 s1 s2 s10 s6 s4 s5 s9 s8 s7 s11 s12 s13 s14 s15 s5

s3 s1 s2 s10 s6 s4 s9 s8 s7 s5 s11 s12 s13 s14 s15 s9

s3 s1 s2 s10 s6 s4 s8 s7 s5 s9 s11 s12 s13 s14 s15 s5

s3 s1 s2 s10 s6 s4 s8 s7 s9 s5 s11 s12 s13 s14 s15 s15

S[j] S[i]+

s3

S [z] z

? 18

=

s1 ? 29
s2 ? 6
s10 ? 16
s6 ? 5
s4 ? 4

s5 ? 16
s15 ? 17

s5 ? 12
s9 ? -2
s7 ? 21
s8 ? 6
s7 ? 9
s5 ? 1
s9 ? 10

+4
-2
+1
+8
-4
-2

+4
+8

+1
+4
-2
+1
-4
-2
+1

(a)

-1 S[j] S[i]+

s3

S [z] z

? 18

=

s1 ? 29
s2 ? 6
s10 ? 16
s6 ? 5

s4

4

s5 ? 16
s15 ? 17

s5 ? 12
-2

s7 ? 21
s8 ? 6
s7 ? 9
s5 ? 1

? 10

810

=10

10

95

s9=5

5

5

+4
-2
+1
+8
-4
-2

+4
+8

+1
+4
-2
+1
-4
-2
+1

(b)

-1 S[j] S[i]+

s3 +4

S [z] z

? 18

=

s1 -2 ? 29
s2 +1 ? 6
s10 +8 ? 16
s6 -4 ? 5

s4

-2 4

s5 +4 ? 16
s15 +8 ? 17

s5 +1 ? 12
+4 -2

s7 -2 ? 21
s8 +1 ? 6
s7 -4 ? 9
s5 -2 ? 1

+1 ? 10

8

=10

10

9

s9=5

5

5 6 10 no contra-
diction!

(c)

-1

S[j] S[i]+

s3 +4

S [z] z

? 18

=

s1 -2 ? 29
s2 +1 ? 6
s10 +8 ? 16

s6

-4 ? 5

s4

-2 4

s5 +4 ? 16
s15 +8 ? 17

s5 +1 ? 12
+4 -2

s7 -2 ? 21
s8 +1 ? 6
s7 -4 ? 9
s5 -2 ? 1

+1 10

8

=10

10

9

s9=5

5

5 6

141818

=18

(d)

-1 S[j] S[i]+

+4

S [z] z

? 18

=

s1 -2 ? 29
s2 +1 ? 6
s10 +8 ? 16

s6

-4 14 5

s4

-2 4

s5 +4 ? 16
s15 +8 ? 17

s5 +1 ? 12
+4 -2

s7 -2 ? 21
s8 +1 ? 6
s7 -4 ? 9
s5 -2 ? 1

+1 10

8

=10

10

9

s9=5

5

5 6

117

18

=18

(e)

s3=7

7

-1 S[j] S[i]+

+4

S [z] z

18

=

s1 -2 ? 29
s2 +1 ? 6
s10 +8 ? 16

s6

-4 5

s4

-2 4

s5 +4 ? 16
s15 +8 ? 17

s5 +1 ? 12
+4 -2

s7 -2 ? 21
s8 +1 ? 6
s7 -4 ? 9
s5 -2 ? 1

+1 10

8

=10

10

9

s9=5

5

5 6

1418

=18
s3=7

117

(f)

-1

Fig. 4. Example of the iterative reconstruction process

314 A. Maximov and D. Khovratovich

B Searching Technique

Since the search space for a d-order pattern grows exponentially with d, only pat-
terns of order d ≤ 6 were analysed before in various literature, e.g., in [Man05]. In
this section we suggest a few techniques that accelerate this search significantly,
and allow to search and analyse patterns of order up to d ≤ 15, approximately,
on a usual desktop PC.

First, we need to make some observations on the construction of patterns.
Afterwards, several ideas based on the observation for improving the algorithm
follow.

All “good” patterns found have V s with values from a short interval Iδ =
[−δ . . . + δ], where δ ≈ 10 . . .25 is quite conservative. From this we make the
following conjecture.

Conjecture 3. A pattern with the largest w is likely found among all possible
combinations for i = 0, j ∈ Iδ, V ∈ Id

δ , with a moderate value of δ � N . ��

This conjecture will be used as the basis for a significant improvement in the
searching technique of such patterns.

Table 5 provides the number of patterns for δ = 15, and various values of d and
w. When d and δ are fixed, the amount of desired patterns can be exponentially
increased by letting w be slightly less than wmax. This approach can help finding
patterns with additional properties which are introduced in Section 4.

The first idea is to set i = 0 due to (6), and for the remaining variables only
a small set of values Iδ for some δ should be tested due to Conjecture 3.

A straightforward approach would be to allocate d values in a vector S and
then to check the desired properties of the pattern. The time complexity of this
approach is O

((
N
d

)(|Iδ|
d

)

|Iδ|
)

, which is still very large. Our second idea is to
allocate a new element in S only when it is necessary. This will significantly
decrease the time complexity.

The diagram of a recursive algorithm exploiting the first two ideas is shown
in Figure 5, but it can be improved with the following heuristic. The third idea
is to start searching for a desired pattern somewhere in the middle of its future
window. Let us split d as d = dfwd+dback and then start the algorithm in Figure 5
allowing to allocate exactly dfwd cells of S. At the point (∗) the current length of
the window w is compared with some threshold wthr. If w ≥ wthr, then a similar
recursive algorithm starts, but it goes backward and allocates remaining dback
cells of S. This double-recursion results in a pattern with w likely to be close to
the maximum possible length of the window.

Searching of a d-order pattern is a precomputation stage of the attack.

Theorem 2. The complexity of the precomputation stage is less than the total
complexity of the attack.

New State Recovery Attack on RC4 315

Table 5. The number of different constraints for specific d and w, when δ = 15

d The number of patterns Ad when δ = 15.
↓ w → 15 14 13 12 11 10 9 8 7 6
4 #{A4} → 1 3 10 26 226 863 5234 21702 114563 853012

w → 21 20 19 18 17 16 15 14 13 12
5 #{A5} → 1 4 6 15 66 252 652 1879 6832 27202

w → 27 26 25 24 23 22 21 20 19 18
6 #{A6} → 1 2 7 42 81 177 371 799 2646 10159

i=0

Loop for

i++

S[i] is known?

#of allocated
elements <d?

j+=S[i]
swap(S[i], S[j])

yes

no

Loop for S[i]
yesno

recursion forward

Check the pro-
perties of the
state (w, b, ...)
and output if
it is "good".

recursion backward

(*)

j ∈ Iδ

∈ Iδ

Fig. 5. Recursive algorithm for searching patterns with large w

Proof. Assume we are interested a d-order pattern. To start with, one should
loop j of N values. Afterwards, the algorithm tries to allocate the first value in
V [] at some first location in P [], which is another inner loop of N values, and so
on. At the end we got d + 1 inner loops, each of N values. Thus, the complexity
of this non-heuristic and non-optimized searching algorithm is O(Nd+1). The
attack requires a keystream of the same size, thus, it proofs the statement. ��

316 A. Maximov and D. Khovratovich

C Patterns Used in This Paper

Table 6. Various patterns that were achieved by our simulations (part I)

α β θ P
r{

E
i
n
t
}

P
r{

E
e
x
t
}

i, j P, V d w l bα bβ bθ Πθ σ ξ ψ

w l

X8
st P = N−9e−8/N N−7

V =
X9

st P = N−10e−8/N N−6

V =
X10

st P = N−11e−8/N N−7

V =
X11

st P = N−12 N−9

V =

Y4
st P = V = N−5 N−4

nd P ′ = V ′ = N−6e−3 N−7

Y7
st P = N−8 N−5

V =
nd P ′ = V ′ = N−10e−4 N−10

Y8
st P = N−9 N−5

V =
nd P ′ = V ′ = N−12e−6 N−12

Table 7. Various patterns that were achieved by our simulations (part II)

i, j P, V d w l bα bβ bγ bθ Πθ

M2 P = V =
M3 P = V

M4 P = V

M5 P = V

M6 P = V

M7 P = V

M8 P =
V =

M9 P =
V =

M10 P =
V =

M11 P =
V =

M12 P =
V =

M13 P =
V =

M14 P =
V =

	New State Recovery Attack on RC4
	Introduction
	Notations
	Description of the Keystream Generator RC4-N

	New State Recovery Algorithm
	Previous Analysis: Knudsen's Attack
	Our Algorithm for State Recovery

	Precomputations: Finding Good Patterns
	Generative States
	Availability

	Detection of Patterns in the Keystream
	First Level of Analysis
	Second Level of Analysis

	Complete State Recovery Attack on RC4
	Attack Scenario and Total Complexity
	Success Rate of the Attack

	Simulation Results and Conclusions
	Further Improvements and Open Problems
	Example Support for the State Recovery Algorithm
	Searching Technique
	Patterns Used in This Paper

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

