
Verifiable Delegation of Computation over

Large Datasets�

Siavosh Benabbas1, Rosario Gennaro2, and Yevgeniy Vahlis3

1 University of Toronto
siavosh@cs.toronto.edu

2 IBM Research
rosario@us.ibm.com

3 Columbia University
evahlis@cs.columbia.edu

Abstract. We study the problem of computing on large datasets that
are stored on an untrusted server. We follow the approach of amor-
tized verifiable computation introduced by Gennaro, Gentry, and Parno
in CRYPTO 2010. We present the first practical verifiable computation
scheme for high degree polynomial functions. Such functions can be used,
for example, to make predictions based on polynomials fitted to a large
number of sample points in an experiment. In addition to the many non-
cryptographic applications of delegating high degree polynomials, we use
our verifiable computation scheme to obtain new solutions for verifiable
keyword search, and proofs of retrievability. Our constructions are based
on the DDH assumption and its variants, and achieve adaptive security,
which was left as an open problem by Gennaro et al (albeit for general
functionalities).

Our second result is a primitive which we call a verifiable database
(VDB). Here, a weak client outsources a large table to an untrusted
server, and makes retrieval and update queries. For each query, the
server provides a response and a proof that the response was computed
correctly. The goal is to minimize the resources required by the client.
This is made particularly challenging if the number of update queries
is unbounded. We present a VDB scheme based on the hardness of the
subgroup membership problem in composite order bilinear groups.

1 Introduction

This paper presents very efficient protocols that allow a computationally weak
client to securely outsource some computations over very large datasets to a pow-
erful server. Security in this context means that the client will receive an assurance
that the computation performed by the server is correct, with the optional prop-
erty that the client will be able to hide some of his data from the server.

The problem of securely outsourcing computation has received widespread
attention due to the rise of cloud computing: a paradigm where businesses lease
computing resources from a service (the cloud provider) rather than maintain

� A full version of this paper is available at http://eprint.iacr.org/2011/132

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 111–131, 2011.
c© International Association for Cryptologic Research 2011

http://eprint.iacr.org/2011/132

112 S. Benabbas, R. Gennaro, and Y. Vahlis

their own computing infrastructure [2,57]. A crucial component of secure cloud
computing is a mechanism that enforces the integrity and correctness of the
computations done by the provider.

Outsourced computations are also increasingly relevant due to the prolifer-
ation of mobile devices, such as smart phones and netbooks, computationally
weak devices which might off-load heavy computations, e.g., a cryptographic
operation or a photo manipulation, to a network server. Here too, a proof of the
correctness of the result might be desirable if not necessary.

A crucial requirement in all of these cases is that the computation invested
by the (weak) client in order to verify the result of the server’s work must be
substantially smaller than the amount of computation required to perform the
work to begin with. Indeed if that was not the case, the client could perform the
computation on its own without interacting with the server! It is also desirable to
keep the server’s overhead as small as possible: in other words the computation
of the server to provide both the result and a correctness proof to the client
should be as close as possible to the amount of work needed to simply compute
the original function (otherwise, the server, which might provide this service to
many clients, may become overwhelmed by the computational load).

This paper initiates a line of research about efficient protocols for verifiable
computation of specific functions, in our case the evaluation of polynomials de-
rived from very large datasets. Most of the prior work (reviewed below) has
focused on generic solutions for arbitrary functions. So while in ”general” the
problem we are considering has been solved, by focusing on specific computa-
tions we are able to obtain much more efficient protocols. This is similar to the
way research over secure multiparty computation has evolved: following generic
protocols for the evaluation of arbitrary functions [60,29,9,17], there has been a
twenty-plus year effort to come up with efficient distributed protocols for spe-
cific computations encountered in practical applications (e.g. the entire work on
threshold cryptography [21], or protocols on set intersection and pattern match-
ing such as [34]).
Our Results.This paper focuses on the evaluation of polynomials derived from
very large datasets. While the computations themselves are simple, it’s the mag-
nitude of data that prevents the client (who cannot even store the entire data) to
perform them by itself. In our protocols the client will initially store the data at the
server (with the option of encrypting it for confidentiality, if desired), with some
authenticating information. The client will only keep a short secret key. Later, ev-
ery time the client requests the value of a computation over the data, the server
will compute the result and return it together with an authentication code, which
the client will be able to quickly verify with the secret key. This description shows
that our problem naturally fits into the amortized model for outsourced computa-
tion introduced in [27]: the client performs a one-time computationally expensive
phase (in our case storing the data with its authentication information) and then
quickly verifies the results provided by the server.

Our protocols are very efficient. The computation of the authentication data
is comparable to encrypting the file using the ElGamal encryption scheme (i.e.

Verifiable Delegation of Computation over Large Datasets 113

roughly 2 exponentiations per data block). Verification takes at most a loga-
rithmic (in the number of blocks) number of exponentiations under the DDH
Assumption. Additionally, we present a faster protocol (which requires only a
single exponentiation to verify the result) which is secure under a decisional
variant of the Strong Diffie Hellman Assumption in single groups1.

An immediate application of our results is the ability to verifiably outsource
computations to make predictions based on polynomials fitted to a large number
of sample points in an experiment.

In the second part of our paper, we present an extension to our protocols,
which allows the client to efficiently update the data (and its associated authen-
tication information) stored at the server. We also present applications of our
protocols to the problems of verifiable keyword search (the client stores a large
database with the server and it queries if a specific keyword appears in it) and
secure proofs of retrievability (the client checks that the file stored with the server
is indeed retrievable) [50,36].

Verifiable delegation of polynomials. The basis of all our protocols is
verifiable delegation of polynomials. Assume the client has a polynomial P (·) of
large degree d, and it wants to compute the value P (x) for an arbitrary inputs
x. In our basic solution the client stores the polynomial in the clear with the
server as a vector c of coefficients in Zp. The client also stores with the server
a vector t of group elements of the form gaci+ri where a ∈R Zp and ri is the
ith-coefficient of a polynomial R(·) of the same degree as P (·). When queried on
input x the server returns y = P (x) and t = gaP (x)+R(x) and the client accepts
y iff t = gay+R(x).

If R(·) was a random polynomial, then we can prove that this is a secure del-
egation scheme in the sense of [27]. However checking that t = gay+R(x) would
require the client to perform computation polynomial in the degree of P (·) – the
exact work that we set out to avoid. The crucial point, therefore, is how to perform
this verification fast, in time which is independent, or at the very least sublinear in
the degree of P (·). We do that by defining ri = FK(i) where F is a pseudo-random
function (PRF in the following) with a special property which we call closed form
efficiency. The property is that given the polynomial R(·) defined by the ri coef-
ficients, the value R(x) (for any input x) can be computed very efficiently (sub-
linearly in d) by a party who knows the secret key K for the PRF. Since F is a
PRF, the security of the scheme is not compromised (as F is indistinguishable
from a random function), and the closed form efficiency of F will allow the client
to verify the result in time sub-linear in the degree of the polynomial.

We generalize our result for PRFs with other types of closed form efficiency,
which yield efficient and secure delegation protocols not only for single-variable
polynomials of degree d, but also for multivariate polynomials with total degree d
or of degree d in each variable. We have several different variations of PRFs: the
least efficient one is secure under the Decisional Diffie-Hellman assumption, while
more efficient ones require a decisional variant of the Strong DH assumption.

1 See e.g., [19] for a survey of the strong DH family of assumptions.

114 S. Benabbas, R. Gennaro, and Y. Vahlis

Adaptivity: One of the main questions to remain open after the work of GGP
[27] is whether we can achieve verifiable delegation even if the malicious server
knows whether the verifier accepted or rejected the correctness proof of the value
computed by the server. Indeed, the GPV scheme becomes insecure if the server
learns this single bit of information after each proof is sent to the verifier. Our
constructions are the first to achieve adaptive security in the amortized setting.

Privacy: Our solution allows the client to preserve the secrecy of the polyno-
mial stored with the server, by encrypting it with an additively homomorphic
encryption scheme. In this case the server returns an encrypted form of y which
the client will decrypt.

Keyword Search: The applications to keyword search without updates is al-
most immediate. Consider a text file F = {w1, . . . , w�} where wi are the words
contained in it. Encode F as the polynomial P (·) of degree � such that P (wi) = 0.
To make this basic solution efficiently updatable we use a variation of the polyno-
mial delegation scheme which uses bilinear maps. We also present a generic, but
less efficient way to make any static keyword search protocol updatable which
might be of independent interest.

Proof of Retrievability: Again the application of our technique is quite sim-
ple. The client encodes the file as a polynomial F (x) of degree d (each block
representing a coefficient), and delegates the computation of F (x) to the server.
The proof of retrievability consists of the client and the server engaging in our
verifiable delegation protocol over a random point r: the client sends r and the
server returns the value F (r) together with a proof of its correctness. The client
accepts if it accepts the proof that F (r) is the correct value.

Verifiable databases with efficient updates. In the second part of our
paper we study the problem of verifiable databases, where a resource constrained
client wishes to store an array DB on a server, and to be able to retrieve the
value at any cell DB[i], and to update the database by assigning DB[i] ← v
for a new value v. The goal is to achieve this functionality with an additional
guarantee that if a server attempts to tamper with the data, the tampering will
be detected when the client queries the database.

Simple solutions (based on Message Authentication Codes or Signature
Schemes) exist for the restricted case where the database is static – i.e. the
client only needs to retrieve data, but does not modify the database. One exam-
ple is to have the client sign each pair (index,value) that is sent to the server.
Clearly, if no updates are performed, the server has no choice but to return the
correct value for a given cell. However, the problem becomes significantly harder
when efficient updates are needed. One solution is for the client to just keep track
of all the changes locally, and apply them as needed, but this contradicts our
goal of keeping client state and workload as small as possible. On a high level,
the main technical difficulty stems from the fact that the client must revoke any
authenticating data that the server has for the previous value of the updated cell.
This issue has been addressed in the line of works on cryptographic accumulators
[16,47,53], and, using different techniques, in the authenticated datastructures
literature [48,41,52,59].

Verifiable Delegation of Computation over Large Datasets 115

We present a verifiable database delegation scheme based on the hardness
of the subgroup membership problem in composite order bilinear groups (this
assumption was originally introduced in [13]). Our solution allows the client
to query any location of the database, and verify the response in time that is
independent of the size of the database. The main advantage of our construction
is that it allows the client to insert and delete values, as well as update the value
at any cell by sending a single group element to the server after retrieving the
current value stored in the cell. Prior solutions either rely on non-constant size
assumptions (such as variants of the Strong Diffie-Hellman assumption [23,15]),
require expensive generation of primes for each operation (in the worst case), or
require expensive “re-shuffling” procedures to be performed once in a while on
the data. On the other hand, our construction works in the private key setting,
whereas some prior solutions allow public verification (e.g., [16,47]).

Roadmap. The rest of the paper is organized as follows. In Section 2 we define
the security assumptions used in the paper. Readers interested in the precise
definition of Verifiable Computation and its security can find them in Section 3.
In Section 4 we introduce our notation of Algebraic Pseudorandom Functions
which are the main building block of our constructions. In Section 5 we show how
to securely delegate polynomial evaluations to an untrusted server using Alge-
braic PRFs. In the full version of the paper [7] we show how to use delegation of
polynomials to implement verifiable databases, and to obtain new constructions
of Proofs of Retrievability.

1.1 Related Work

As mentioned above our work follows the paradigm introduced in [27] which is
also adopted in [20,3]. The protocols described in those papers allow a client
to outsource the computation of an arbitrary function (encoded as a Boolean
circuit) and use fully homomorphic encryption (i.e. [28]) resulting in protocols
of limited practical relevance. Our protocols on the other hand work for only a
very limited class of computations (mostly polynomial evaluations) but are very
efficient and easily implementable in practice.

The previous schemes based on fully homomorphic encryption also suffer from
the following drawback: if a malicious server tries to cheat and learns if the client
has accepted or rejected its answer, then the client must repeat the expensive
pre-processing stage. The only alternative way to deal with this problem pro-
posed in these papers is to protect this bit of information from the server (which
is a very strong assumption to make). Somewhat surprisingly our scheme re-
mains secure even if a cheating server learns the acceptance/rejection bit of the
client, without any need to repeat the pre-processing stage. This is not only
conceptually interesting, but also a very practical advantage.

There is a large body of literature, prior to [27], that investigates the problem
of verifiably outsourcing the computation of an arbitrary functions (we refer to
[27] for an exhaustive list of citations). This problem has attracted the attention
of the Theory community, starting from the work on Interactive Proofs [5,31],
efficient arguments based on probabilistically checkable proofs (PCP) [37,38], CS

116 S. Benabbas, R. Gennaro, and Y. Vahlis

Proofs [43] and the muggles proofs in [30]. However in PCP-based schemes, the
client must store the large data in order to verify the result and therefore these
solutions might not be applicable to our setting.

This problem has also been studied by the Applied Security community, with
solutions which are practical but whose security holds under some very strong
assumptions on the behavior of the adversary. For example, solutions based on
audit (e.g. [46,6]) which typically assume many clients, and require a fraction of
them to recompute some of the results provided by the server, but are secure only
under the assumption that bad clients do not collude. Another approach is to
use secure co-processors (e.g. [56,61]) which ”sign” the computation as correct,
under the assumption that the adversary cannot tamper with the processor.
Finally, other trust models have been considered. The area of authenticated
data structures [58,41,54] aims to provide delegation solutions when the owner
of the data is decoupled from the client. In this scenario, the owner maintains
a large state, and acts as a trusted third party, but delegates his data to an
untrusted server that can be queried by weak clients.

For the specific case of outsourcing expensive cryptographic operations,
Chaum and Pedersen in [18], describe protocols to allow a client to verify the be-
havior of a piece of hardware placed on the client’s device by a service provider
such as a bank. Hohenberger and Lysyanskaya formalize this model [35], and
present protocols for the computation of modular exponentiations (arguably the
most expensive step in public-key cryptography operations). Their protocol re-
quires the client to interact with two non-colluding servers. Other work targets
specific function classes, such as one-way function inversion [32].

The application of secure keyword search over a stored file can be handled
using zero-knowledge sets, [44] which however does not allow for an easy way
to update the file. Our protocol for keyword search combines ideas from our
polynomial delegation scheme with some machinery inspired by zero-knowledge
sets, to obtain a protocol that allows for efficient updates and other additional
desirable properties (see full version [7]).

The problem of proof of retrievability was first posed in [50,36], and subsequent
protocols include [4,55,22]. A proof of retrievability protocol usually goes like
this: after storing a (potentially large) file with the server, the client issues a query
to receive an assurance that the file is still correctly stored. The server computes
an answer based on the query and the file, and finally the client performs some
verification procedure on the answer. All of these protocols incur a substantial
storage overhead for the server (since the file is stored using an erasure code)
and, except for [22], require communication which is quadratic in the security
parameter. The protocol in [22] has linear communication complexity but it
requires both the server and the client to work in time proportional to the size of
the file. Our solution achieves linear communication complexity in the security
parameter and is very efficient for the client (as its work is sublinear in the size
of the file).

Our verifiable database construction is closely related to Memory Checkers
(see e.g. [10,26,1,24,50]). However, our setting differs from the memory check-

Verifiable Delegation of Computation over Large Datasets 117

ing setting in that we allow the server to be an arbitrary algorithm, whereas
a memory checker interacts with a RAM (an oracle that accepts store/retrieve
queries). In this context, our construction would yield a memory checker with
poor performance since it would require the checker to issue a number of queries
that is linear in the size of the memory. In contrast, we focus on optimizing the
communication and the work of the client when the server can perform arbi-
trary computation on its data. Our construction requires the server to perform
a linear amount of work to answer one type of queries (update/retrieve), while
the other type of queries requires only a constant amount of work. Finally, we
note that the work on accumulators [16,47,53] and authenticated data structures
[48,41,52,59] can be used to construct verifiable databases with similar efficiency
under different assumptions.

2 Assumptions

In this work we rely on the following assumptions about computational groups.

Decisional Diffie Hellman. The standard Decisional Diffie-Hellman As-
sumption (DDH) is defined as follows. For every PPT distinguisher A there
exists a negligible function neg(·) such that for all n,

|Pr[A(1n, g, gx, gy, gxy) = 1]− Pr[A(1n, g, gx, gy, gz) = 1]| ≤ neg(n)

where g is a generator of a group G of order p where p is a prime of length
approximately n, and x, y, z ∈R Zp.

Strong Diffie Hellman. The strong Diffie-Hellman family of assumptions
allows an adversary to obtain group elements g, gx, gx2

, . . . , gxd

, and requires
the adversary to compute or distinguish a related group element from a random
one. Computational variants of the problem appeared as early as the work of
Mitsunari et al [45]. More recently, bilinear versions of the assumptions, starting
with the works of Boneh and Boyen [11,12], were used in several applications
(e.g. [23,15]). Boneh and Boyen gave a proof of the bilinear assumptions in the
generic group model. In one of our constructions, we achieve high efficiency by
relying on a decisional version of the strong DH assumption in single groups.

The d-SDDH assumption is stated as follows. For every PPT distinguisher A
there exists a negligible function neg(·) such that for all n,

|Pr[A(1n, g, gx, gx2
, . . . , gxd

) = 1]− Pr[A(1n, g, gx1, gx2, . . . , gxd) = 1]| ≤ neg(n)

where g is a generator of a group G of order p where p is a prime of length
approximately n, and x, x1, . . . , xd ∈R Zp.

Subgroup membership assumption in composite order bilinear groups.

The subgroup membership assumption in composite order bilinear groups first
appeared in [13], and has seen many recent applications in the areas of Identity
Based Encryption (IBE), Hierarchical IBE, and others [25,13,8]. The assumption
we rely on (for our verifiable database delegation scheme) is the following.

118 S. Benabbas, R. Gennaro, and Y. Vahlis

For every PPT distinguisher A there exists a negligible function neg(·) such
that for all n,

|Pr[A(1n, g1g2, u2, (g1g2)x) = 1]− Pr[A(1n, g1g2, u2, u
x
2) = 1]| ≤ neg(n)

where G is a group of order N = p1p2 where p1 and p2 are primes of length
approximately n, G1 and G2 are subgroups of G of orders p1 and p2 respectively,
g1 ∈R G1, g2, u2 ∈R G2, and x ∈R ZN .

In addition, we require the existence of an efficiently computable pairing e :
G×G→ GT where GT is a group of order N . We shall make use of the following
property of pairings over composite order groups: for g1 ∈ G1 and g2 ∈ G2,
e(g1, g2) = 1GT . This property holds for every bilinear pairing over composite
order groups (as shown e.g. in [39]).

Bilinear sub-group projection assumption. In the analysis of our veri-
fiable database scheme we first show the security of the scheme based on the
following new assumption. We then apply Lemma 1 (given below) to obtain a
reduction to the subgroup membership problem. The Bilinear Sub-Group Pro-
jection Assumption (BSGP) is stated as follows: for every PPT adversary A,
there exists a negligible function neg(·) such that for all n,

Pr[A(1n, (g1g2), (h1h2), u2) = e(g1, h1)] ≤ neg(n)

where G is a group of order N = p1p2 where p1 and p2 are primes of length
approximately n, G1 and G2 are subgroups of G of orders p1 and p2 respectively,
g1, h1 ∈R G1, and g2, h2, u2 ∈R G2. The following lemma shows that the BSGP
assumption is implied by the standard sub-group membership assumption in
composite order bilinear groups.

Lemma 1. The subgroup membership assumption in composite order bilinear
groups reduces to the BSGP assumption.

The proof of the lemma, as well as its application to delegation of data structures,
is given in the full version of this paper [7].

3 Verifiable Computation

A verifiable computation scheme is a two-party protocol between a client and
a server. The client chooses a function and an input which he provides to the
server. The latter is expected to evaluate the function on the input and respond
with the output together with a proof that the result is correct. The client then
verifies that the output provided by the worker is indeed the output of the
function computed on the input provided.

The goal of a verifiable computation scheme is to make such verification very
efficient, and particularly much faster than the computation of the function itself.
We adopt the amortized model of Gennaro et al. [27]: for each function F , the
client is allowed to invest a one-time expensive computational effort (comparable

Verifiable Delegation of Computation over Large Datasets 119

to the effort to compute F itself) to produce a public/secret key pair, which he
will use to efficiently (e.g. in linear-time) verify the computation of F by the
server on many inputs.

We prove our results in a stronger version of the [27] definition of verifiable
computation scheme. As we discussed in the Introduction, the main difference
is that in our protocols the server is allowed to learn if the client accepts or
rejects the output of a particular computation (in [27] and following works in
the amortized model, leaking this bit of information to the server would help
him cheat in the following executions).

We refer the reader to the full version of this paper [7] for the precise definition
of a verifiable computation scheme.

4 Algebraic Pseudorandom Functions

Our main technical tool is a new way of viewing pseudo-random functions (PRF)
with algebraic properties to achieve efficient verification of server certificates in
the delegation setting. Intuitively, we rely on the fact that certain pseudo-random
functions (such as the Naor-Reingold PRF [49]) have outputs that are members
of an abelian group, and that certain algebraic operations on these outputs can
be computed significantly more efficiently if one possesses the key of the pseudo-
random function that was used to generate them. In this section we present an
abstraction of the said property, and several constructions achieving different
trade-offs between the types of functions that can be efficiently evaluated given
the key, and the assumption that is needed to guarantee pseudo-randomness.

An algebraic pseudorandom function (PRF) consists of algorithms PRF =
〈KeyGen, F, CFEval〉 where KeyGen takes as input a security parameter 1n and a
parameter m ∈ N that determines the domain size of the PRF, and outputs a
pair (K, param) ∈ Kn, where Kn is the key space for security parameter n. K is
the secret key of the PRF, and param encodes the public parameters. F takes
as input a key K, public parameters param, an input x ∈ {0, 1}m, and outputs
a value y ∈ Y , where Y is some set determined by param.

We require the following properties:

– (Algebraic) We say that PRF is algebraic if the range Y of FK(·) for every
n ∈ N and (K, param) ∈ Kn forms an abelian group. We require that the
group operation on Y be efficiently computable given param. We are going
to use the multiplicative notation for the group operation.

– (Pseudorandom) PRF is pseudorandom if for every PPT adversary A, and
every polynomial m(·), there exists a negligible function neg : N → N, such
that for all n ∈ N:

|Pr[AFK(·)(1n, param) = 1]− Pr[AR(·)(1n, param) = 1]| ≤ neg(n)

where (K, param) ←R KeyGen(1n, m(n)), and R : {0, 1}m → Y is a random
function.

120 S. Benabbas, R. Gennaro, and Y. Vahlis

– (Closed form efficiency) Let N be the order of the range sets of F for se-
curity parameter n. Let z = (z1, . . . , zl) ∈ ({0, 1}m)l, k ∈ N, and efficiently
computable h : Z

k
N → Z

l
N with h(x) =< h1(x), . . . , hl(x) >. We say that

(h, z) is closed form efficient for PRF if there exists an algorithm CFEvalh,z

such that for every x ∈ Z
k
N ,

CFEvalh,z(x, K) =
l∏

i=1

[FK(zi)]hi(x)

and the running time of CFEval is polynomial in n, m, k but sublinear in l.
When z = (0, . . . , l) we will omit it from the subscript, and write CFEvalh
(x, K) instead.

The last condition (which distinguishes our notion from traditional PRFs) allows
to compute a “weighted product” of l PRF values much more efficiently than
by computing the l values separately and then combining them. Indeed, given
param, h, x, and FK(z), one can always compute the value

∏l
i=1[FK(zi)]hi(x)

in time linear in l (this follows from the algebraic property of the PRF). The
purpose of the closed form efficiency requirement is therefore to capture the
existence of a more efficient way to compute the same value given the secret
key K.

Note that closed form efficiency can be defined for PRFs over arbitrary input
spaces. In particular, it is a non-trivial condition to attain even when the input
space is polynomial in the security parameter2. In the constructions needed for
our delegation scheme, this will be the case.

4.1 Small Domain Algebraic PRFs from Strong DDH

Construction 1. Let G be a computational group scheme. The following con-
struction PRF1 is an algebraic PRF with polynomial sized domains.

KeyGen(1n, m): Generate a group description (p, g, G)←RG(1n). Choose k0, k1∈R

Zp. Output param = (m, p, g, G), K = (k, k′).
FK(x): Interpret x as an integer in {0, . . . , D = 2m} where D is polynomial in

n. Compute and output gk0kx
1 .

Closed form efficiency for polynomials. We now show an efficient closed form
for PRF1 for polynomials of the form

p(x) = FK(0) + FK(1)x + · · ·+ FK(d)xd

2 When the input space is polynomial in the security parameter traditional PRFs exist
unconditionally: if the input space has � elements {x1, . . . , x�}, define the key as �
random values y1, . . . , y� and FK(xi) = yi. Notice however that this function does
not have closed-form efficiency.

Verifiable Delegation of Computation over Large Datasets 121

where d ≤ D. Let h : Zp → Z
d+1
p , be defined as h(x) def= (1, x, . . . , xd). Then, we

can define

CFEvalh(x, K) def= g
k0(1−k

d+1
1 xd+1)

1−k1x

Let us now write the
∏d

i=0[FK(zi)]hi(x) where (z0, . . . , zd) = (0, . . . , d):

d∏

i=0

[FK(zi)]hi(x) =
d∏

i=0

[gk0ki
1]x

i

= gk0
∑d

i=0 ki
1xi

Applying the identity
∑d

i=0 k0k
i
1x

i = k0(1−(k1x)d+1)
1−k1x we obtain the correctness of

CFEvalh(x).

Theorem 1. Suppose that the D-Strong DDH assumption holds. Then, PRF1

is a pseudorandom function.

Proof. The input to the reduction is a description (p, g, G) of a group, and a
challenge t1, . . . , td where ti is either a random member of G, or gki

1 , and k1 ∈ Zp

is randomly chosen once for the entire challenge. The reduction then chooses
k0 ∈R Zp, and computes the function H(i) = tk0

i for 0 ≤ i ≤ d. Clearly, H is a
random function if the ti are random, and is equal to FK(·) for K = (k0, k1) if
the ti are determined by k1.

Construction 2. Let G be a computational group scheme. We define PRF2,d,
for d ∈ N, as follows:

KeyGen(1n, m): Generate a group description (p, g, G)←R G(1n). Choose k0, k1,
. . . , km ∈R Zp. Output param = (m, p, g, G), K = (k0, k1, . . . , km).

FK(x): Interpret x as a vector (x1, . . . , xm) ∈ {0, . . . , d}m. Compute and output
gk0k

x1
1 ···kxm

m .

Closed form for m-variate polynomials of total degree at most d. We describe an
efficient closed form for PRF2,d for computing polynomials of the form

p(x1, . . . , xm) =
∑

i1,...,im

i1+···+im≤d

FK(i1, . . . , im)xi1
1 xi2

2 · · ·xim
m .

Let h : Z
m
p → Z

l
p, where l =

(
m+d

d

)
, be defined as

h(x1, . . . , xm) def=

⎛

⎝
(

d

i1 . . . , im

) m∏

j=1

x
ij

j

⎞

⎠

i1+···+im≤d

Let z = [z1, . . . , zl] = [(i1, . . . , im)]i1+···+im≤d ∈ Z
m×l
d . We can now define

CFEvalh,z(x1, . . . , xm, K) def= gk0(1+k1x1+···+kmxm)d

Correctness follows by algebraic manipulation and is given in the full version of
this paper.

122 S. Benabbas, R. Gennaro, and Y. Vahlis

Theorem 2. Let d ∈ N, and suppose that the d-Strong DDH assumption holds.
Then, PRF2,d is a pseudorandom function.

We refer the reader to the full version of this paper [7] for the proof of Theorem 2.

Remark 1. It is interesting to note that the Naor-Reingold PRF is a special case
of Construction 2 obtained by setting d = 1. Therefore, our construction provides
a tradeoff between the security assumption and the size of the key of the PRF:
to operate on binary inputs of length n our construction requires n/ log2(d + 1)
elements of Zp in the key.

Remark 2. One can change the above construction so that it becomes slightly
less efficient but secure under the standard DDH assumption. We call this modi-
fied versionPRF4,d and refer the reader to the full version for its exact definition.
The reader can also get a glimpse of this PRF’s parameters in Table 1.

4.2 Small Domain Algebraic PRFs from DDH

Construction 3. Let G be a computational group scheme. We define PRF3 as
follows:

KeyGen(1n, m): Generate a group description (p, g, G) ←R G(1n). Choose k0,
k1,1, . . . , k1,s, . . . , km,1, . . . , km,s ∈R Zp. Output param = ((m, s), p, g, G),
K = (k0, k1,1, . . . , k1,s, . . . , km,1, . . . , km,s).

FK(x): Interpret x = (x1, . . . , xm) with each xi = [xi,1, . . . , xi,s] as an s-bit
string. Compute and output gk0k

x1,1
1,1 ···kx1,s

1,s ···kxm,1
m,1 k

xm,s
m,s .

Closed form for polynomials of degree d in each variable. We describe an efficient
closed form for PRF3 for computing polynomials of the form

p(x1, . . . , xm) =
∑

i1,...,im≤d

FK(i1, . . . , im)xi1
1 · · ·xim

m

where the PRF F is initialized with m and s = �log d	. Let h : Z
m
p → Z

l
p,

where l = md, be defined as h(x1, . . . , xm) = (xi1
1 · · ·xim

m)i1,...,im≤d. Let z =
[z1, . . . , zl] = [(i1, . . . , im)]i1,...,im≤d then

CFEvalh,z(x1, . . . , xm, K) def= gk0
∏m

j=1(1+kj,1xj)(1+kj,2x2
j)···(1+kj,sx2s

j)

Correctness follows directly by expanding the expression in the exponent.

Remark 3. Note that for m = 1 we obtain an alternative construction for single-
variable polynomials of degree d. Below we prove that Construction 3 is a PRF
under the DDH Assumption. Therefore compared to Construction 1, this con-
struction relies on a weaker assumption (DDH vs. D-strong DDH). However the
efficiency of the closed form computation in Construction 1 is better: constant

Verifiable Delegation of Computation over Large Datasets 123

vs. O(log d) in Construction 3. Jumping ahead this will give us two alterna-
tive ways to delegate the computation of a single-variable polynomial of degree
d with the following tradeoff: either one assumes a weaker assumption (DDH)
but verification of the result will take O(log d) time, or one assumes a stronger
assumption to obtain constant verification time.

Closed form for 1-out-of-2 multivariate polynomials of degree 1. We now consider
polynomials of the form

p(x1, y1, . . . , xm, ym) =
∑

s∈{0,1}m

FK(s)xs1
1 y1−s1

1 · · ·xsm
m y1−sm

m

In such polynomials, each monomial contains exactly one of xi and yi for 1 ≤ i ≤
m. We initialize the PRF F with m and s = 1 (and for simplicity we drop the dou-
ble subscript and denote the key ki,1 as ki). Specifically, let h : Z

2m
p → Z

l
p, where

l = 2m, be defined as h(x1, y1, . . . , xm, ym) = (xs1
1 y1−s1

1 · · ·xsm
m y1−sm

m)s∈{0,1}m .
We can then define

CFEvalh(x1, y1, . . . , xm, ym) def= gk0(x1+k1y1)···(xm+kmym)

Correctness is straightforward by expanding the expression in the exponent. The
proof of the following theorem was given in [49];

Theorem 3. [49] Suppose that the DDH assumption holds for G. Then, PRF3

is a pseudorandom function.

5 Verifiable Delegation of Polynomials

The basic idea of our construction is the following. The client stores the polyno-
mial P (·) in the clear with the server as a vector c of coefficient in Zp. The client
also stores with the server a vector t of group elements of the form gaci+ri where
a ∈R Zp and ri is the ith-coefficient of a polynomial R(·) of the same degree as
P (·). When queried on input x the server returns y = P (x) and t = gaP (x)+R(x)

and the client accepts y iff t = gay+R(x).
If R(·) was a random polynomial, then our proof below shows that this is

a secure delegation scheme. However checking that t = gay+R(x) would require
the client to evaluate the random polynomial R(·), which is just as inefficient as
evaluating the original polynomial P (·). Moreover, the client would have to store
a long description of a random polynomial that is as long as the original polyno-
mial3 P (·). The crucial point, therefore, is how to make this computation fast.
We do that by defining ri = FK(i) for an algebraic PRF that has a closed form
efficient computation for polynomials, such as the ones described in the previous
3 Alternatively, the client could generate the coefficients of R using a standard PRF,

thereby avoiding storing a large polynomial. However, this would still require the
client to recompute all the coefficients of R each time a verification needs to be
performed.

124 S. Benabbas, R. Gennaro, and Y. Vahlis

Table 1. Parameters of different protocols for verifiable delegation of polynomials.
Numbers inside the parenthesis show the number of group operations. Columns starting
with “C.” are the client’s requirements and the ones starting with “S.” are the server’s.
In each case the server’s query runtime (resp. space requirements) is asymptotically
the same as evaluating (resp. storing) the polynomial. Note that (n+1√

d+1
)d ≤ (

n+d
d

) ≤
(n + d)d, and in particular for constant d it is Θ(nd).

Polynomial Type Setup C. Query S. Query Assumption PRF
1-variable, degree d O(d) O(1) (1) O(d) d-Strong DDH PRF1

n-variable, variable degree d O((d+ 1)n) O(n log d) (1) O((d+ 1)n) DDH PRF3

n-variable, total degree d O(
(
n+d
d

)
) O(n log d) (1) O(

(
n+d
d

)
) d-Strong DDH PRF2,d

n-variable, total degree d O((n+ 1)d) O(nd) (1) O((n+ 1)d) DDH PRF4,d

4

section. Since F is a PRF, the security of the scheme is not compromised, and
the closed form efficiency of F will allow the client to verify the result in time
sub-linear in the degree of the polynomial.

The result is described in general form, using algebraic PRFs. It therefore
follows that we obtain efficient and secure delegation protocols not only for
single-variable polynomials of degree d, but also for multivariate polynomials
with total degree d or of degree d in each variable. The relevant parameters of
the resulting protocols for each of these cases can be seen in Table 1.

Finally at the end of the section we show how to protect the privacy of
the polynomial, by encrypting it with an homomorphically additive encryption
scheme.

5.1 Construction Based on Algebraic PRFs

We describe a verifiable delegation scheme for functions of the form fc,h(x) =
〈h(x), c〉, where c is a (long) vector of coefficients, x is a (short) vector of inputs,
and h expands x to a vector of the same length of c. Our construction is generic
based on any algebraic PRF that has closed form efficiency relative to h.

Protocol Delegate-Polynomial(c)
KeyGen(c, n): Generate (K, param)←R KeyGen(1n, �log d). Parse c as a vec-

tor c = (c0, . . . , cd) ∈ Z
d+1
p . Let G be the range group of FK , and let g be a

generator for that group. Compute gi ← FK(i) for 0 ≤ i ≤ d, choose a ∈R Zp,
and set t = [t0, . . . , td] ← (g0g

ac0, . . . , gdg
acd). Output PK ← (param, c, t),

and SK← (K, a).
ProbGen(SK, x): Output (σx, τx) = (x, x).
Compute(PK, σx): Parse PK as (param, c, t), c as c0, . . . , cd, and σx as x.

Compute w ← h(x) = [h0(x), . . . , hd(x)] ∈ Z
d+1
p , y ← ∑d

i=0 cihi(x), and

t←∏d
i=0 t

hi(x)
i . Output νx = (y, t).

Verify(SK, τx, νx): Parse SK as (K, a), τx as x, and νx as (y, t) ∈ Zp × G.
Compute z ← CFEvalh(x, K), and accept if t

?= z · ga·y. Otherwise, reject.

4 The client needs to do two exponentiations.

Verifiable Delegation of Computation over Large Datasets 125

Correctness. The correctness of the above scheme follows straightforwardly
from the correctness of CFEval for the algebraic PRF F .

The security analysis of the above scheme, as well as an extension allowing
the client to preserve the privacy of the polynomial, are given in the full version
of the paper [7].

6 Verifiable Database Queries with Efficient Updates

We have shown a general framework that allows any resource constrained client
to verifiably delegate large polynomials to a server. As we have already mentioned
in the introduction, this immediately gives a verifiable delegation solution to
many natural practical applications (such as prediction using fitted polynomials).
In this Section we present an application of our techniques to the problem of
efficient verification of the result to queries posed to a dynamic database. In
other words the client stores a database with the server together with some
authentication informatiom. It then needs to be able to efficiently verify that
the results of its queries are correct, and also to efficiently update the database
and its associated authenticator. The techniques we developed for delegation of
polynomials are at the basis of the solution we present, which however requires
other novel and interesting technical ideas.

The protocol uses ideas borrowed from our polynomial verification scheme:
the authenticator for every database entry can be efficiently reconstructed by
the client using a PRF with closed form efficiency. However as we pointed out
in the Introduction the main challenge comes with the updates: the client must
revoke any authenticating data that the server has for the previous value of the
updated cell. We deal with this problem by ”masking” the authenticator with
another closed-form efficient PRF. This ”mask” can be efficiently removed by
the client to perform the authentication and can also be efficiently updated so
that old masked values cannot be reused. The technical details are somewhat
involved and are described below.

Handling large payloads. For simplicity we consider databases of the form
(i, vi) where i is the index and vi the payload data. The construction we describe
below allows data values to be only polynomially large (in the security parame-
ter). Before proceeding to describe our protocol, we show a simple transformation
that allows us to support databases with arbitrary payload sizes.

On a high level, we will use a small payload protocol, such as the one described
below, to store a database of the form (i, si) where si is a counter that counts
the number of times index i has been updated. The server will also store the
MAC of the tuple (i, si, vi) where vi is the (possibly large) payload.

When the client queries i, it will receive the value si through the verifiable
database protocol. The security of this protocol will guarantee to the client that si

is correct. Then the server will also answer with vi and the MAC on (i, si, vi) and
the client will accept vi if the MAC is correct. To update index i, the client will
first query i and retrieve the current tuple (i, si, vi). It will then update si on the
verifiable database by setting s′i = si + 1. This can be done since si is bounded

126 S. Benabbas, R. Gennaro, and Y. Vahlis

by the running time of the client and therefore polynomial. Finally it will store
the new v′i together with a MAC on (i, s′i, v

′
i). Since si will only ever increase, the

server will not be able to re-use old MACs once an index has been updated.
Therefore for now we will focus on databases with small (polynomial) pay-

loads. The protocol is described in detail below.

Relation to Merkle Trees. Merkles trees [42] are a standard technique
for efficient authentication of data. Each element is represented as a leaf of a
binary tree. The internal nodes contain hashes of their two children, and the
owner of the data keeps only the root, which is essentially a hash of the entire
tree. Retrieval queries can now be answered and verified in logarithmic time: the
server simply sends the hashes along the path from the root to the desired leaf
(along with any hashes within distance 1 of the path), and the client uses these
values to compute the hash at the root of the tree. The client then checks that
the stored hash value of the root is equal to the recomputed hash. Updating the
tree is also quite efficient – only the hashes along the path to the updated leaf
must be recomputed. In comparison, our scheme requires the client to perform
a constant amount of work both during retrieval and updates, while the server
must choose one of the two types of queries where he will do a linear amount
of work (the other type of queries requires a constant amount of work from the
server as well).

Our protocol. We give a fully detailed protocol in the full version [7]. Here,
we present a high level overview of the approach. The basic tools that we use
are computational bilinear groups of composite order. In this setting, a pair of
groups G, GT are generated, along with a pairing e : G × G → GT . Here each
of the groups are of some order N = p1p2 where p1 and p2 are large primes.
The cryptographic assumption is that it is infeasible to distinguish a random
member of G (or GT) from a random member of the subgroup of order p1 or p2.
Such groups have recently been used to solve several important open problems in
the areas of identity based encryption, leakage resilient cryptography, and other
related problems (see e.g. [13]).

The basic approach of our construction (leaving some details to the full de-
scription below) can be described as follows: each entry (i, vi) in the database
(where i is an index and vi is data) is encoded as a composite group element of
the form

ti = gri+avi
1 gwi

2 .

Here, g1 and g2 are generators of the subgroups G1 and G2 of G, and the values
ri, wi are generated using a pseudo-random function. To retrieve the value of the
database at index i, we will have the server compute (given keys that we shall
describe in a moment) the value

t = gri+avi
1 g

∑
i wi

2 .

Forgetting (for now) how the server should compute these values, the client can
easily strip off the G2 masking by keeping the single group element g

∑
wi

2 in

Verifiable Delegation of Computation over Large Datasets 127

his private key. It is now easy to see that if we replace the ri’s with random
values, then our scheme is secure before any updates are performed. This follows
from the fact that each entry in the database is MAC’ed with an information
theoretically secure MAC (the G2 part hasn’t played a role so far), and so the
server must return the correct value in the G1 part of each entry. The difficulty
is in allowing updates that do not require the client to change his keys for the
pseudo-random functions, which in turn would require the server to obtain new
MACs for all the entries in the database.

A naive solution to change the value of index i from vi to v′i can be for the
client to send to the server a new encoding gri+bvi

1 gwi
2 . However, the server can

then easily recover the MAC keys ri and a by dividing the new group element
that he receives during the update by the previous encoding that he already has.
Our solution is therefore to randomize the new encoding by having the client send

t′x = gri+aδ
1 g

w′
i

2 ,

where δ = v′i − vi, and w′
i is a new pseudorandom value (generated by using a

counter). Intuitively, this allows the client to send t′x as an update token that the
server can multiply into his existing group element ti to obtain g

ri+av′
i

1 g
wi+w′

i
2 .

Notice that the G1 part is a MAC of the value v′i using the same key that
was previously used to MAC vi. We show, relying on the subgroup membership
assumption, that the random mask g

wi+w′
i

2 effectively makes the MAC in the G1

of the token indistinguishable from a new MAC using fresh keys. We now arrive
at the problem of allowing the server to compute the value t, which requires
stripping the G1 part of all the tokens except the token that corresponds to
index i, without compromising security. We achieve this by issuing to the server
random group elements t̂1 from G, and t̂0 from G2. The server then computes
the response to query i as

t = e(ti, t̂1)
∏

j �=i

e(tj , t̂0).

A remaining technical issue is the fact the in the above discussion we haven’t
mentioned anything about how the client should remember the new masked value
w′

i after an update. Our solution is to compute it pseudo-randomly as Fk(i, si)
where si is a counter that is incremented with each update and is stored together
with the payload vi. This guarantees that a fresh pseudo-random value is used
after each update, which in turn allows us to substitute the pseudo-random wi’s
by random ones in the security analysis.

Acknowledgments. Rosario Gennaro’s research was sponsored by US Army Re-
search laboratory and the UK Ministry of Defence and was accomplished under
Agreement Number W911NF-06-3-0001. The views and conclusions contained
herein are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the US Army Research Labora-
tory, the US Government, the UK Ministry of Defence, or the UK Government.

128 S. Benabbas, R. Gennaro, and Y. Vahlis

The US and UK Governments are authorized to reproduce and distribute reprints
of this work for Government purposes, notwithstanding any copyright notation
hereon.

References

1. Ajtai, M.: The invasiveness of off-line memory checking. In: STOC, pp. 504–513
(2002)

2. Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient
Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010)

4. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: ACM CCS, pp. 598–609 (2007)

5. Babai, L.: Trading group theory for randomness. In: Proceedings of the ACM Sym-
posium on Theory of Computing (STOC), pp. 421–429. ACM, New York (1985)

6. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.:
Incentivizing outsourced computation. In: Proceedings of the Workshop on Eco-
nomics of Networked Systems (NetEcon), pp. 85–90. ACM, New York (2008)

7. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computa-
tion over Large Datasets. Cryptology ePrint Archive, Report 2011/132 (2011),
http://eprint.iacr.org/

8. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selec-
tive opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252.
Springer, Heidelberg (2011)

9. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

10. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. In: 32nd Annual IEEE Symposium of Foundations of Computer
Science (FOCS 1991), pp. 90–99 (1991)

11. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

12. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

13. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

14. Boneh, D., Montogomery, H., Raghunathan, A.: Algebraic pseudorandom functions
with improved efficiency from the augmented cascade. In: Proc. of ACM CCS 2010
(2010)

15. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

16. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to ef-
ficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

http://aws.amazon.com/ec2
http://eprint.iacr.org/

Verifiable Delegation of Computation over Large Datasets 129

17. Chaum, D., Crepeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: STOC, pp. 11–19 (1988)

18. Chaum, D., Pedersen, T.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

19. Cheon, J.H.: Security analysis of the strong diffie-hellman problem. In: Vaudenay, S.
(ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006)

20. Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved Delegation of Computation Us-
ing Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

21. Desmedt, Y.: Threshold Cryptography. In: Encyclopedia of Cryptography and Se-
curity (2005)

22. Dodis, Y., Vadhan, S.P., Wichs, D.: Proofs of Retrievability via Hardness Amplifi-
cation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

23. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

24. Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How Efficient Can
Memory Checking Be? In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444,
pp. 503–520. Springer, Heidelberg (2009)

25. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

26. Gemmell, P., Naor, M.: Codes for Interactive Authentication. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 355–367. Springer, Heidelberg (1994)

27. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

28. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the ACM Symposium on the Theory of Computing (STOC) (2009)

29. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: STOC,
pp. 218–229 (1987)

30. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Proceedings of the ACM Symposium on the Theory of
Computing (STOC) (2008)

31. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. SIAM Journal on Computing 18(1), 186–208 (1989)

32. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, p. 425. Springer, Heidelberg (2001)

33. Hall, W.E., Jutla, C.S.: Parallelizable authentication trees. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 95–109. Springer, Heidelberg (2006)

34. Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pattern Matching
with Security Against Malicious and Covert Adversaries. J. Cryptology 23(3), 422–
456 (2010)

35. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005)

36. Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: ACM
Conference on Computer and Communications Security, pp. 584–597 (2007)

130 S. Benabbas, R. Gennaro, and Y. Vahlis

37. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In: Proceedings of the ACM Symposium on Theory of Computing (STOC),
pp. 723–732. ACM, New York (1992)

38. Kilian, J.: Improved efficient arguments (preliminary version). In: Proceedings of
the International Cryptology Conference on Advances in Cryptology, pp. 311–324.
Springer, London (1995)

39. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)

40. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional lin-
ear assumption and weaker variants. In: Proceedings of the 16th ACM Conference
On Computer and Communications Security, CCS 2009, pp. 112–120. ACM, New
York (2009)

41. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.: A
general model for authenticated data structures. Algorithmica 39(1), 21–31 (2004)

42. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

43. Micali, S.: CS proofs (extended abstract). In: Proceedings of the IEEE Symposium
on Foundations of Computer Science (1994)

44. Micali, S., Rabin, M.O., Kilian, J.: Zero-Knowledge Sets. In: FOCS, pp. 80–91
(2003)

45. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences 85(2),
481–484 (2002)

46. Monrose, F., Wyckoff, P., Rubin, A.: Distributed execution with remote audit. In:
Proceedings of ISOC Network and Distributed System Security Symposium, NDSS
(February 1999)

47. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

48. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: USENIX
Security, pp. 17–17 (1998)

49. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51, 231–262 (2004)

50. Naor, M., Rothblum, G.N.: The Complexity of Online Memory Checking. In:
FOCS, pp. 573–584 (2005)

51. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

52. Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two-party
authenticated data structures. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007.
LNCS, vol. 4861, pp. 1–15. Springer, Heidelberg (2007)

53. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In:
CCS, pp. 437–448 (October 2008)

54. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal Authentication of
Operations on Dynamic Sets. Cryptology ePrint Archive, Report 2010/455 (2010),
http://eprint.iacr.org/

55. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

http://eprint.iacr.org/

Verifiable Delegation of Computation over Large Datasets 131

56. Smith, S., Weingart, S.: Building a high-performance, programmable secure co-
processor. Computer Networks (Special Issue on Computer Network Security) 31,
831–960 (1999)

57. Sun Utility Computing, http://www.sun.com/service/sungrid/index.jsp
58. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)

ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)
59. Tamassia, R., Triandopoulos, N.: Certification and authentication of data struc-

tures. In: Proc. Alberto Mendelzon Workshop on Foundations of Data Manage-
ment, Cite-seer (2010)

60. Yao, A.: Protocols for secure computations. In: FOCS, p. 1982
61. Yee, B.S.: Using Secure Coprocessors. PhD thesis, Carnegie Mellon University

(1994)

http://www.sun.com/service/sungrid/index.jsp

	Verifiable Delegation of Computation over Large Datasets
	Introduction
	Related Work

	Assumptions
	Verifiable Computation
	Algebraic Pseudorandom Functions
	Small Domain Algebraic PRFs from Strong DDH
	Small Domain Algebraic PRFs from DDH

	Verifiable Delegation of Polynomials
	Construction Based on Algebraic PRFs

	Verifiable Database Queries with Efficient Updates
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

