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Abstract. A modular approach for cryptographic protocols leads to a
simple design but often inefficient constructions. On the other hand,
ad hoc constructions may yield efficient protocols at the cost of losing
conceptual simplicity. We suggest structure-preserving commitments and
signatures to overcome this dilemma and provide a way to construct
modular protocols with reasonable efficiency, while retaining conceptual
simplicity.

We focus on schemes in bilinear groups that preserve parts of the
group structure, which makes it easy to combine them with other prim-
itives such as non-interactive zero-knowledge proofs for bilinear groups.

We say that a signature scheme is structure-preserving if its verifica-
tion keys, signatures, and messages are elements in a bilinear group, and
the verification equation is a conjunction of pairing-product equations. If
moreover the verification keys lie in the message space, we call them au-
tomorphic. We present several efficient instantiations of automorphic and
structure-preserving signatures, enjoying various other additional prop-
erties, such as simulatability. Among many applications, we give three
examples: adaptively secure round-optimal blind signature schemes, a
group signature scheme with efficient concurrent join, and an efficient
instantiation of anonymous proxy signatures.

A further contribution is homomorphic trapdoor commitments to group
elements which are also length reducing. In contrast, the messages of pre-
vious homomorphic trapdoor commitment schemes are exponents.

1 Introduction

The designer of cryptographic protocols faces a tension between choosing a mod-
ular approach using generic primitives that lead to a simple design but inefficient
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protocols or using ad hoc constructions that sometimes yield efficient protocols
at the cost of losing conceptual simplicity. Cryptographic protocols often com-
bine general building blocks such as commitments, encryption, signatures, and
zero-knowledge proofs. While modular design is useful to show feasibility of
cryptographic tasks and also to illustrate a comprehensible framework, efficient
instantiations are sometimes left as a next challenge. Some cryptographic tasks
find “cleverly crafted” efficient solutions dedicated to their specific purposes.
Nevertheless, modular construction makes implementing more complex primi-
tives easier when the building blocks have reasonable instantiations. We suggest
structure-preserving commitments and signatures to provide a way to construct
modular protocols that retain conceptual simplicity and at the same time yield
reasonable efficiency.

A classical way of realizing efficient instantiations is to rely on the random-
oracle heuristic [BR93] for non-interactive zero-knowledge (NIZK) proofs—or to
directly use interactive assumptions (like the LRSW assumption [LRSWO00] and
its variants, or “one-more” assumptions [BNPS03]). Due to a series of criticisms
starting with [CGH98] more and more practical schemes are being proposed and
proved secure in the standard model (i.e., without random oracles) and under
falsifiable (and thus non-interactive) assumptions [Nao03]. All schemes given in
this work satisfy these criteria.

STRUCTURE-PRESERVING SIGNATURES. The combination of NIZK proofs of
knowledge and signatures appears frequently in privacy-protecting cryptographic
protocols such as group signatures [BMWO03], [KY05] [BSZ05, [Gro07], blind signa-
tures [Fis06], [AO09], anonymous credentials [BCKLOS, IBCCT09|, verifiably en-
crypted signatures [BGLS03, [RS09], non-interactive group encryption [CLY(9]
and many more.

An efficient non-interactive proof system in the standard model, however,
has been absent until recently. In [GS08], Groth and Sahai presented the first
(and currently the only) efficient non-interactive proof system for a large class
of statements over bilinear groups. The most interesting and widely used type is
a conjunction of pairing-product equations (PPE) whose variables are elements
of the bilinear group (cf. Section 24]). A PPE consists of products of pairings
applied to the variables and constants from the group. For this type of equations,
the proofs are fully extractable which actually makes them proofs of knowledge.
This renders GS proofs particularly interesting for modular protocol design.

Research on signature schemes that are compatible with GS proofs was ini-
tiated in [Gro06]. While the design goal is clear and simple, giving an efficient
instantiation has proved hard for years. There are efficient signature schemes,
e.g., [BB04, [CT.04, BCKLOSK, [CKS09], whose verification predicates are pairing-
product equations, but none of them have signatures and messages that exclu-
sively consist of group elements. Since only group elements can be extracted from
GS commitments, this entailed limited applicability of each scheme or stronger
security notions such as F-unforgeability [BCKLOS].

The desirable properties of a signature scheme enabling modular design to-
gether with GS proofs are the following:
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1. the scheme is unforgeable against chosen-message attacks;

2. the verification keys, messages, and signatures are elements of a bilinear
group; and

3. the verification predicate is a conjunction of pairing-product equations over
the key, the message and the signature.

Note that this proscribes the use of hash functions, which usually play a central
role in making signature schemes unforgeable against adaptive chosen-message
attacks. We therefore call such a scheme structure preserving. If in addition its
verification keys lie in the message space, we call it an automorphic signature
(since it signs its own keys besides preserving structure).

Combined with GS proofs, structure-preserving signatures allow to prove
knowledge of messages, signatures and/or verification keys without actually re-
vealing them. Proving knowledge of signatures has been used in many construc-
tion of group signatures, anonymous proxy signatures, anonymous credentials,
blind signatures, and others. Clearly, structure-preserving signatures combined
with the GS proof system will allow to instantiate those constructions with-
out resorting to interactive assumptions nor to the random-oracle model while
maintaining a modular design.

For example, Fischlin [Fis06] presented the following framework for round-
optimal blind signatures in the common reference string model. To obtain a
signature from the signer, the user commits to a message and sends the com-
mitment to the signer. Then, the signer signs the commitment and sends back
the signature. The user produces a NIZK proof of knowledge of a commitment,
an opening of the commitment to that message, and a signature on the com-
mitment. This proof constitutes a blind signature for the message. Despite its
simplicity, the scheme has not been instantiated efficiently in the standard model
because it requires a signature scheme which signs trapdoor commitments and
whose verification equations should mesh well with the GS proof system.

An application that also requires signing verification keys are anonymous
prozy signatures [FP0§]. They enable users to delegate (and redelegate) their
signing rights to other users. A signature on behalf of another user (proxy signa-
ture) hides the identity of the proxy signer and possible intermediate delegators.
Instantiating anonymous proxy signatures requires a signature scheme that is
both GS compatible and enables users to sign other user’s verification keys to
delegate. Automorphic signatures can thus be used create a delegation chain of
which the proxy signer proves knowledge using GS proofs.

TRAPDOOR COMMITMENTS TO GROUP ELEMENTS. A non-interactive commit-
ment scheme allows to create a commitment c to a message m. The commitment
hides the message, but we may later disclose m and demonstrate that ¢ was a
commitment to m by revealing the randomness r used when creating it. This
is called opening the commitment. It is essential that once a commitment is
made, it is binding, meaning that it is infeasible to find two openings of the
same commitment to two different messages.

In this paper, we consider public-key trapdoor commitments [GQ88, [Ped92]
which are also homomorphic and length reducing. The former means that



212 M. Abe et al.

messages and commitments belong to abelian groups and if we multiply two
commitments, we get a new commitment that contains the product of the two
messages, whereas the latter requires that the commitment is shorter than the
message.

An example would be a generalization of Pedersen commitments whose n
message components are in Z,. The public key consists of n + 1 group elements
G1,...,Gp, H and a commitment to (m1,...,m,) is C = H"[[\_, G{**. This
scheme is length-reducing since a commitment to n messages consists of only
one group element, a feature that has been found useful in contexts such as mix-
nets/voting, digital credentials, blind signatures, leakage-resilient one-way func-
tions, and zero-knowledge proofs [EFS01], [Nef01l, [Bra99, [KZ06l, [ADW09, [Lip03].

Common to all the homomorphic trapdoor commitment schemes is that they
are homomorphic with respect to addition in a ring or a field. However, in public-
key cryptography we often work over groups that are not rings or fields and it
is useful to commit to elements from such groups. Of course, if we know the
discrete logarithms of the group elements we want to commit to, we can commit
to them using Pedersen commitments. In general, we cannot expect to know the
discrete logarithms of the messages though, leaving us with the open problem of
constructing homomorphic trapdoor commitments to group elements.

Furthermore, such schemes could be combined with Pedersen commitments
since commitments of the latter scheme are single group element. So, if we have a
homomorphic trapdoor commitment scheme whose commitments to O(n) group
elements are of size O(1), we can commit to m - n elements in Z, using com-
mitment schemes with public keys of total size O(m + n). In comparison, when
using only Pedersen commitments the public key would be of size O(m - n).

Finally, note that similarly to structure-preserving signatures, “GS compati-
bility” of a homomorphic trapdoor commitment scheme makes it a useful com-
ponent in constructing more advanced zero-knowledge arguments or giving an
efficient proof of knowledge of a message and/or an opening of a commitment.

1.1 Owur Contribution

The paper presents three main results, all of them based on groups with a bilinear
map. We focus on constructions in asymmetric bilinear groups whereas those in
the symmetric setting are given in the full versions.

Firstly, we present a homomorphic trapdoor commitment to group elements.
The commitments are perfectly hiding, computationally binding, and length re-
ducing. An advantage of our commitment scheme is that the construction is very
simple. The public key consists of n + 1 group elements (Gg,G1,...,G,) from
G1 and we commit to My,..., M, € G by choosing R € G2 at random and
computing the commitment

C=¢e(Gg, R He G, M;)

The commitment scheme is computationally binding under the double pairing as-
sumption, which we show to be implied by decisional Diffie-Hellman assumption
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in G1. We extend our construction to commit to commitments as mentioned above
and present an honest verifier zero-knowledge argument of knowledge of the con-
tents of such commitments.

Next, we present the first instantiation of structure-preserving signatures on
group elements. The messages consist of 2 group elements from an asymmetric
bilinear group and signatures of 5 elements. Since the verification keys lie in the
message space, the scheme is actually an automorphic signature. The scheme is
proved secure under a variant of the strong Diffie-Hellman assumption [BB04],
a “g-type” assumption which holds in the generic-group model. We combine the
scheme with the GS proof system to construct the first efficient round-optimal
blind signature scheme, which also remains automorphic. Moreover, we give a
generic transformation from any automorphic signature scheme to one that signs
message vectors of arbitrary length that leaves the keys unchanged.

Lastly, we present a structure-preserving signature scheme which signs vec-
tors of general group elements. It has a constant signature size regardless of
the message length. Our scheme does not rely on setup assumptions nor the
messages having a specific structure, e.g. Diffie-Hellman pairs, like in the pre-
vious construction. While its verification key grows linearly in the maximum
message length, it is possible to extend the scheme to sign unbounded-length
messages at the cost of signatures growing proportionally to the length. This
way, it is possible to make the signature automorphic albeit less efficient than
the scheme above. The security is based on a novel strong, “q-type”, assumption
which is fairly complex. However, it has an optimal quadratic security bound in
generic bilinear groups unlike the popular strong Diffie-Hellman assumption and
its variations. Finally, we define the notion of simulatable signatures and give
an efficient instantiation. It is defined in the common reference string (CRS)
model and allows to create valid signatures using the trapdoor associated with
the CRS.

APPLICATIONS: We illustrate the advantages of structure-preserving signature
schemes by presenting several useful applications. The round-optimal blind sig-
nature scheme of Fischlin described before, which is secure in the universal-
composability framework [Can01], is easily instantiated with such a building
block in hand. The only extra tool we need is a trapdoor commitment on mes-
sages in Z, whose commitments and openings are group elements. Such scheme
is easily derived from the Pedersen commitment scheme when working in bilinear
groups.

We then present a practical group signature scheme in the strongest security
model [BSZ05] which moreover supports concurrent join. The construction fol-
lows a commonly used approach, based on the technique of proving knowledge
of a signature.

Finally, we present the first efficient instantiation of anonymous proxy signa-
tures (APS) in the standard model. Since automorphic signatures allow certify-
ing public keys, delegation can be done by signing the delegatee’s public key. An
anonymous proxy signature is a GS proof of knowledge of a certification chain
that starts at the original delegator and ends at the message. We also discuss
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how to strengthen the anonymity guarantees of APS. Using blind automorphic
signatures, we give a protocol that hides the identity of the delegatee from the
delegator. Moreover, using randomizability of GS proofs, we show how to main-
tain anonymity of the intermediate delegators w.r.t. the delegatee.

We note that since the announcement of our work, automorphic signatures
have been used to construct the first fair blind signatures without random or-
acles [FVI0] and non-interactively delegatable anonymous credentials [FucI0].
The commitment schemes and the related assumptions have been used to con-
struct efficient leakage-resilient signatures and one-way relations [DHLAWTO0J.
Moreover, one can use the commitment schemes to reduce the communication
complexity of Groth’s [Gro09b| sub-linear size zero-knowledge argument for cir-
cuit satisfiability from O(|C|2) group elements to O(|C|#) group elements.

1.2 Related Work

There are many examples of homomorphic commitments. Homomorphic cryp-
tosystems such as [EIG86L, [OU98| [Pai99, BGNQ5] or Linear Encryption [BBS04]
can be seen as homomorphic commitment schemes that are perfectly binding
and computationally hiding. Commitments based on homomorphic encryption
can be converted into computationally binding and perfectly hiding homomor-
phic commitments, see for instance the mixed commitments of Damgard and
Nielsen [DN02] and the commitment schemes used by Groth, Ostrovsky and
Sahai [GOS06], Boyen and Waters [BW0G], Groth [Gro06] and Groth and Sa-
hai [GS08]. Even in the perfectly hiding versions of these schemes the size of a
commitment is larger than the size of a message though. This length increase
follows from the fact that the underlying building block is a cryptosystem whose
ciphertexts must be large enough to include the message.

There are also direct constructions of homomorphic trapdoor commitment
schemes such as Guillou and Quisquater commitments [GQ88] and Pedersen
commitments [Ped92]. The latter are one of the most used commitment schemes
in the field of cryptography. They are perfectly hiding with a trapdoor and if
the discrete-logarithm problem is hard they are computationally binding. There
are many variants of the Pedersen commitment scheme. Fujisaki and Okamoto
[FO97] and Damgard and Fujisaki [DE02] for instance suggest a variant where
the messages can be arbitrary integers. However, none of the previous trapdoor
commitment schemes has messages from a group.

Feasibility of structure-preserving signatures on group elements was first shown
by Groth [Gro06], who presents a construction based on the decision linear as-
sumption (DLIN) [BBS04]. While it is remarkable that the security can be based
on a simple standard assumption, the scheme is not practical as signatures
consist of hundreds of thousands of group elements. Based on the g-Hidden LRSW
assumption, Green and Hohenberger [GHOS8] presented an efficient scheme that
provides security against random-message attacks. An extension to chosen-
message security is not known.

Independently of our work, Cathalo, Libert and Yung [CLY09] gave a practical
scheme based on a combination of the hidden strong Diffie-Hellman assumption,
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the flexible Diffie-Hellman assumption, and the DLIN assumption. It was the first
structure-preserving signature scheme to sign single group elements. However, it
cannot sign its own verification keys and signatures on vectors grow linearly in
their length.

An instantiation, though not practical, of anonymous proxy signatures was
given in [FP0Y]. Moreover, they are similar to the delegatable anonymous creden-
tials from [BCCT09] in that they provide mechanisms enabling users to prove
possession of certain rights while remaining anonymous; and they consider re-
delegation of received rights. The interactive delegation protocol for anonymous
credentials provides even mutual anonymity of the delegator and the delegatee.
The two instantiations rely on similar assumptions.

1.3 Merging Our Results

This paper combines the results of three different lines of research. In [Gro(09a]
Groth presented the first homomorphic trapdoor commitments to group elements
which are moreover length-reducing (Section Bl). Fuchsbauer [Fuc09] gave the
first structure-preserving signatures on group elements and used it to efficiently
implement round-optimal blind signatures in the standard model (Section [4).
Abe, Haralambiev and Ohkubo [AHOTO] gave the first constant-size signature
scheme on vectors of general group elements. They also explicitly defined the
notion of simulatable signatures, gave an efficient construction, and used it to
implement UC-secure round-optimal blind signatures (Sections [l and [61]).

2 Preliminaries

2.1 Bilinear Groups
We will work in bilinear groups of the form A = (p, G1, G2, Gr, e, G, H) where

— pis a A-bit prime, where ) is a security parameter

— G1,Gg, Gp are order p groups with efficiently computable group operations,
membership tests and map e : G; X Gy — Gr

— @G generates Gy, H generates Go and e(G, H) generates G

— The map e is bilinear YA € G1VB € GoVz,y € Z), : e(A”, BY) = e(A, B)™

To simplify notation, we define G; = G1\ {1}, G5 = G2\ {1} and G} = G\ {1}.

2.2 Assumptions

We will work with bilinear groups generated by a probabilistic polynomial-time
algorithm G that takes the security parameter as input. The schemes we present
will rely on one or more of the following computational assumptions about the
bilinear groups generated by G. We note right away that the assumptions imply
G1 # Go and furthermore some of them imply that we are working in so called
type III bilinear groups [GPS08] where there are no efficiently computable non-
trivial homomorphisms between the two base groups G; and Go. We refer to the
full papers for schemes that work in type I and type II bilinear groups.
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Variants of DDH and CDH. The decisional Diffie-Hellman (DDH) problem
in a group G is, given (G, G%, G?, G°), to decide whether ¢ = ab. The symmetric
external Diffie-Hellman (SXDH) assumption in a bilinear group states that DDH
is hard in both groups.

Assumption 1 (SXDH). For A = (p,G1,Ga, Gr,e,G, H) «+ G(1*), the deci-
sional Diffie-Hellman assumption holds in both Gy and Gs.

The 2-out-of-8 CDH assumption [KP06] states that given (G, G, H), it is hard
to output (G”, H®") for an arbitrary r # 0. To break the Flexible CDH assump-
tion [LVO8|, [CLY09], an adversary must additionally compute G*". We further
weaken the assumption by defining a solution as (G", G, H", H*"), and gener-
alize it to asymmetric groups by letting G € G; and H € Gs. The asymmetric
weak flexible CDH is defined as follows:

Assumption 2 (AWF-CDH). Let G € Gi, H € G2 and a € Z, be random.
Given (G, A = G* H), it is hard to output (G",G", H", H*") with r # 0, i.e.,
a tuple (R, M, S, N) that satisfies

e(4,S) = e(M,H)  e(M,H)=c(G,N)  e(R,H)=e(G,S) (1)
Given a DDH instance (G,G?, G?, G¢), solving AWF-CDH for (G, G, H) yields

(G", G, H", H%"); thus G¢ = G can be checked by e(G®, H") = e(G?, H").
We have thus

Lemma 1. The AWF-CDH assumption holds if the decisional Diffie-Hellman
assumption is hard in G.

The Double Pairing Assumption. The double pairing problem is given ran-
dom Gr, Gt € G to find non-trivial R, S € Gg satistying e(Gr, R)e(Gr,T) = 1.

Assumption 3 (DBP). For all nonuniform polynomial-time adversaries A

Pr|A— G(1"); Gr,Gr < Gy; (R, T) — A(A,Gr,Gr) :
(R,T)e Gy xG5 A e(Gr,R)e(Gr,T) =1| = negl(A).

We show in the full papers the following lemma:

Lemma 2. The double pairing assumption holds if the decisional Diffie-Hellman
assumption is hard in Gq.

The reverse double pairing problem, where the base groups are interchanged and
the challenge is to find a non-trivial pair (R, S) € G? is defined analogously.
Next, observe that given an answer to an instance of the DBP problem, one can
easily yield more answers. We eliminate such possibility by multiplying random
pairings to both sides of the equation. As one of those stays the same in all
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instances, whereas the other, e(V, W), changes in each instance, the intuition
is that it would be hard to combine e(V, W) and e(V’', W) into one equivalent
pairing e(V", W") — we call such a pairing flexible as it can be easily randomized
and, when relations with respect to the same base is known, combined with
another. Also, to make the assumption valid, we make a system of two such
equations and require that their solutions share a common element, Z.

Assumption 4 (Simultaneous Flexible Pairing Assumption (¢-SFP)).
Let A be a bilinear groups setup and let Gz, Fz, Gr, and Fy be random gener-
ators of Gy. Let (A,/i), (B,é) be random pairs in Gy X Go. For j =1,...,q, let
R; =(Z,R,S5,T,U,V,W) that satisfies

e(A,A) =e(Gyz, Z) e(Gr,R) e(S,T) and (2)
e(B,B) = e(Fz,Z) e(Fy,U) e(V,W). (3)

Given (A,GZ,FZ,GR,FU,A,A,B,B) and uniformly chosen Ri,...,Rq, it is
hard to find (Z*, R*,S*,T*, U*,V* , W*) that fulfill relations (@) and {3) under
the restriction that Z* # 1 and Z* # Z € R for every R;.

We also show that the SFP assumption can be justified and has an optimal
bound in the generic bilinear group model.

Lemma 3. For any generic algorithm A, the probability that A breaks SFP with
¢ group operations and pairings is bound by O(q* + () /p.

A variant of the g-strong Diffie Helmman assumption. The g-strong
Diffie-Hellman (SDH) assumption [BB04] implies hardness of the following two
problems in bilinear groups [FPV09):

1. Given G,G® and ¢q — 1 pairs (GTJ:F ,¢;), output a new pair (Gmic ,C).
2. Given G, K,G", ((K- G”)”fl( , ci,vi)fkl

=1’
Boyen and Waters [BWQT7] define the hidden SDH assumption which states that
the first problem is hard when the pairs are substituted with triples of the form
(GY/(=ted) Gei He), for a fixed H. Analogously, Fuchsbauer et al. [FPV09] de-
fine the double hidden SDH (DHSDH) by giving the scalars in the second prob-
lem as exponentiations of two group elements. We adapt DHSDH to asymmetric
groups by giving generators G, F, K € G; and H € Gg; the elements ¢; and
v; are given as (F, H%) and (G", H""). Due to the pairing, a tuple can thus
be effectively verified. The assumption holds in the generic-group model [Sho97)
for both asymmetric and symmetric groups [Fuc09] and falls in the generalized
“Uber-Assumption” family [Boy0§].

Assumption 5 (¢-ADH-SDH). Let G, F,K € G, H € Gy and z,¢;,v; € Zyp
be random. Given (G, F,K,X=G*; H,Y =H") and
(Ai = (K-G¥)=+e, C;=F%, D;=H", V;=G", Wi=H") ,

for1 <i<gq-—1, it is hard to output a new tuple ((K- G”)w}rc,FC,HC,G”,H”)
with (¢,v) # (¢, v;) for all i.

output a new ((K-G") S v).
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Note that a tuple (A, C, D,V, W) of this form satisfies the following equations:
e(A,Y-D)=¢e(K-V,H) ¢e(C,H)=¢e(F,D) e\V,H)=e(G,W) (4)

2.3 Digital Signatures

A digital signature scheme Sig = (Setup, KeyGen, Sign, Verify) consists of the
following algorithms: Setup outputs system parameters; KeyGen outputs a pair
(vk, sk) of verification and signing keys; and Sign(sk, M) outputs a signature
o, which is verified by Verify(vk, M, o). Signatures are ezistentially unforgeable
under chosen-message attack (EUF-CMA) [GMRSS] if no adversary, given vk
and a signing oracle for messages of its choice, can output a pair (M, o) s.t. M
was never queried and Verify(vk, M, o) = 1.

Signatures are strongly EUF-CMA (sEUF-CMA) if no adversary can output a
valid pair (M, o) such that (M,o) # (M;,0;) for all i, with M; being the i-th
oracle query and o; the response.

2.4 SXDH Groth-Sahai Proofs for Pairing-Product Equations

One of the main motivations of structure-preserving signatures is to combine
them with Groth-Sahai (GS) proofs [GS08], in particular witness-indistinguish-
able (WI) proofs of satisfiability of pairing-product equations (PPE). A PPE over
variables X1,...,X,, € Gy, Y1,...,Y, € Gs is an equation of the form

He (A;,Y7) He X;, B;) HHe X, V) = tr (E)

i=1j=1

determined by A; € G1, B; € Ga,7;,j € Zp, and tr € Gr.

Groth and Sahai define an extractable commitment scheme for group ele-
ments. The setup algorithm is given a bilinear group and outputs a commitment
key ck € G} x G3. A commitment Com(ck, X, p) to X € G; using randomness
p € 72 is in G} (for i = 1,2). These commitments are perfectly binding and
given an extraction key, the committed values can be recovered.

A proof of satisfiability of a PPE is constructed as follows. First, make com-
mitments to the satisfying witness (X1, ..., Xm, Y1,...,Y,). Then make a proof
¢ that the committed values satisfy the equation, using the values and the ran-
domness of the commitments. The proofs, which are in G} x G3, are perfectly
sound: if a proof passes verification for a set of commitments then the committed
(and extractable) values satisfy the equation.

There is an alternative setup that outputs keys ck® which lead to commitments
and proofs that are equally distributed for all witnesses. Under SXDH, these keys
are indistinguishable from original keys; witness indistinguishability of GS proofs
follows thus from SXDH.

Note that due to extractability, a proof of satisfiability is actually a non-
interactive proof of knowledge of a witness; we will write thus

NIPK{(X1,.., Xm, Y1,..,Yy) : [Te(A;, Vi) [Te(Xs, B) [ T[] e(X;,Y;)"7 =tr}
and PKVrf for the verification algorithm.
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If for a signature scheme, public keys, messages and signatures are group
elements that are verified by checking PPEs; we can commit to (encrypt) keys,
messages and /or signatures and prove validity of the committed values using GS
proofs.

Randomization. Groth-Sahai commitments can be randomized, in particular,
given ¢ = Com(ck, X, p), one can compute Com(ck, X, p+ p’) for any p’ without
knowledge of X or p. Moreover, given commitments and a proof ¢ that the
committed values satisfy a PPE, we can randomize the commitments and adapt
¢ to the randomized commitments [BCCT09]. WI implies that a randomized
proof is indistinguishable from a proof computed with a different witness.

3 Commitments

A non-interactive commitment scheme consists of three polynomial-time algo-
rithms (G, Geom, com). G is a probabilistic polynomial-time setup algorithm that
takes as input the security parameter A and outputs some setup information
A; in our commitment scheme G will be a bilinear group generator. Geon, is a
probabilistic polynomial-time algorithm that takes as input the setup A and and
generates a public commitment key ck and a trapdoor key tk. The commitment
key ck specifies a message space Mg, a randomizer space R., and a commit-
ment space C.,. We assume it is easy to verify membership of the message space,
randomizer space and the commitment space and it is possible to sample ran-
domizers uniformly at random from R.x. The algorithm Com takes as input
the commitment key ck, a message m from the message space, a randomizer
r from the randomizer space and outputs a commitment ¢ in the commitment
space. We call a message-randomizer pair an opening. Anybody with an opening
and a commitment can check whether the commitment is a commitment to the
message specified in the opening.

A commitment scheme should be binding, which means it is infeasible to find
two openings of the same commitment to two different messages. A commitment
scheme should also be hiding such that the commitment does not disclose any-
thing about the message. Our commitment scheme is a trapdoor commitment
scheme, which makes it hiding in a very strong sense. The commitment has a
trapdoor opening algorithm Topen that takes the trapdoor key, an opening of
a commitment and a message and outputs a randomizer such that the message
and the randomizer constitute a new opening of the commitment.

We will now describe our commitment scheme. The commitment scheme will
have message space M., = GY, randomizer space R.; = G2 and commitment
space C.r, = Gp. In other words, we can commit to an n-tuple of base group
elements with a commitment that consists of a single target group element.

Setup: On input 1* return A = (p, Gy, Ga, Gr, e, G, H) «— G(1*).

Key generation: On input A pick Gg «— G} and zi1,...,z, <« Z, and set
G =G%, -+ ,G, =G} The commitment and trapdoor keys are

ck=(A,Gr,G1,...,Gy) and thk=(ck,z1,...,25).
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Commitment: Using commitment key ck on input message (M,...,M,) €
GY% pick randomizer R «+ Gg. The commitment is given by

C=e(Gr.R) [[ e(Gi, M) .

i=1

Trapdoor opening: On a commitment C' € G with opening (M, ..., M,, R)
€ GY x Go and another message (M{,..., M) € G} use the trapdoor key
tk to compute the trapdoor randomizer R’ = R[]\, (M;/M])". This gives
us a trapdoor opening (Mj,..., M/, R’) satisfying

C = e(Gr, R) [ e(Gi, Mi) = e(Gr, B) [ [ e(Gir M)

i=1 i=1

The commitment scheme has several useful properties. The commitment is length-
reducing, since a commitment to a tuple of messages yields a commitment consist-
ing of a single target group element. The commitment scheme is homomorphic
since multiplying two commitments yields a commitment to the entry-wise prod-
uct of the messages, i.e.,

n n n
e(Gr, R) [ e(Gi, My) - e(Gr, R') [ [ e(Gi, M) = e(Gr, RR) [ [ e(Gi, MiM).
i=1 i=1 i=1
The commitment scheme is perfectly hiding since for all messages (M, ..., M,) €

G% the commitment procedure returns a uniformly random commitment C' € Gp
and therefore no information is leaked about the commitment. Indeed, with the
trapdoor key we can even take a commitment and its opening and create an open-
ing to any other message. Finally, we prove in the full papers that the commitment
scheme is computationally binding if the double pairing assumption holds for the
bilinear group generator G. We summarize these properties in the theorem below,
which we prove in the full papers.

Theorem 1. (G, Gecom, Com, Topen) described above is a homomorphic, perfectly
hiding trapdoor commitment scheme; and assuming the double pairing assump-
tion holds for G the commitment scheme is computationally binding.

It is straightforward to construct a similar type of commitment scheme for tuples
in G} using the reverse double pairing assumption.

Committing to commitments. The defining characteristic of our commit-
ment scheme is that we commit to base group elements as opposed to field
elements. This opens up new applications for commitment schemes. As a sim-
ple example, we can for instance construct commitments to commitments. Re-
call that Pedersen commitments to tuples (m1,...,m,) € Z; are of the form
C=H" H;L:1 H;nj. Each Pedersen commitment is a group element, and we can
commit to many Pedersen commitments using our commitment scheme. Com-
bining the two commitment schemes we can commit to n? field elements from
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Zy. Since both Pedersen commitments and our commitments are homomorphic,
the combined commitment scheme is also homomorphic. It also preserves the
trapdoor opening property and is perfectly hiding. A commitment consists of a
single group element in Gy and the commitment key consists of approximately
2n group elements, so unlike the Pedersen commitment we have a commitment
key that is much smaller than the messages.

4 Automorphic Signatures

For elaborate applications, Groth-Sahai compatibility of a signature scheme is
not sufficient; in addition, the verification keys have to lie in the message space.
This enables constructions of certification chains (sequences of public keys linked
by certificates from one key on the next one), which can be anonymized by GS
proofs, as required by anonymous proxy signatures (see Section [6:3)) and delegat-
able anonymous credentials. We call such a scheme an automorphic signature,
as it is able to sign its own keys and it is structure preserving.

Definition 1. An automorphic signature over A = (p,G1,Ga,Grp,e,G, H) is
an EUF-CMA secure signature whose verification keys lie in the message space.
Moreover, the messages and signatures consist of elements from Gy and Gz, and
the verification predicate is a conjunction of pairing-product equations.

The trick that enables an efficient instantiation of automorphic signatures is to
define a message (and thus a verification key) as a pair of group elements of
the form (GY, H). Hence, the message space is the set of Diffie-Hellman pairs
DH = {(G",H")|v € Z,}. In Assumption [}l we could interpret G, F, K, H as
parameters, (X,Y) as the public key, (V,W) as the message and (A, C, D) as
the signature—since a signer holding the secret key x can choose ¢ and pro-
duce (A, C, D) without knowing v. ADH-SDH states that these signatures are
unforgeable when the adversary gets ¢ — 1 signatures on random messages.

To make the scheme secure against chosen-message attacks, we interpret GV
in the definition of A as a trapdoor commitment to the message (M, N). The
key is an element T := G! € Gy, where t is the trapdoor, and a commitment
to (M, N) is defined as V :=T" - M with opening (G", H"). AWF-CDH implies
that the commitments are computationally binding. Trapdoor opening requires
knowledge of W such that (V, W) € DH: for any (V,W), (M, N) € DH, a valid
opening is ((V - M)~t (W - N)~t).

The final signature will be (A, C, D) together with the opening of the com-
mitment (R, S); a signature is thus in G$ x G3.

4.1 Instantiation

Our automorphic signature scheme Sig = (Setup, KeyGen, Sign, Verify) is defined
as follows.

Setup: On input 1* run A = (p, Gy, Ge,Gr,e,G, H) « G(1), choose random
elements F, K,T € G; and output the parameters pp := (A, F, K, T). The
message space is DH := {(G™,H™) |m € Z,}.
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Key generation: On input pp choose z «+ Z, and return the verification key
vk := (G*, H*) and the signing key sk := x.

Signing: On input the parameters pp, a secret key x and a message (M, N) €
DH, choose ¢, r «— Z, and return

A= (K-T"-M)s+e C:=F° D:=H° R:=G S:=H"

Verification: On input pp, a public key (X,Y") and a message (M, N), both in
DH, and a signature (A,C, D, R, S), return 1 if

e(C,H) =e(F,D)

e(A,Y-D)=¢e(K-M,H)e(T,S) e(R,H) = e(G,9)

(5)

Theorem 2. Under ADH-SDH and AWF-CDH, Sig is strongly unforgeable
against chosen-message attacks.

We refer to the full version [Fuc09] for a proof. Note that the scheme can also
be instantiated for Gy = Gs. Our scheme (and the blind signature scheme in
the next section) can also be used to sign bit strings if we assume a collision-
resistant hash function Hash: {0,1}* — Z,: before signing a message or verifying
a signature, we map m € {0,1}* to (M, N) := (GHash(m) prHash(m)y ¢ D,

4.2 Automorphic Blind Signatures

We now show how to combine automorphic signatures with the Groth-Sahai
proof system to construct the first round-optimal blind signature scheme, satis-
fying standard security requirements as in [Oka06] (see Section for a univer-
sally composable scheme). Similarly to Fischlin’s generic construction, our blind
signatures are defined as a proof of knowledge of a signature from an underlying
scheme, which perfectly hides the signature. We thus only have to ensure that
the signer does not learn the message while signing. In our scheme the user sends
a randomization of the message, on which the signer makes a “pre-signature”.
By adapting the randomness, the user can retrieve a signature on the message
(rather than on a commitment for which the user has to prove knowledge of
the opening, as in Fischlin’s construction). This increases useability of our blind
signatures for applications (cf. Section [6.3]) and also makes them shorter.

To obtain a blind signature on (M, N), the user randomly picks p « Z, and
blinds M by the factor T”. In addition to U := T* - M, she sends a GS proof
of knowledge of (M, N,G?, H?). The signer now formally produces a signatur
on U, for which we have A = (K - T7- U)Y/@+e) = (K. T+ . M)V (@+e); thus
A is the first component of a signature on (M, N) with randomness r + p. The
user can complete the signature by adapting randomness r to r 4 p in the other
components. The blind signature is a GS proof of knowledge of this signature.

! Note that the user does not obtain a signature on U (unless U = M), since it is
not an element of the message space; to produce (U, H'egc Y) € DH, the user would
have to break AWF-CDH.
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Obtain((pp’, ck), vk, (M, N)) Choose p «— Zp, set P:=G*, Q := H”, and send:
- U=T"-M
— ¢ = NIPK{(M, N, P,Q) : e(M, H) = e(G, N)
ANe(P,H)=¢e(G,Q)N e(T,Q)e(M,H) = e(U,H)}

Issue((pp’, ck), ). If ¢ is valid, choose ¢, 7 « Z, and send:
A= (K-T"-U)ste C:=F° D=H° R =G §=H"

Obtain sets R:=R' - P, S:=5"-Q.If (A,C,D,R,S) is valid on (M, N) under vk,
it outputs

o= NIPK{(A,C,D,R, S): VerifySig(pp, vk,(M,N), (A,C,D, R, S))} .

Fig. 1. Two-move blind signing protocol

Our blind signature scheme BSig = (Setup, KeyGen, Obtain, Issue, Verify) is de-
fined as follows.

Setup: On input 1* run the setup algorithms for Sig and for Groth-Sahai
proofs; return the respective outputs pp’ and ck as parameters pp.

Key generation: The message space and key generation are defined as for Sig.

Signature issuing: The protocol consists of interactive algorithms Obtain, run
by the user, and Issue, run by the signer. Obtain has inputs pp, the signer’s
verification key vk and a message (M, N) € DH. Issue has inputs pp and the
signing key . The protocol is given in Figure [1l

Verification: On input pp, a verification key vk, a message (M, N) € DH and
a signature o, return 1 if ¢ is a valid Groth-Sahai proof, i.e.,

PKVrf{o : Verify, (vk, (M,N), )} =1 .

Theorem 3. Under ADH-SDH and SXDH, scheme BSig is an unforgeable
blind-signature scheme.

Using soundness of Groth-Sahai proofs, unforgeability is shown by reduction to
the unforgeability of Sig, which holds under ADH-SDH and SXDH (the latter
implies AWF-CDH). Under SXDH, the user’s message (U, ¢) computationally
hides (M, N) and the blind signature hides what the signer sends in the issuing;
together this can be shown to imply blindness. See [Fuc09] for a formal proof of
Theorem [3l

The round complexity of the scheme is optimal. A blind signature consists of
commitments to (A, C, D, R, S) in G$ x G4 and GS proofs, which are in G} x G3,
for 3 equations. A blind signature is thus in Gi% x G1%, the two messages sent
during issuing are in G{7 x G1¢ and G} x G2, respectively. Note that the scheme
remains automorphic since GS proofs consists of group elements and are verified
by checking pairing-product equations.
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4.3 Automorphic Signatures on Message Vectors

In order to sign vectors of messages of arbitrary length, we proceed as follows. We
first show how to transform any signature scheme whose message space forms
an algebraic group (and contains the public-key space) into one that signs 2
messages at once—if we exclude the neutral element from the message space
of the transform. A signature on a message pair will contain 3 signatures (of
the original scheme) on different products of the components. Note that DH,
the message space of Sig, is a group when the group operation is defined as
component-wise multiplication.

We then give a straightforward generic transformation from any scheme sign-
ing 2 messages (and whose verification keys lie in the message space) to one
signing message vectors of arbitrary length (Definition [3)). Both transformations
do not modify setup and key generation and they are invariant w.r.t. the struc-
ture of verification; in particular, if the verification predicate of the original
scheme is a conjunction of PPEs then so is that of the transform.

Definition 2. Let Sig = (Setup, KeyGen, Sign, Verify) be a signature scheme
whose message space (M, -) is an algebraic group that contains the verification
keys. The pair transform of Sig with message space M* x M* is defined as
Sig’ = (Setup, KeyGen, Sign’, Verify') with

Sign’(sk, (M1, My)): Set (vko,sko) < KeyGen and return
o= (Vko, Sign(sk, vko),
Sign(sko, M), Sign(sko, M1 - M), Sign(sko, My - M3)) .
Verify' (vk, (My, Mz), (vko, 00, 01,02,03)): Return 1 if all of the following are 1:
Verify(vk, vkg, 09)
Verify(vko, My,01)  Verify(vko, My - My, 00) Verify(vko, My - M3, 03)
Theorem 4. If Sig is EUF-CMA secure then so is Sig'.

Definition 3. Let Sig = (Setup, KeyGen, Sign, Verify) be a signature scheme
with message space M x M, such that M contains the verification keys. Assume
an efficiently computable injection I: {1,...,|M|} — M. The vector transform
of Sig is defined as Sig” = (Setup, KeyGen, Sign”, Verify”) with

Sign” (sk, (M1, ..., M,)): Set (vko,sko) < KeyGen and return
o= (Vko, Sign(sk, vko, I(n)),
Sign(sko, M1,1(1)),...,Sign(sko, My, 1(n))) .
Verify”(vk, (My,...,M,), (vko,00,01,- .-, an)): Return 1 if the following are 1:
Verify(vk, (VkO,I(n)),ao) Verify(vko, (M;, 1(7)), O'i) (for all 1 <i<n)
Theorem 5. If Sig is EUF-CMA secure then so is Sig’” .

We refer to [Fuc09] for proofs of Theorems Ml and [l where we also discuss why
the construction in Definition [ is optimal and why it seems somehow hard to
construct a generic vector transform directly.
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5 Signatures on Vectors of Group Elements

In this section, we present the first constant-size structure-preserving signature
scheme for messages of general bilinear groups elements. We start by describing
useful randomization techniques, followed by the scheme description and various
extensions. Full details, as well as the byproduct of several trapdoor commitment
schemes, can be found in [AHOT0].

5.1 Randomization Techniques

We introduce techniques that randomize elements in a pairing or a pairing prod-
uct without changing their value in Gr. Let (p,G1,Go,Gr, e, G, H) « G(1).

Inner Randomization (X', Y’) « Rand(X,Y): A pairing A = e(X,Y) # 1 is
randomized as follows. Choose v « Z7 and let (X’,Y’) = (X7,Y'/7). It then
holds that (X’,Y”) distributes uniformly over G; x G2 under the condition of
A =e(X'Y'). If A =1, then first flip a coin and pick e(1,1) with probability
1/(2p—1). If it is not selected, flip a coin and pick either e(1, X) or e(X, 1) with
probability 1/2. Then select X uniformly from the corresponding group except
for 1.

Sequential Randomization {X/,Y/}% | <« RandSeq({X;,Y;}¥ ;): A pairing
product A = e(X1,Y1) e(X2,Y2)...e(Xg, Ys) is randomized into A = e(X71,Y/)
e(X5,Y5) ... e(X},Y)) as follows: Let (y1,...,7k—1) < Z’;_l. We begin with
randomizing the first pairing by using the second pairing as follows. First verify
that Y7 # 1 and Xy # 1. If Y7 = 1, replace the first pairing e(X1, 1) with e(1, Y7)
with a new random Y7 (# 1). The case of X2 = 1 is handled in the same manner.
Then multiply 1 = e(X; ™, Y1) e(X2,Y]"™) to both sides of the formula. We thus
obtain

A=e(X1 Xy, Y1) e(Xo, Y] Y2) e(X3,Y3) - - (X, Yi)-

Next we randomize the second pairing by using the third one. As before, if
Y'Y, = 1 or X3 = 1, replace them to random values. Then multiply 1 =
e(X3 7, Y"Ys) (X3, (Y] Y2)"2). We thus have

A= e(X1 X, V) e(Xa X5 7, YY) e X, (V)1 Ya)2Y3) - - e X, Ya).

This continues up to the (k—1)-st pairing. When done, the value of the i-th pairing
distributes uniformly in G due to the uniform choice of ;. The k-th pairing fol-
lows the distribution determined by A and preceding k — 1 pairings. To complete
the randomization, every pairing is processed by the inner randomization.

The sequential randomization can be used to extend a product of k pair-
ings to a product of arbitrary k' pairings, k' > k, by appending e(1, 1) before
randomization. By {X/,Y/}*_, < RandExtend({X;, Y;}*_,) we denote the se-
quential randomization with extension. Parameters k and k’, ¥’ > k, should be
clear from the input and the output.

Note that the algorithms yield uniform elements and thus may include pairings
that evaluate to 1g,.. If it is not preferable, it can be avoided by repeating that
particular step once again excluding the bad randomness.
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5.2 Basic Signature Scheme

We define the signature scheme Sig = (G, KeyGen, Sign, Verify) below. In addition
to the common parameters outputted by the G algorithm, the key generation
algorithm KeyGen also takes a parameters k which determines the message space
G%; messages of shorter length are implicitly padded with 1g,-s. We do not use
any trusted setup, but only the bilinear group generation.

Setup: On input 1* return A = (p, Gy, Go,Gr,e,G, H) «— G(1*).

Key generation: On input A and k, choose random generators G, Fiy «— Gj.
For i =1,...,k, choose v;,0; < Z;2 and compute G; = G, and F; = Fg
Choose vz,0z7 «— Zf and compute Gz = G’}CZ and Fy = ng. Also choose
a, = Z;;z and compute {4;, A;}}_, « RandExtend(Gg, H*) and
{B;, B;}}_, < RandExtend(Fy;, H%). Set sk = (vk, o, 8,77, Sz, {7, 6 YE))

and vk = (AvGZ7FZ7GRaFU7{GiaFi}éC:]a{AiaAiaBivBi}}:0)° OUtPUt
(vk, sk).

Signature issuing: On input sk and M, choose ¢, p, 7, ¢,w randomly from Zj
and set:

Z=HS R=Hr 7] M 8§ =Gy, T =H I
U = H¥—92¢ Hf:l M;éi, V= F[L]d7 W = HB-9)/w,
Output ¢ = (Z,R,S,T,U,V,W) as a signature.

Verification: Oninputvk, M ,ando,parsethesignaturecas(Z, R, S, T,U, V,W).
Output 1 if the following equations:

=

A=¢(Gz,Z)e(Ggr,R) e(S,T) e(Gi, M;) and (6)

=1

s
Il

=

B= €(Fz,Z) €(FU, U) 6(‘/, W) G(Fi,MZ‘) (7)

N
Il
_

hold for A = e(Ag, Ag) e(A1, A1) and B = e(By, By) e(By, B1). Output 0,
otherwise.

The following theorem is proved in [AHOT0]:

Theorem 6. (G, KeyGen, Sign, Verify) described above provides perfect correct-
ness. It is existentially unforgeable against adaptive chosen-message attack if the
SFP assumption holds for G.

Next, we describe some notable properties of the signature scheme:

Partial Perfect Randomizability. Given a signature (Z, R, S, T,U, V, W) one
can randomize every element except for Z by applying the sequential random-
ization technique with small tweak as follows. Define the function

(R',S',T",U', V', W') « SigRand(R, S, T,U, V, W), as:
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— Randomize (R, S,T) into (R’,S’,T") as follows.
e First, if T'=1, set S =1 and choose T+ G3.
e Then, choose ¢ «+ Z, and compute

R' =RT? (9,71') < Rand(SGR°,T)
— Randomize (U, S,T) into (U’,S’,T") analogously.

Lemma 4. The above (R',S’,T', U, V', W') distributes uniformly over (Go x
Gy x G2)? under constraint that e(Ggr,R)e(S,T) = e(Gr,R')e(S",T") and
e(Fy,U)e(V,W) =e(Fy,U") e(V',W').

The claim implies that (S’, 7", V', W) is information theoretically independent
of Z, the message, and the verification key. (In general, the same is true for
publishing any two elements from (R’,S’, T’) and (U’, V', W’) respectively.)

Signature Binding Property. Roughly, it claims that no one but the signer
can obtain two signatures which have the same S and V. In the following formal
statement, the adversary is allowed to submit both M and M to the signing
oracle. That is way the property is not implied by EUF-CMA in general.

Lemma 5. Under adaptive chosen message attacks, no adversary can output
(M,0) and (M*,0") such that 1 = Verify(vk, M, o) = Verify(vk, MT,ot), M #
M, and (S,V) are shared in o and o'.

Hence, in a way, publishing (S, V') together with the verification key works as a
commitment on the signature and the message without revealing any information
(recall that (S, V) are chosen uniformly in the signing algorithm).

5.3 Variations and Extensions

In this section we describe various extensions and modifications of the above
scheme. Due to the space limitations, the ideas are only described briefly and
the full description is presented in the full version.

Messages € GY. When working with asymmetric pairings, it is possible to
define a “dual scheme” with a message space G¥ (by essentially swapping G,
and G, in the above description).

Messages € le X (Gk2 It is possible to combine the signature schemes with
message spaces G and Gk2 to obtain a signature scheme whose message space
is le X Gk2. Note that this is not trivial, as there is no efficient mappings
between G; and Go, and straightforward independent signing allows a forgery.
The transformation is applicable to (or required by) the extensions below.

Short Variable-Length Messages. Let (n) denote a deterministic encoding
of non-negative integer n (< p) to an element of G3. By limiting the maximum
message length to be k— 1, for a signature with message space G5, and appending
(M) to the input message M, messages with length less than k can be treated.
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Unbounded-Length Messages. For a signature scheme with message space
G%, it is possible to sign messages from the space GJ, n > k, by using a “chain-
ing” technique. The basic idea is to split the message vector into (almost) equal
chunks and sign each chunk along with the signature of the previous chunk (or
part of it using the signature binding property described above). This is useful
when the signer does not know a priori the maximum length of the messages or
has to sign her own verification key (e.g. autormorphic signatures).

Strong One-time Signatures. Dropping the flexible part e(S,T") and e(V, W)
from the construction results in a strongly unforgeable one-time signature scheme
based on a (weaker) static assumption which is implied by the DBP.

Strongly Unforgeable Signatures. We construct a structure-preserving sig-
nature scheme with constant-size signatures that is sSEUF-CMA secure. The
generic construction, combining a EUF-CMA and a one-time sEUF-CMA sig-
nature schemes, is optimized by sharing some parts of the verification keys.

vk Variations. We can replace {Ai,fli,Bi,Bi}}:O with A = e(Gr, H®) and
B = e(Fy, H?) in a verification key, and use A and B directly in the verification
equations (@) and (7). The reason we include a representation of A (and B) in G
and Gy is to address the needs to put the verification key into the base groups.
The GS proof system provides zero-knowledge property for statements that do
not include elements from Gr except for 1g,. When WI is of only concern, we
do such replacement.

Symmetric Pairings. The signature scheme is also secure when working with
symmetric pairings (G; = Gg). The above extensions apply in that case as well.

5.4 Simulatable Signatures

A simulatable signature scheme SSig=(G,CrsGen,KeyGen,Check,Sign,Verify,Sim)
consists of algorithms for which Sig=((G + CrsGen),KeyGen,Sign, Verify) consti-
tutes a regular signature scheme. It is defined in the common reference string
(CRS) model and allows to create valid signatures using the trapdoor associated
with the CRS. The three algorithms not defined for regular signatures (CrsGen,
Check, Sim) are, respectively, for generating a CRS and the associated trapdoor,
for checking that a verification key produced by a user is valid, and for simulating
a signature on any valid message on behalf of any user using the trapdoor key
rather than the corresponding signing key. A simulatable signature is a useful
tool in combination with a witness indistinguishable (WT) proof system. Unlike
zero-knowledge (ZK) proofs, WI proof system does not accompany a simulator.
So when a signature is part of the witness and the signer is corrupt and use-
less, simulatable signature can provide a correct witness to the entity having the
trapdoor.

The notion is introduced in [AOQ9] but in an informal way dedicated for
their purposes. We present a formal treatment and give an efficient construction,
but due to the space limitation, we can only sketch the intuition, the security
definitions, and the construction details. Full details are presented in [AHOT0].
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The security properties we require from a simulatable signature scheme are
correctness, simulatability, and unforgeability, extended to a multi-user setting
where the adversary has access to a signing oracle for all correctly generated
verification keys in addition to a proof oracle for simulated signatures on any
valid verification key and message. Our construction shares a lot with our basic
signature scheme. The main difference is that to sign messages of length k, we
need k flexible pairings rather than 1, so the signature is of size 4k 4+ 3 group
elements. The Verify algorithm is defined similarly, with the verification equations
being:

=

A=¢e(Gz,7Z) e(Gr, R) e(Gi, M;) e(S;,T;) and (8)

1

o
I

=

B=e(Fz,7Z)e(Fy,U) e(Fy, M;) e(Vi, W) . (9)

i=1

So, for k = 1, the two schemes have the same signature distribution and verifica-
tion algorithms. The key generation algorithm of the basic scheme is divided into
two parts: CrsGen generating the elements on the right side of equations (8)-(@)
and KeyGen computing those on the left as well as a signature on the default
message (e.g. the all-1g, vector). The CRS is, in fact, a commitment key for a
trapdoor commitment scheme similar to the one presented in Section 3, whereas
any vk is a commitment to the default message. The signing algorithm is quite
intricate as it opens the commitment, the signer’s vk, to any given message with-
out using the commitment trapdoor. That is why we need k flexible pairings to
achieve perfectly random distribution for a signature under the condition that
the verification equations are satisfied.

Theorem 7. The SSig described above is a perfectly correct signature scheme
and signature-simulatable. It is EUF-CMA with WI-simulation in the multi-user
setting for k =1 if the SFP assumption holds for G.

The security for the case of & > 1 is shown under a generalization of the SFP
assumption and also presented in the full version.

6 Applications of Signatures on Group Elements

This section highlights the benefits of combining structure-preserving signatures
on group elements with the GS proof system when building applications. We
present the first efficient round-optimal non-committing blind signature scheme
which is adaptively secure in the universal-composability framework, efficient
group signatures with concurrent join under the strongest security definitions,
and efficient anonymous proxy signatures with enhanced anonymity properties.
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6.1 UC-Secure Blind Signatures

It has been an open problem to efficiently instantiate Fischlin’s [Fis06] framework
for UC-secure round-optimal blind signatures. We do so using our signature
scheme from Section [f and a variant of Pedersen commitments [Ped92]. In fact,
we use the modification of [HKKL07, [AO09] for which the generic construction
uses a NIWI proof system and a simulatable signature scheme as it achieves
adaptive security.

We instantiate the framework as follows: a user commits to a message m € Z,,
with opening D = G", as C' = H™Y" and sends C' to the signer. Note that the
verification equation for (D, m) being a valid opening is e(G,C)e(D,Y 1) =
e(G, H™) which could be viewed as a “pairing-based variant” of Pedersen com-
mitment. The signer signs the commitment ¢ using the simulatable signature
scheme from Section [ and returns the signature to the user. Then, the user
computes a NIWI proof of knowledge 7 of a commitment C' to the message m,
an opening D of the commitment for that message, and a valid signature on C'
with respect to the signer’s verification key. The user outputs that proof as a
blind signature on the message m.

Details of the instantiation can be found in [AHOT0]. The signature size is 28
group elements when working with symmetric pairings and 28 group elements
with asymmetric, while the total communication complexity is only 8 group
elements in both cases.

6.2 Group Signatures

Group signatures have enjoyed much interest since they were introduced by
Chaum and van Heyst [Cv91] almost twenty years ago. Most previous con-
structions, [CS97, [ACIT00, BBS04, [CL.04, BSZ05, BW06l, BW07, [Gro06] among
others, could be viewed as unsatisfactory in some aspect: relying on the random-
oracle model, satisfying weaker security definitions, or not being efficient. The
scheme by Groth [Gro07] both is practical and satisfies the strengthened se-
curity definitions of [BSZ05]. However, it does not support concurrent join of
new users. Using our signature schemes in combination with the GS proof sys-
tem and an appropriate encryption scheme [Kil06, [Sha(7], we overcome this
shortcoming and construct a group signature scheme under the strongest se-
curity definitions which supports concurrent join while achieving comparable
efficiency.

Our construction follows a common approach used, e.g., in [CS97, [GroQ7].
The dynamic join protocol between a group member and the issuer simply con-
sists in the issuer signing the member’s verification key. To sign a message m,
the member signs the message using her secret key and gives a NIWI proof of
knowledge of a verification key, a signature on that key by the issuer, and a
signature on the message under that key. For the details of our constructions
and further discussions, we refer to the full versions of our papers.
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6.3 Anonymous Proxy Signatures

Combined with Groth-Sahai proofs, automorphic signatures enable the first ef-
ficient instantiation of anonymous proxy signatures [FP0S]. This primitive gen-
eralizes (multi-level) proxy signatures [MUQO96, BPWO03] and group signatures.
Consider a setting where users publish signature verification keys, which they
have previously registered with an authority. Proxy signatures enable users to
delegate others to sign on their behalf; moreover, received rights can be redele-
gated. Anonymity of proxy signatures guarantees that they neither reveal who
signed nor who redelegated. As for group signatures, an opening authority can re-
voke anonymity to deter from misuse. Every valid signature can be opened to reg-
istered users (traceability) and no coalition even comprising the authorities can
produce a signature that wrongfully accuses an honest user (non-frameability).

Automorphic signatures allow a straightforward instantiation of the generic
construction. To delegate to Bob, Alice signs his public key (and possibly some
public attributes). To redelegate to Carol, Bob forwards her the received sig-
nature and signs her public key. Carol makes a proxy signature by signing the
message and then making a proof of knowledge of the following: Bob’s key, Al-
ice’s signature on it, her own key, Bob’s signature on it, and her signature on the
messageﬁ Since all of them consist of elements of a bilinear group and validity
is expressed as pairing-product equations, Groth-Sahai (GS) proofs apply per-
fectly. The extraction key is given to the opener who can thus revoke anonymity
of a signature by retrieving the public keys of the intermediate delegators and
the proxy signer. A signature is verified by checking validity of the GS proof
with respect to Alice’s public key.

Enhanced Anonymity Guarantees. In the model of [FP0g|, anonymity holds
only w.r.t. the verifier. We show how to protect the privacy of the delegatee and
the delegators even during delegation. The delegatee remains anonymous if we
use the issuing protocol of the blind signature from Section for delegation.
In the end, the delegatee holds an actual signature on her public key, as in the
original scheme, but without the delegator having learned her identity.

The previous delegators can remain anonymous w.r.t. the delegatee as well,
as due to the modularity of Groth-Sahai proofs, the “anonymization” of a sig-
nature need not be delayed until the proxy signing: instead of forwarding the
received delegation chain, a delegator forwards a proof of knowledge of it. The
delegatee can then extend the proof by one delegation step, or make a proxy
signature; before doing so, she randomizes the proof, which prevents linkability
of delegations and signatures. By additionally proving knowledge of his public
key and signature, the delegator can also hide his own identity. Unfortunately,
this is not compatible with blind delegation, while hiding the previous delegators
is. We refer to [Fuc09] for the details.

2 To guarantee traceability, Carol additionally proves knowledge of certificates from
the authority on the public keys. Moreover, to delegate, a user actually signs (a hash
value of) an identifier set by the original delegator and his position in the chain in
addition to the public key to achieve non-frameability.
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