On the Security of TLS-DHE
in the Standard Model

Tibor Jager!, Florian Kohlar?, Sven Schige®*, and Jorg Schwenk?

! Karlsruhe Institute of Technology, Germany
tibor.jager@kit.edu
Horst Gortz Institute for IT Security, Ruhr-University Bochum, Germany
{florian.kohlar, joerg.schwenk}@rub.de
3 University College London, United Kingdom
s.schage@ucl.ac.uk

Abstract. TLS is the most important cryptographic protocol in use
today. However, up to now there is no complete cryptographic security
proof in the standard model, nor in any other model. We give the first
such proof for the core cryptographic protocol of TLS ciphersuites based
on ephemeral Diffie-Hellman key exchange (TLS-DHE), which include
the cipher suite TLS DHE DSS WITH 3DES EDE CBC SHA mandatory in TLS
1.0 and TLS 1.1. It is impossible to prove security of the TLS Handshake
protocol in any classical key-indistinguishability-based security model
(like for instance the Bellare-Rogaway or the Canetti-Krawczyk model),
due to subtle issues with the encryption of the final Finished messages.
Therefore we start with proving the security of a truncated version of the
TLS-DHE Handshake protocol, which has been considered in previous
works on TLS. Then we define the notion of authenticated and confi-
dential channel establishment (ACCE) as a new security model which
captures precisely the security properties expected from TLS in prac-
tice, and show that the combination of the TLS Handshake with data
encryption in the TLS Record Layer can be proven secure in this model.

Keywords: authenticated key exchange, SSL, TLS, provable security,
ephemeral Diffie-Hellman.

1 Introduction

Transport Layer Security (TLS) is the single most important Internet security
mechanism today. Session keys in TLS are established in the TLS Handshake
protocol, using either encrypted key transport (TLS-RSA) or (ephemeral) Diffie-
Hellman key exchange (TLS-DH(E)), whereas authentication can be provided
mutual or server-only. Due to a subtle interleaving of the TLS Handshake with
the TLS Record Layer it is impossible to prove the security of TLS using well-
established security models [4,10,9], which define security via indistinguishability
of keys (see [18] for a detailed description of this issue). Therefore there is no
security proof for the complete protocol up to now.

* Supported by EPSRC grant number EP/G013829/1.

R. Safavi-Naini and R. Canetti (Eds.): CRYPTO 2012, LNCS 7417, pp. 273-293, 2012.
© International Association for Cryptologic Research 2012

274 T. Jager et al.

The paradox that the most important authenticated key-exchange (AKE)
protocol cannot be proven secure in any existing security model can be solved in
two ways. Either one considers a modified version of the TLS Handshake protocol
(‘truncated TLS’), which was subject to previous work [20], or a new security
model for the combination of TLS Handshake protocol and data encryption in
the TLS Record Layer must be devised. In this paper we follow both approaches.

1.1 Contributions

We provide new security results for the core cryptographic protocol of TLS based
on ephemeral Diffie-Hellman key exchange (TLS-DHE).

First we give a formal proof that the truncated version of the TLS-DHE
Handshake protocol from [20] is a secure authenticated key exchange protocol.
We consider a security model which extends the well-known Bellare-Rogaway
model [4] to adaptive corruptions and perfect forward secrecy in the public-key
setting (cf. [6]). This allows to compare our results to previous work.

Second we define the notion of authenticated and confidential channel establish-
ment (ACCE). ACCE protocols are an extension of AKE protocols, in the sense
that the symmetric cipher is integrated into the model. In contrast to AKE proto-
cols, where one requires key indistinguishability, we demand that a secure ACCE
protocol allows to establish a ‘secure communication channel’ in the sense of state-
ful length-hiding authenticated encryption [22]. Loosely speaking, an ACCE
channel guarantees that messages written to this channel are confidential (indis-
tinguishable, and even the length of messages is concealed up to some granular-
ity), and that a sequence of messages read from this channel corresponds exactly
to the sequence of messages sent by the legitimate sender (of course up to dropping
messages at the very end of the sequence, which is always possible). This captures
exactly the properties expected from TLS-like protocols in practice. We prove that
the combination of the TLS Handshake protocol with the TLS Record Layer forms
a secure ACCE protocol, if the TLS Record Layer provides security in the sense of
length-hiding authenticated encryption. Note that the latter was proven recently
by Paterson et al. [22] for CBC-based Record Layer protocols.

The analyses of both truncated TLS-DHE (as an AKE protocol) and TLS-DHE
(as an ACCE protocol) require, that the building blocks of TLS-DHE (digital sig-
nature scheme, Diffie-Hellman key exchange, symmetric cipher) meet certain secu-
rity properties. The majority of these properties are standard assumptions, solely
for the pseudo-random function we require an additional non-standard security as-
sumption, which is a variant of the Oracle Diffie-Hellman assumption introduced
by Abdalla, Bellare, and Rogaway [1]. We explain in Section 6 why such an as-
sumptions seems hard to avoid. Our proof is stated for mutual authentication, i.e.,
the client authenticates itself using a client certificate. This allows us to base our
work on standard definitions for secure authenticated key exchange.

1.2 Interpretation

Our results show that the core cryptographic protocol of TLS-DHE is crypto-
graphically sound, if its building blocks are suitably secure (the full version [18]

On the Security of TLS-DHE in the Standard Model 275

of this paper contains an analysis to what extent the concrete building blocks of
TLS meet the required properties, here we can build upon previous work that
considered particular components of TLS).

We note that TLS-DHE is much less used in practice than TLS with encrypted
key transport (TLS-RSA). Moreover, we consider mutual authentication (that
is, both the client and the server are in possession of a certified public key, which
is used in the protocol to mutually authenticate each other), which is also rarely
used in practice. We believe that our analysis of TLS-DHE is nevertheless of
practical value, for the following reasons:

First, the TLS-DHE-based ciphersuite TLS DHE DSS WITH 3DES EDE CBC SHA
is mandatory for TLS 1.0 and 1.1, which are both still in widespread use. Only
the most recent version TLS 1.2 prescribes TLS-RSA as mandatory. So one could
theoretically configure a considerable amount of servers to use only TLS-DHE
and benefit from the provable security guarantees of TLS-DHE as provided in
our security analysis.

Second, we can show that TLS-DHE provides perfect forward secrecy — a very
strong form of security, which basically states that future compromises of long-
term secrets do no threaten past communication sessions. With encrypted key
transport, as in TLS-RSA, this is not achievable, since an attacker that compro-
mises the long-term key (the private decryption key) can easily obtain session keys
from previous sessions by just decrypting recorded ciphertexts. To better protect
users from the consequences of such key compromise attacks and offer better long-
term security, service providers might therefore consider to switch to the (exclu-
sive) use of TLS-DHE. Recently, Google has made a first step in that direction,
by announcing that it will switch over to TLS-DHE as the default key exchange
method for its services to provide (and push) perfect forward secrecy [2].

Third, it seems that giving a security proof of the actually most widespread
option TLS-RSA is impossible in the standard model. Any approach we can think
of would require IND-CCA-security of the encryption scheme used to transport
the premaster secret from the client to the server, as otherwise we cannot simu-
late protocol executions while still being able to argue with indistinguishability
of premaster secrets. But unfortunately it is well-known that the RSA-PKCS
v1.5 scheme used in TLS is vulnerable to chosen-ciphertext attacks [7]. This
problem was circumvented in previous work by either using an abstract public-
key encryption scheme which is IND-CCA-secure [20], or by assuming PKCS#1
v2.0 (RSA-OAEP), which is not used in TLS, and omitting authentication [17].

Our work can also be seen as a ‘stepping stone’ towards a TLS version with a com-
plete security proof in the standard model. Essentially, we identify certain security
properties and prove that the TLS protocol framework yields a secure ACCE pro-
tocol under the assumption that the TLS building blocks satisfy these properties.

1.3 Related Work

Because of its eminent role, TLS and its building blocks have been subject to
several security analyses. We mention only the works closely related to ours here,
a more complete overview can be found in [18].

276 T. Jager et al.

Gajek et al. [17] presented the first security analysis of the complete TLS
protocol, combining Handshake and Record Layer, in the UC framework [9] for
all three key exchange protocols static Diffie-Hellman, ephemeral signed Diffie-
Hellman, and encrypted key transport. The ideal functionalities described in
this paper are much weaker than the security guarantees we expect from TLS,
since only unauthenticated key exchange is considered. The paper furthermore
assumes that RSA-OAEP is used for encrypted key transport, which is not the
case for current versions of TLS.

Morissey et al. [20] analysed, in a paper that is closest to our results, the
security of the truncated TLS Handshake protocol in the random oracle model
and provided a modular proof of security. They make extensive use of the random
oracle model to separate the three layers in the TLS Handshake they define, and
to switch from computational to indistinguishability based security models. The
use of the random oracle model is justified by the authors of [20] since it seems
impossible to prove the PKCS#1 v1.5 based ciphersuites of TLS secure in the
standard model. This argumentation does not affect our work, since we consider
Diffie-Hellman-based ciphersuites.

Paterson et al. [22] introduce the notion of length-hiding authenticated en-
cryption, which captures the properties expected from the data encryption in the
TLS Record Layer. Most importantly, they were able to show that CBC-based
ciphersuites of TLS 1.1 and 1.2 meet this security notion. This work matches
nicely our results on the TLS Handshake protocol, and is an important building
block for our work.

Very recently, Brzuska et al. [8] proposed relaxed game-based security notions
for key exchange. This approach may serve as an alternative to our ACCE-based
approach to circumvent the impossibility of proving the TLS Handshake protocol
secure in a key-indistinguishability-based security model.

1.4 Remark on Our Choice of the Security Model

Authenticated key exchange (AKE) is a basic building block in modern cryp-
tography. However, since many different security models for different purposes
exist [3,4,6,9,10,13,19,12], the choice of the right model is not an easy task, and
must be considered carefully. We have to take into account that we cannot mod-
ify any detail in the TLS protocol, nor in the network protocols preceding it. We
have chosen an enhanced variant of the first model of Bellare and Rogaway [4].
Variants of this model have also been studied by [12,6], and especially by [20].
Detailed reasons for our choice are given in the full version [18].

2 Preliminaries and Definitions

We denote with () the empty string, and with [n] = {1,...,n} C N the set of
integers between 1 and n. If A is a set, then a & A denotes the action of sampling
a uniformly random element from A. If A is a probabilistic algorithm, then
a & A denotes that A is run with fresh random coins and returns a. In addition

On the Security of TLS-DHE in the Standard Model 277

to the complexity assumption described in the sequel, we need the standard
security notions of digital signatures (EUF-CMA), pseudo-random functions,
and the Decisional Diffie-Hellman (DDH) assumption. These are detailed in the
full version [18].

The PRF-Oracle-Diffie-Hellman (PRF-ODH) Assumption. Let G be a group
with generator g. Let PRF be a deterministic function z = PRF(X,m), taking
as input a key X € G and some bit string m, and returning a string z € {0, 1}*.
Consider the following security experiment played between a challenger C and
an adversary A.

1. The adversary A outputs a value m.

2. The Challenger samples u, v ¢ lq], z1 & {0, 1}* uniformly random and sets
zo := PRF(g"¥,m). Then it tosses a coin b € {0,1} and returns z,, g* and
g to the adversary.

3. The adversary may query a pair (X, m’) with X # g“ to the challenger. The
challenger replies with PRF(X?, m/).

4. Finally the adversary outputs a guess b’ € {0,1}.

Definition 1. We say that the PRF-ODH problem is (t, €prfodn)-hard with respect
to G and PRF, if for all adversaries A that run in time t it holds that

|PI‘ [b = b/] - 1/2| S €prfodh-

The PRF-Oracle-Diffie-Hellman (PRF-ODH) assumption is a variant of the ODH
assumption introduced by Abdalla, Bellare and Rogaway in [1], adopted from
hash functions to PRFs. In contrast to allowing a polynomial number of queries
as in the original assumption [1], we allow only a single oracle query.

Stateful Length-Hiding Authenticated Encryption. The following description and
security model was obtained from the authors of [22] via personal communica-
tion. See [22] for a detailed discussion and motivation of this security notion.

A stateful symmetric encryption scheme consists of two algorithms StE =
(StE.Enc, StE.Dec). Algorithm (C, st) <~ StE.Enc(k,len, H,m, st.) takes as in-
put a secret key k € {0,1}", an output ciphertext length len € N, some header
data H € {0,1}*, a plaintext m € {0,1}*, and the current state st. € {0,1}",
and outputs either a ciphertext C' € {0,1}'*" and an updated state st/ or an
error symbol L if for instance the output length len is not valid for the message
m. Algorithm (m’, st))) = StE.Dec(k, H,C, stq) takes as input a key k, header
data H, a ciphertext C, and the current state sty € {0,1}*, and returns an
updated state st/; and a value m/ which is either the message encrypted in C, or
a distinguished error symbol | indicating that C' is not a valid ciphertext. Both
encryption state st, and decryption state stg are initialized to the empty string .
Algorithm StE.Enc may be probabilistic, while StE.Dec is always deterministic.

Definition 2. We say that a stateful symmetric encryption scheme StE =
(StE.Init, StE.Enc, StE.Dec) is (¢, esLnag)-secure, if Pr[b = V'] < eqnae for all
adversaries A running in time at most t in the following experiment.

278 T. Jager et al.

Encrypt(mo, m1,len, H): Decrypt(C, H):

u:i=u+1 vi=v+1

(CO© sty & StE.Enc(k, len, H,mo, st.) 1f b= 0, then return L

(C<1), stS)) & StE.Enc(k, len, H,m1,ste) (m,stq) = StE.Dec(k, H, C, stq)

If C© =1 or ™ = 1 then return L If v >wuor C # Cy, then phase :=1
(Cy, ste) = (CV, stéb)) If phase = 1 then return m

Return C, Return L

Fig. 1. Encrypt and Decrypt oracles in the stateful LHAE security experiment

— Choose b <~ {0,1} and k < {0,1}", and set st := 0 and stq := 0,
— run b & AEncrypt,Decrypt

Here AENeyPtDectypt qenotes that A has access to two oracles Encrypt and Decrypt.
The encryption oracle Encrypt(mo, my,len, H) takes as input two messages mg
and my, length-parameter len and header data H. It maintains a counter u which
is initialized to 0. Oracle Decrypt(C, H) takes as input a ciphertext C' and header
H, and keeps a counter v and a variable phase, both are initialized to 0. Both
oracles process a query as defined in Figure 1.

3 Transport Layer Security

The current version of TLS is 1.2 [16] coexists with its predecessors TLS 1.0 [14]
and TLS 1.1 [15]. In the following we give a description of all messages sent
during the TLS Handshake with ephemeral Diffie-Hellman key exchange and
client authentication (i.e. for ciphersuites TLS DHE *). This description and its
illustration in Figure 2 are valid for all TLS versions since v1.0. Our descrip-
tion makes use of several ‘state variables’ (A, k, I, p, st). For instance, variable
A € {accept,reject} determines whether one party ‘accepts’ or ‘rejects’ an
execution of the protocol, or variable k stores the session key. These variables
will also appear later in our security model (Section 4).

The TLS Handshake protocol consists of 13 messages, whose content ranges
from constant byte values to tuples of cryptographic values. Not all messages
are relevant for our security proof, we list them merely for completeness. All
messages are prepended with a numeric tag that identifies the type of message,
a length value, and the version number of TLS. All messages are sent through
the TLS Record Layer, which at startup provides no encryption nor any other
cryptographic transformations.

Message m1 is the Client Hello message. It contains four values, two of
which are optional. For our analysis the only important value is r¢, the random
value chosen by the client. It consists of 32 bytes (256 Bits), where 4 Bytes are
usually used to encode the local time of the client. The remaining 28 Bytes are
chosen randomly by the client. This is followed by a list cs-1ist of ciphersuites,
where each ciphersuite is a tuple of key exchange method, signing, encryption
and MAC algorithms, coded as two bytes. Data compression is possible before
encryption and is signaled by the inclusion of zero or more compression methods.

On the Security of TLS-DHE in the Standard Model 279

(s)

(IC = pkc, Skc) (Is = pks, Sks)

5
ro ¢ {0,1}1 m1 := (rc¢, cs-list)

rs & {0,131 ts & Zy, Ts := g'S mod p
os = SIG.Sign(sks,rc||rs[pl|gl|Ts)

(ma2,m3) := (rs, cs-choice, certs)

(ma,ms,me) := (p,g,Ts,0s,get-cert, done)

II := S, S is determined from certs
If SIG.Vfy(pkm,os,rcl|rs||pllgl|Ts) =0 — A := ‘reject’ and abort
te & Zq,Tc = g'¢ mod p,oc := SIG.Sign(skc, mi]|...||ms)
pms =T mod p,ms := PRF(pms, label1||rc||rs)
K& [[KSS | Kmae °[| Kinac © = PRF(ms, labelz||rc||rs)
ko= (kad™ = (Kae™, Kiad ®), k&es™ = (K509, Knal ©))
(m7, mg, mg, m10) := (certc,Tc,oc, flagenc)
finc := PRF(ms, labels||m1]| ... ||m1i0)

mz,ms, Mg, M1o

may := StE.Enc(kSE™, len, H, fing, st.)

IT := C, C is determined from certc

If SIG.Vfy(pkm,oc,m1]|...||ms) =0 — A := ‘reject’ and abort
pms =T mod p,ms := PRF(pms, label1||rc||rs)
KS29|KS2C | KG P ||K5:2C = PRF(ms, labels||rc||rs)

b im (kS = (K520, KS20), kg = (KSoS, KE2S))
mi2 = flagene, fins :== PRF(ms, labels||m1]| ... ||m12)

maa, m13 = StE.Enc(k3 len, H, fing, st.)

If fing # PRF(ms,labels||ma]|...]||m12) — A := ‘reject’ and abort
else A := ‘accept’ and output k
If finc # PRF(ms, labels

pre-accept phase else A := ‘accept’ and output k

|ma]|...|Jmio) — A := ‘reject’ and abort

ost-accept phase .
P ptp StE.Enc(kSEe, len, H, data, st.)

StE.Enc(k3, len, H, data, st.)

Fig. 2. Handshake protocol for ciphersuites TLS DHE * with client authentication

280 T. Jager et al.

The Server Hello message mo has the same structure as Client Hello, with
the only exception that at most one ciphersuite and one compression method
can be present. Message mg may contain a certificate (or a chain of certificates,
which is not considered in this paper) and the public key in the certificate must
match the ciphersuite chosen by the server. For ephemeral Diffie-Hellman key
exchange, the public key may be any key that can be used to sign messages.
The Diffie-Hellman (DH) key exchange parameters are contained in the Server
Key Exchange message my, including information on the DH group (e.g. prime
number p and generator g for a prime-order ¢ subgroup of Z;), the DH share
Ts, and a signature computed over these values plus the two random numbers
rc and rg. The next two messages are very simple: the Certificate Request
message ms only contains a list of certificate types that the client may use to
authenticate itself, and the Server Hello Done message mg does not contain
any data, but consists only of a constant tag with byte-value ‘14’ and a length
value ‘0.

Having received these messages, the signature og is verified. If this fails, the
client ‘rejects’ and aborts, otherwise the client completes the key exchange and
computes the cryptographic keys. The Client Certificate message my; con-
tains a signing certificate certc with the public key pkc of the client.! Message
mg is called Client Key Exchange, and contains the Diffie-Hellman share T¢
of the client. To authenticate the client, a signature o¢ is computed on a con-
catenation of all previous messages (up to mg) and padded prefixes and sent in
the Certificate Verify message mog.

The client is now also able to compute the premaster secret pms, from which
all further secret values are derived. After computing the master secret ms, it is
stored for the lifetime of the TLS session, and pms is erased from memory. The
master secret ms is subsequently used, together with the two random nonces, to
derive all encryption and MAC keys as well as the Client Finished message
finc. More precisely, the key material is computed as

KG9 | KE2C KSR S |KS2C 1= PRF(ms, labelolrclirs). (1)
After these computations have been completed, the keys are handed over to
the TLS Record Layer of the client, which is now able to MAC and encrypt
any data. To signal the ‘start of encryption’ to the server, a single message
mio (Change Cipher Spec) with byte value ‘1’ (flagenc) is sent unencrypted
to S. Then message my; consists of an authenticated encryption of the Client
Finished message fin,. After the server has received messages my, ms, mo, the
server verifies the signature in mg. If this fails, the server ‘rejects’ (i.e. sets A =
‘reject’) and aborts. Otherwise it first determines pms and ms. From this the
encryption and MAC keys are computed as in (1). It can then decrypt mi; and
check fin~ by computing the pseudo-random value on the messages sent and
received by the server. If this check fails, it ‘rejects’ and aborts. If the check is
successful, it ‘accepts’ (i.e. sets A = ‘accept’), computes the Server Finished

! When either party receives a certificate certx, the partner id is set to IT := X.

On the Security of TLS-DHE in the Standard Model 281

message fing and sends messages mi2 and m3 to the client. If the check of fing
on the client side is successful, the client also ‘accepts’.

The obtained keys can now be used to transmit payload data in the TLS
Record Layer using a stateful symmetric encryption scheme (StE.Enc, StE.Dec).

ABBREVIATED TLS HANDSHAKES, SIDE-CHANNELS AND CROSS-PROTOCOL AT-
TACKS. In our analysis, we do not consider the abbreviated TLS Handshake, but
note that the server can always enforce an execution of the full protocol. More-
over, we do not consider attacks based on side-channels, such as error messages,
or cross-protocol attacks like [24].

4 AKE Protocols

While the established security models for, say, encryption (e.g. IND-CPA or IND-
CCA security), or digital signatures (e.g., EUF-CMA), are clean and
simple, a more complex model is required to model the capabilities of active
adversaries to define secure authenticated key-exchange. An important line of
research [6,10,19,13] dates back to Bellare and Rogaway [4], where an adversary
is provided with an ‘execution environment’, which emulates the real-world ca-
pabilities of an active adversary, which has full control over the communication
network. In the sequel we describe a variant of this model, which captures adap-
tive corruptions, perfect forward secrecy, and security against key-compromise
impersonation attacks in a public-key setting.

EXECUTION ENVIRONMENT. Consider a set of parties { P, ..., P}, £ € N, where
each party P; € {P1,..., P} is a (potential) protocol participant and has a long-
term key pair (pk;, sk;). To model several sequential and parallel executions of
the protocol, each party P; is modeled by a collection of oracles 7}, ..., 7¢ for
d € N. Each oracle 7] represents a process that executes one single instance of
the protocol. All oracles 7}, ..., m¢ representing party P; have access to the same
long-term key pair (pk;, sk;) of P; and to all public keys pki, ..., pke. Moreover,
each oracle 7{ maintains as internal state the following variables:

— A € {accept,reject}.

— k € K, where K is the keyspace of the protocol.

— IT €{1,...,¢} containing the intended communication partner, i.e., an index
J that points to a public key pk; used to perform authentication.?

— Variable p € {Client, Server}.

— Some additional temporary state variable st (which may, for instance, be
used to store ephemeral Diffie-Hellman exponents or a transcript of mes-
sages).

The internal state of each oracle is initialized to (A, k, IT, p, st) = (0,0, 0,0,0),
where V' =) denotes that variable V' is undefined. Furthermore, we will always

2 We assume that each party P; is uniquely identified by its public key pk;. In practice,
several keys may be assigned to one identity. Furthermore, there may be other ways
to determine identities, for instance by using certificates. However, this is out of
scope of this paper.

282 T. Jager et al.

assume (for simplicity) that & = () if an oracle has not reached accept-state
(vet), and contains the computed key if an oracle is in accept-state, so that
we have

k#0 <= A= accept. (2)

An adversary may interact with these oracles by issuing the following queries.

— Send(7}, m): The adversary can use this query to send message m to oracle
3. The oracle will respond according to the protocol specification, depending
on its internal state. If the attacker asks the first Send-query to oracle 77,
then the oracle checks whether m = T consists of a special ‘initialization’
symbol T. If true, then it sets its internal variable p := Client and responds
with the first protocol message. Otherwise it sets p := Server and responds as
specified in the protocol. 3 The variables A, k, IT, st are also set after certain
Send-queries. *

— Reveal(w?): Oracle 7 responds to a Reveal-query with the contents of variable
k. Note that we have k #) if and only if A = accept, see (2).

— Corrupt(P;): Oracle m} responds with the long-term secret key sk; of party
P,.5 If Corrupt(P;) is the 7-th query issued by A, then we say that P; is
T-corrupted. For parties that are not corrupted we define 7 := oo.

— Test(nf): This query may be asked only once throughout the game. If 77 has
state A # accept, then it returns some failure symbol L. Otherwise it flips

a fair coin b, samples an independent key kg & K, sets ki = k to the ‘real’
key computed by 7, and returns kj.

SECURITY DEFINITION. Bellare and Rogaway [4] have introduced the notion of
matching conversations in order to define correctness and security of an AKE
protocol precisely. We denote with T; ; the sequence that consists of all messages
sent and received by #f in chronological order (not including the initialization-
symbol T). We also say that T; s is the transcript of f. For two transcripts T;
and T, we say that T} s is a prefiz of Tj,, if T; s contains at least one message,
and the messages in 7T; are identical to and in the same order as the first |T; ;|
messages of T} ;.

Definition 3 (Matching conversations). We say that ©f has a matching
conversation to 7%, if

— Ty is a prefiz of T; s and w) has sent the last message(s), or

— Tis is a prefiz of Ty and 7§ has sent the last message(s).

3 Note that we assume that learning identities of communication partners (which is
necessary to determine the public-key used to perform authentication) is part of the
protocol.

4 For details on when and how they are set in TLS, see the description in Section 3
and Figure 2.

® Note, that the adversary does not ‘take control’ of oracles corresponding to a cor-
rupted party. But he learns the long-term secret key, and can henceforth simulate
these oracles.

On the Security of TLS-DHE in the Standard Model 283

Security of AKE protocols is now defined by requiring that (i) the protocol is
a secure authentication protocol, and (ii) the protocol is a secure key-exchange
protocol.

AKE Game. We formally capture this notion as a game, played between an
adversary A and a challenger C. The challenger implements the collection of
oracles {n? : i € [{],s € [d]}. At the beginning of the game, the challenger
generates ¢ long-term key pairs (pk;, sk;) for all i € [¢]. The adversary receives
the public keys pkq, . .., pke as input. Now the adversary may start issuing Send,
Reveal and Corrupt queries, as well as one Test-query. Finally, the adversary
outputs a bit ¥’ and terminates.

Definition 4. We say that an adversary (t,e)-breaks an AKE protocol, if A
runs in time t, and at least one of the following two conditions holds:
1. When A terminates, then with probability at leastA € there exists an oracle
m; such that
— @} ‘accepts’ when A issues its To-th query with partner II = j, and
— Pj is Tj-corrupted with 7o < 7;,° and
— there is no unique oracle 5 such that 7 has a matching conversation
to 7.
If an oracle 7 accepts in the above sense, then we say that 7] accepts ma-
liciously.
2. When A issues a Test-query to any oracle @7 and
— A does not issue a Reveal-query to w7, nor to w' such that 7} has a
matching conversation to 74 (if such an oracle exists), and
— 7w} ‘accepts’ when A issues ils To-th query, and both parties P; and P;
are ;- and T;-corrupted, respectively, with 19 < Ty, Tj,7
then the probability that A outputs b’ which equals the bit b sampled by the
Test-query satisfies
Prjb=0"]—1/2| > e.

We say that an AKE protocol is (t,e€)-secure, if there exists no adversary that
(t, €)-breaks it.

Remark 1. Note that the above definition even allows to corrupt oracles involved
in the Test-session (of course only after the Test-oracle has reached accept-
state, in order to exclude trivial attacks). Thus, protocols secure with respect
to this definition provide perfect forward secrecy. Note also that we allow the
‘accepting’ oracle to be corrupted even before it reaches accept-state, which
provides security against key-compromise impersonation attacks.

Now we can prove the security of a modified version of the TLS Handshake
protocol. As discussed in the introduction, it is impossible to prove the full TLS
Handshake protocol secure in any security model based on key-indistinguishabil-
ity, like the model from Section 4, because the encryption and MAC of the

5 That is, P; is not corrupted (i.e. T-corrupted with 7 = co) when 7 ‘accepts’.
" That is, neither party P; nor P; is corrupted when 7; ‘accepts’.

284 T. Jager et al.

Finished messages provide a ‘check value’; that can be exploited by an adversary
to determine the bit b chosen by the Test-query.

Therefore we consider a ‘truncated TLS’ protocol as in [20,21]. In this trun-
cated version, we assume that the Finished messages are sent in clear, that is,
neither encrypted nor authenticated by a MAC. More precisely, we modify the
TLS protocol depicted in Figure 2 such that messages m1; and mi3 contain only
fingr (instead of StE.Enc(kII_ len, H, fin, st.)), allowing us to prove security in
the above model.

Theorem 1. Let p be the output length of PRF and let A be the length of the
nonces rc and rg. Assume that the pseudo-random function PRF is (t,€p)-
secure, the signature scheme is (t, €sig)-secure, the DDH-problem is (t, €qan)-hard
in the group G used to compute the TLS premaster secret, and the PRF-ODH-
problem is (T, €prfodn) -hard with respect to G and PRF.

Then for any adversary that (¥, ews)-breaks the truncated TLS-DHE protocol
in the sense of Definition J with t =~ t' holds that

dat

5 5 1
Ertls < 4-dl (2)\ +£'€sig+ 4 - €ddh 9 '€prf+d£ <€prfodh +€prf+ 2H>> .

Proof Sketch. Let us sketch the proof of Theorem 1, more details can be found
in the full version [18]. We consider three types of adversaries:

1. Adversaries that succeed in making an oracle accept maliciously, such that
the first oracle that does so is a Client-oracle (i.e., an oracle with p = Client).
We call such an adversary a Client-adversary.

2. Adversaries that succeed in making an oracle accept maliciously, such that
the first oracle that does so is a Server-oracle (i.e., an oracle with p = Server).
We call such an adversary a Server-adversary.

3. Adversaries that do not succeed in making any oracle accept maliciously, but
which answer the Test-challenge. We call such an adversary a Test-adversary.

We prove Theorem 1 by three lemmas. Lemma 1 bounds the probability €cjent
that a Client-adversary succeeds, Lemma 2 bounds the probability €serer that a
Server-adversary succeeds, and Lemma 3 bounds the success probability € of a
Test-adversary. Then we have eys < €client + Eserver + €ke-

Lemma 1. For any adversary A running in time t' =~ t, the probability that
there exists an oracle] with p = Client that accepts maliciously is at most

al 1
€client < dl (2)\ + £ - Esig + dl <€prfodh + €prf + 2/»’«))

where all quantities are defined as stated in Theorem 1.

Proof Sketch. We prove Lemma 1 in a sequence of games [5,23].

On the Security of TLS-DHE in the Standard Model 285

Game 0. This is the original security experiment.

Game 1. We add an abort condition. The challenger aborts, if throughout the
game any oracle chooses a random nonce r¢ or rg which is not unique. Since
nonces are chosen uniformly random, the collision probability is bounded
by (d¢)?2~*#. This abort condition ensures that any oracle that accepts with
non-corrupted partner has a unique partner oracle.

Game 2. The challenger guesses an oracle 7Tf* , and aborts if this oracle does
not accept maliciously with p = Client. If there exists a maliciously accepting
Client-oracle, then the guess is correct with probability 1/d¢.

Game 3. Next we want to ensure that Wf: receives as input exactly the Diffie-

Hellman share Tis chosen by another oracle 7r§ (not by the adversary). Note

that the respective party P; must not be corrupted, as otherwise 7Tf* would
not accept maliciously in the sense of Definition 4. The Diffie-Hellman share
Ts is contained in the digital signature received by 7Tf* , thus we can use
the (esig, t)-security of the signature scheme to ensure that the adversary can
only forward Ts from 7§ to T .

Game 4. In this game the challenger guesses upfront the oracle 7r§ that chooses
and signs the Diffie-Hellman share T received by 7%. , and aborts if its guess

2
is wrong. Again the guess is correct with probability at least 1/d¢.

Game 5. Now we are in a game where the challenger controls both Diffie-
Hellman shares Tc = ¢ and Ts = g% chosen and received by 7Tf* A
natural approach would be to use the DDH assumption now to replace the
premaster-secret pms = g'<*s with an independent random value pms, in
order to be able to use the security of the PRF(pms,-) as an argument in a
following game to replace the master secret ms with an independent ms.
However, unfortunately we cannot do this, as this would lead to a problem
with the simulation of the fin¢-message sent by 7r§ (we describe this issue
in more detail in Section 6). Instead, we use the PRF-ODH-assumption to
directly replace the master secret ms with an independent value ms. We
use the oracle provided by the PRF-ODH-assumption to simulate the fing
message if necessary, which allows us to overcome the mentioned problem.

Game 6. In this game the challenger replaces the function PRF(ms,) with a
truly random function. Note that ms is an independent random value, thus
we can use the security of the PRF to argue that this game is indistinguishable
from Game 5.

Game 7. Finally, we use the fact that in this game a truly random function is
used to verify the finished-message fing received by 7Tf* , to conclude that

wf* accepts maliciously with probability at most 27#.

Lemma 2. For any adversary A running in time t' =~ t, the probability that
there exists an oracle w; with p = Server that accepts maliciously is at most

¢ 1
€server < d (2/\ + £ - €sig + €ddh + 2 - €prf + 2u>

where all quantities are defined as stated in Theorem 1.

286 T. Jager et al.

Proof Sketch. The proof of Lemma 2 is very similar to the proof of Lemma 2,
except that the problem with the simulation of the fing message does not occur
in the case where we are dealing with Server-adversaries. Therefore we are able
to base security in this case on the standard DDH assumption instead of the
non-standard PRF-ODH assumption. (This is the reason why we consider Client-
and Server-adversaries separately).

Lemma 3. For any adversary A running in time t' = t, the probability that A
answers the Test-challenge correctly is at most 1/2 + exe with

€ke S €client + €server + de - (eddh +2- 6prf) .

where €client + €server 1S an upper bound on the probability that there exists an
oracle that accepts maliciously in the sense of Definition 4 (cf. Lemmas 1 and 2)
and all other quantities are defined as stated in Theorem 1.

Proof Sketch. In order to prove Lemma 3, we first use the bounds derived in
Lemmas 1 and 2 on the probability that there exists a Client- or Server-oracle
that accepts maliciously. We then employ a very similar sequence of games as
in the proofs of Lemmas 1 and 2. Recall that the keys in the real protocol are
computed as

KOO RSO KS S| K5 == PRF(ms, labels||rc||rs),

enc enc mac mac

and in the proofs of Lemmas 1 and 2 we have first replaced ms with an indepen-
dent value ms, and then the function PRF(ms, -) with a truly random function.
Once we have reached this game, the adversary will always receive an indepen-
dent key vector K529 K52 €| K| K552¢ as input, regardless of the bit b
sampled for the Test-query. Thus, the adversary outputs its guess b’ without re-
ceiving any information about b. This allows us to bound the success probability
of the adversary in this final game as Pr[t/ =] = 1/2.

Summing up probabilities from Lemmas 1 to 3, we obtain that

€ttls Z€client T Eserver + €ke < 2 - (eclient + eserver) +de - (Gddh +2- GPFF)
<4. maX{Gclientv fserver} +dl- (Gddh +2- 6prf)

dl 1
<4.-d¢ (2)\ +¢- Esig + €ddh + 2 Eprf +dl (Gprfodh + €prf + 2H>>
+dl (eddh +2. €pn‘)

al 5 5 1
=4-d¢ <2/\ + 0 €sig + 4 " Eddh + 9 < €prf +dl <6prfodh + €prf + 2u)> .

5 ACCE Protocols

An authenticated and confidential channel establishment (ACCE) protocol is a
protocol executed between two parties. The protocol consists of two phases,
called the ‘pre-accept’ phase and the 'post-accept’ phase.

On the Security of TLS-DHE in the Standard Model 287

Pre-accept phase. In this phase a ‘handshake protocol’ is executed. In terms
of functionality this protocol is an AKE protocol as in Section 4, that is, both
communication partners are mutually authenticated, and a session key k is
established. However, it need not necessarily meet the security definition for
AKE protocols (Definition 4). This phase ends, when both communication
partners reach an accept-state.

Post-accept phase. This phase is entered, when both communication partners
reach accept-state. In this phase data can be transmitted, encrypted and
authenticated with key k.

The prime example for an ACCE protocol is TLS. Here, the pre-accept phase

consists of the TLS Handshake protocol. In the post-accept phase encrypted and

authenticated data is transmitted over the TLS Record Layer.

To define security of ACCE protocols, we combine the security model for
authenticated key exchange from Section 4 with stateful length-hiding encryp-
tion in the sense of [22]. Technically, we provide a slightly modified execution
environment that extends the types of queries an adversary may issue.

EXECUTION ENVIRONMENT. The execution environment is very similar to the
model from Section 4, except for a few simple modifications. We extend the
model such that in the post-accept phase an adversary is also able to ‘inject’
chosen-plaintexts by making an Encrypt-query, and chosen-ciphertexts by making
a Decrypt-query. Moreover, each oracle 7} keeps as additional internal state a

(randomly chosen) bit b7 & {0, 1}, two counters u and v required for the security
definition, and two state variables st. and st4 for encryption and decryption with
a stateful symmetric cipher. In the sequel we will furthermore assume that the
key k consists of two different keys k = (k£,., kf..) for encryption and decryption.
Their order depends on the role p € {Client, Server} of oracle 7. This is the case
for TLS (see Section 3).

An adversary issue the following queries to the provided oracles.

— Send”®(7$, m): This query is identical to the Send-query in the AKE model
from Section 4, except that it replies with an error symbol L if oracle 7 has
state A = accept. (Send-queries in accept-state are handled by the Decrypt-
query below).

— Reveal(w?) and Corrupt(P;): These queries are identical to the corresponding
queries in the AKE model from Section 4.

— Encrypt(m},mg, m1, len, H): This query takes as input two messages mo and
my, length parameter len, and header data H. If A # accept then 7} returns
L. Otherwise, it proceeds as Encrypt(mg, m1,len, H) depicted in Figure 1
with k = k£, and b = b] depending on the internal state of ;.

— Decrypt(nf, C, H): This query takes as input a ciphertext C' and header data
H.If A # accept then 775» returns L. Otherwise, it proceeds as Decrypt(C, H)
depicted in Figure 1 with k = k4, and b = b} depending on the internal state
of 7.

SECURITY DEFINITION. Security of ACCE protocols is defined by requiring that
(i) the protocol is a secure authentication protocol (ii) in the post-accept phase

288 T. Jager et al.

data is transmitted over an authenticated and confidential channel in the sense
of Definition 2.

Again this notion is captured by a game, played between an adversary A and a
challenger C. The challenger implements the collection of oracles {77 : i € [{], s €
[d]}. At the beginning of the game, the challenger generates ¢ long-term key pairs
(pki, sk;) for all i € [¢]. The adversary receives the public keys pki, ..., pk. as
input. Now the adversary may start issuing Send, Reveal, Corrupt, Encrypt, and
Decrypt queries. Finally, the adversary outputs a triple (i, s,b") and terminates.

Definition 5. We say that an adversary (t,e)-breaks an ACCE protocol, if A
runs in time t, and at least one of the following two conditions holds:
1. When A terminates, then with probability at least € there exists an oracle 7§
such that
— m; ‘accepts’ when A issues its o-th query with partner II = j, and
— P; is Tj-corrupted with 79 < Tj,s and
— there is no unique oracle 7§ such that 7 has a matching conversation
to wt.
2. When A terminates and outputs a triple (i,s,b") such that
— m; ‘accepts’ when A issues its To-th query with intended partner II = j,
and Pj is 7;-corrupted with 7o < 75,
— A did not issue a Reveal-query to 77, nor to m§ such that 7} has a
matching conversation to 74 (if such an oracle exists), and
then the probability that V' equals b is bounded by

Pr[of = b] — 1/2] > e.

If an adversary A outputs (i,s,b") such that b’ = b? and the above conditions
are met, then we say that A anwers the encryption-challenge correctly.
We say that an ACCE protocol is (t,€)-secure, if there exists no adversary that
(t, €)-breaks it.

Remark 2. Note that the above definition even allows to corrupt the oracle
whose internal secret bit the attacker tries to determine. Of course this is only
allowed after 7] has reached accept-state, in order to exclude trivial attacks.
Thus, protocols secure with respect to this definition provide perfect forward
secrecy. Note also that again we allow the ‘accepting’ oracle to be corrupted even
before it reaches accept-state, which provides security against key-compromise
impersonation attacks.

Relation to the AKE Security Definition from Section 4. Note that an ACCE
protocol can be constructed in a two-step approach.

1. (AKE part) First an authenticated key-exchange (AKE) protocol is
executed. This protocol guarantees the authenticity of the communication
partner, and provides a cryptographically ‘good’ (i.e., for the attacker indis-
tinguishable from random) session key.

8 That is, P; is not corrupted (i.e. T-corrupted with 7 = co) when 7 ‘accepts’.

On the Security of TLS-DHE in the Standard Model 289

2. (Symmetric part) The session key is then used in a symmetric encryption
scheme providing integrity and confidentiality.

This modular approach is simple and generic, and therefore appealing. It can be
shown formally that this two-step approach yields a secure ACCE protocol, if the
‘AKE part’ meets the security in the sense of Definition 4, and the ‘symmetric
part’ consists of a suitable authenticated symmetric encryption scheme (e.g.
secure according to Definition 2).

However, if the purpose of the protocol is the establishment of an authenti-
cated confidential channel, then it is not necessary that the ‘AKE-part’ of the
protocol provides full indistinguishability of session keys. It actually would suffice
if encrypted messages are indistinguishable, and cannot be altered by an adver-
sary. These requirements are strictly weaker than indistinguishability of keys
in the sense of Definition 4, and thus easier to achieve (possibly from weaker
hardness assumptions, or by more efficient protocols).

We stress that our ACCE definition is mainly motivated by the fact that
security models based on key indistinguishability do not allow for a security
analysis of full TLS, as detailed in the introduction. We do not want to propose
ACCE as a new security notion for key exchange protocols, since it is very
complex and the modular two-step approach approach seems more useful in
general.

Theorem 2. Let p be the output length of PRF and let A be the length of the
nonces rc and rg. Assume that the pseudo-random function PRF is (t, €prf)-
secure, the signature scheme is (t, €sig)-secure, the DDH-problem is (, €qdn)-hard
in the group G used to compute the TLS premaster secret, and the PRF-ODH-
problem is (t, €prfodn)-hard with respect to G and PRF. Suppose that the stateful
symmetric encryption scheme is (t, esLnag)-secure.

Then for any adversary that (t', eys)-breaks the TLS-DHE protocol in the sense
of Definition 5 with t ~t' holds that

dl
€ns < 4dl (2>\ + lesig + 4

) 5 1 1
€ddh + 2€prf + 4€sLHAE +dl €prfodh + Eprf + on .

Proof Sketch. The proof of Theorem 2 is very similar to the proof of Theorem 1.
Instead of proving indistinguishability of keys, as in Lemma 3 from the proof of
Theorem 1, we now have to consider indistinguishability of encrypted messages
and authenticity of ciphertexts. We do this by employing the same sequence
of games as in the proof of Lemma 3, except that we extend the proof by one
game-hop at the end of the sequence of games.

Recall that in the proof of Lemma 3 the keys K$ 29| K52 || K20 KS526,
which determine the encryption and decryption keys (kf,, kfi..) of the stateful
encryption scheme, were replaced with independent random values. This allows
us to extend the sequence of games by one final game, where the security of
TLS-DHE is reduced to the sSLHAE-security (in the sense of Definition 2) of the

underlying stateful encryption scheme.

290 T. Jager et al.

6 Security of TLS-DHE from Standard Assumptions

In this section we sketch why we had to make the PRF-ODH-assumption in the
proof of Lemma 1 (and thus in Theorems 1 and 2), and why it seems unlikely
that one can prove security based on standard DDH and a standard assumption
on the PRF, if a security model allowing active adversaries and user corruptions
is considerd.

Suppose we are given a Client-adversary, that is, an adversary which always
makes Client-oracle C' := 7} (i.e., mf with p = Client) accept maliciously with
intended partner II = S. Suppose we want to argue that the adversary is not
able to forge the fin g-message received by C (which we would have to, since the
fing-message is the only message that cryptographically protects all messages
previously received by 77, and thus is required to ensure that 77 has a matching
conversation to some other oracle), and that we want to assume only that the
PRF is secure in the standard sense (see [18, Definition 3]). Then at some point
in the proof we would have to replace the premaster secret computed by 7} as
pms = TeC = g'¢'s with an independent random value.

Note that in order to do so and to argue in the proof with indistinguishability,
we must not know any of the exponents tc and tg in Tg = ¢'¢ and Ts = ¢*s,
as otherwise we can trivially distinguish the real pms = ¢g'¢*s from a random
pms’. The problematic property of TLS-DHE is now, that an adversary may
test whether the challenger ‘knows’ tg, and then make Client-oracle 7} accept
maliciously only if this holds. This works as follows.

1. The adversary establishes a communication between two oracles 7 (repre-
senting the client C') and 7§ (representing the server S) by simply forwarding
the messages m; and (ma, ..., mg) between C and S.

2. Then C will respond with (my,...,m11) = (certe, Tc, o0, flagene, fing).”
This message is not forwarded.

3. Instead, the adversary corrupts some party P* ¢ {P;, P;}, and obtains the
secret key sk* of this party. Then it computes
(a) T* := g'" mod p for random t* & 7Z,,

(b) o* :=SIG.Sign(sk*; (r¢,rs,Ts,T*)) using the corrupted key sk*,

(c) ms* := PRF(TY ,label;||rc||rs) using knowledge of t*, and

(d) fing := PRF(ms*, my||mal|(T*, 0%)).

and sends (mz,...,m11) = (certex, T*, 0*, flagene, fini) to S. Note that S
cannot determine that its communication partner has changed, because any
messages previously received by S were perfectly anonymous.

4. If S responds with a correct fing-message (note that the adversary is able to
compute the key pms* := Té*, since it ‘knows’ t*, and thus is able to verify
the validity of fing), then adversary concludes that the challenger ‘knows’ tg
and forges the required fing-message to make 7} accept without matching
conversations. Otherwise the adversary aborts.

9 We consider truncated TLS-DHE here for simplicity, the same argument applies to
TLS-DHE with encrypted Finished-messages, too.

On the Security of TLS-DHE in the Standard Model 291

Note that the above adversary is a valid, successful adversary in the real security
experiment. It does not issue any Reveal-query and only one Corrupt-query to
an unrelated party, such that the intended communication partner IT = S of
C = 7 remains uncorrupted, but still it makes C' = 7w} ‘accept’ and there is no
oracle that C' has a matching conversation to.

However, we explain why we will not be able to use this adversary in a simu-
lated security experiment, where the challenger does not know the exponent tg
of Ts = g*s. Intuitively, the reason is that in this case the challenger would first
have to compute the Finished-message fing, where

fing = PRF(ms,m1]|...||ms) and ms = PRF(TY ,label||rc||rs),

but ‘knowing’ neither tg = log T, nor t* = log T*. This is the technical problem
we are faced with, if we want to prove security under a standard assumption like
DDH. Under the PRF-ODH-assumption, we can however use the given oracle to
compute first ms, and from this the Finished-message fing.

Interestingly, the above technical problem does not appear if we consider only
Server-adversaries (i.e., adversaries that make an oracle 7{ accept maliciously
with p = Server) instead. This is due to an asymmetry of the TLS-DHE Hand-
shake protocol, see [18] for details.

One can circumvent the above problem, and thus base the security proof on
the standard DDH assumption instead of PRF-ODH, if one considers a weaker
security model where no Corrupt-queries are allowed (which however seems not
adequate for the way how TLS-DHE is used on the Internet).

In [11] Canetti and Krawczyk describe a protocol called Xy, which exhibits
many similarities to the TLS-DHE Handshake protocol, but is provably secure
under standard assumptions (in particular under DDH instead of PRF-ODH).
We discuss why the subtle differences between Yy and TLS-DHE are crucial
in [18, Section 8]. We also note that one could, in principle, make TLS-DHE
provably secure under standard assumptions, if one would modify it such that
it becomes more similar to Xy, which would allow to carry the security analysis
of Xy from [11] over to TLS-DHE. Of course it seems unrealistic that such
substantial changes become accepted in practice.

7 Conclusion

We have shown that the core cryptographic protocol underlying TLS-DHE pro-
vides a secure establishment of confidential and authenticated channels. We can
avoid the random oracle model, if we make a suitable assumption on the pseudo-
random function. The goal of this work is to analyse TLS-DHE on the protocol
layer. As common in cryptographic protocol analyses, we therefore have ignored
implementational issues like error messages, which of course might also be used
to break the security of the protocol. We leave it as an interesting open question
to find an adequate approach for modeling such side-channels in complex sce-
narios like AKE involving many parties and parallel, sequential, and concurrent
executions.

292 T. Jager et al.

The whole TLS protocol suite is much more complex than the cryptographic
protocol underlying TLS-DHE. It is very flexible, as it allows to negotiate cipher-
suites at the beginning of the protocol, or to resume sessions using an abbreviated
TLS Handshake. So clearly the security analysis of TLS is not finished yet, there
are still many open questions. However, we consider this work as a strong indi-
cator for the soundness of the TLS protocol framework. We believe that future
revisions of the TLS standard should be guided by provable security — ideally in
the standard model.

Acknowledgements. We would like to thank Dennis Hofheinz, Kenny Pater-
son, Zheng Yang, and the anonymous referees for helpful comments and discus-
sions.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143-158. Springer, Heidelberg (2001)

2. Langley, A., Google Security Team: Protecting data for the long term with forward
secrecy, http://googleonlinesecurity.blogspot.co.uk/2011/
11/protecting-data-for-long-term-with.html

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139-155. Springer, Heidelberg (2000)

4. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg
(1994)

5. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409-426. Springer, Heidelberg (2006)

6. Blake-Wilson, S., Johnson, D., Menezes, A.: Key Agreement Protocols and their
Security Analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30-45. Springer, Heidelberg (1997)

7. Bleichenbacher, D.: Chosen Ciphertext Attacks against Protocols Based on the
RSA Encryption Standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 1-12. Springer, Heidelberg (1998)

8. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.: Less is more:
Relaxed yet composable security notions for key exchange. Cryptology ePrint
Archive, Report 2012/242 (2012), http://eprint.iacr.org/

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, pp.
136-145. IEEE Computer Society Press (October 2001)

10. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453-474. Springer, Heidelberg (2001)

11. Canetti, R., Krawczyk, H.: Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143~
161. Springer, Heidelberg (2002), http://eprint.iacr.org/2002/120/

http://googleonlinesecurity.blogspot.co.uk/2011/11/protecting-data-for-long-term-with.html
http://googleonlinesecurity.blogspot.co.uk/2011/11/protecting-data-for-long-term-with.html
http://eprint.iacr.org/
http://eprint.iacr.org/2002/120/

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

On the Security of TLS-DHE in the Standard Model 293

Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 585-604. Springer, Heidelberg (2005)

Cremers, C.J.F.: Session-state Reveal Is Stronger Than Ephemeral Key Reveal:
Attacking the NAXOS Authenticated Key Exchange Protocol. In: Abdalla, M.,
Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536,
pp. 20-33. Springer, Heidelberg (2009)

Dierks, T., Allen, C.: The TLS Protocol Version 1.0. RFC 2246 (Proposed Stan-
dard) (January 1999); Obsoleted by RFC 4346, updated by RFCs 3546, 5746
Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.1.
RFC 4346 (Proposed Standard) (April 2006); Obsoleted by RFC 5246, updated by
RFCs 4366, 4680, 4681, 5746

Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard) (August 2008); Updated by RFCs 5746, 5878
Gajek, S., Manulis, M., Pereira, O., Sadeghi, A.-R., Schwenk, J.: Universally Com-
posable Security Analysis of TLS. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.)
ProvSec 2008. LNCS, vol. 5324, pp. 313-327. Springer, Heidelberg (2008)

Jager, T., Kohlar, F., Schige, S., Schwenk, J.: On the security of TLS-DHE in the
Standard Model (full version). Cryptology ePrint Archive, Report 2011/219 (2011)
(revised 2012), http://eprint.iacr.org/2011/219

LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1-16. Springer, Heidelberg (2007)

Morrissey, P., Smart, N.P., Warinschi, B.: A Modular Security Analysis of the TLS
Handshake Protocol. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 55-73. Springer, Heidelberg (2008)

Morrissey, P., Smart, N.P., Warinschi, B.: The TLS Handshake protocol: A modular
analysis. Journal of Cryptology 23(2), 187-223 (2010)

Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag Size Does Matter: Attacks and
Proofs for the TLS Record Protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 372-389. Springer, Heidelberg (2011)

Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (November 2004)

Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol. In: Proceedings of the
Second USENIX Workshop on Electronic Commerce, pp. 29-40. USENIX Associ-
ation (1996)

http://eprint.iacr.org/2011/219

	On the Security of TLS-DHE
in the Standard Model
	Introduction
	Contributions
	Interpretation
	Related Work
	Remark on Our Choice of the Security Model

	Preliminaries and Definitions
	Transport Layer Security
	AKE Protocols
	ACCE Protocols
	Security of TLS-DHE from Standard Assumptions
	Conclusion
	References

