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Abstract. This paper presents a new generic technique, named sieve-
in-the-middle, which improves meet-in-the-middle attacks in the sense
that it provides an attack on a higher number of rounds. Instead of
selecting the key candidates by searching for a collision in an intermedi-
ate state which can be computed forwards and backwards, we look for
the existence of valid transitions through some middle sbox. Combining
this technique with short bicliques allows to freely add one or two more
rounds with the same time complexity. Moreover, when the key size of
the cipher is larger than its block size, we show how to build the bi-
cliques by an improved technique which does not require any additional
data (on the contrary to previous biclique attacks). These techniques
apply to PRESENT, DES, PRINCE and AES, improving the previously
known results on these four ciphers. In particular, our attack on PRINCE
applies to 8 rounds (out of 12), instead of 6 in the previous cryptanal-
yses. Some results are also given for theoretically estimating the sieving
probability provided by some inputs and outputs of a given sbox.
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1 Introduction

Meet-in-the-middle (MITM) attacks are a widely used tool introduced by Diffie
and Hellman in 1977. Through the years, they have been applied for analyzing
the security of a substantial number of cryptographic primitives, including block
ciphers, stream ciphers and hash functions, e.g. [2005/T2/T5T4]. They exploit
the fact that some internal state in the middle of the cipher can be computed
both forwards from the plaintext and backwards from the ciphertext, and that
none of these computations requires the knowledge of the whole master key. The
attacker then only keeps the (partial) key candidates which lead to a collision in
that internal state and discards all the other keys. This generic attack has drawn
a lot of attention and raised many improvements, including the partial matching,
where the computed internal states are not completely known, the technique of
guessing some bits of the internal state [12], the all-subkeys approach [15], splice-
and-cut [2/3/13] and bicliques [18]. The most popular application of bicliques is an
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accelerated exhaustive search on the full AES [4]. But, besides this degenerated
application where the whole key needs to be guessed, short bicliques usually
allow to increase the number of rounds attacked by MITM techniques without
increasing the time complexity, but with a higher data complexity. Moreover,
following [7], low-data attacks have attracted a lot of attention, motivated in part
by the fact that, in many concrete protocols, only a few plaintext-ciphertext pairs
can be eavesdropped. MITM attacks belong to this class of attacks in most cases
(with a few exceptions like bicliques): usually, 1 or 2 known plaintext-ciphertext
pairs are enough for recovering the key.

Our Contribution. This paper first provides a new generic improvement of
MITM algorithms, named sieve-in-the-middle, which allows to attack a higher
number of rounds. Instead of looking for collisions in the middle, we compute
some input and output bits of a particular middle sbox S. The merging step
of the algorithm then consists in efficiently discarding all key candidates which
do not correspond to a valid transition through S. Intuitively, this technique
allows to attack more rounds than classical MITM since it also covers the rounds
corresponding to the middle sbox S (e.g. two middle rounds if S is a superbox).
This new improvement is related to some previous results, including [2] where
transitions through an ARX construction are considered; a similar idea was
applied in [I7] in a differential attack, and in [8] for side-channel attacks. This
new generic improvement can be combined with bicliques, since short bicliques
also allow to add a few rounds without increasing the time complexity. But, the
price to pay is a higher data complexity. Here, we show that this increased data
requirement can be avoided by constructing some improved bicliques, if the key
size of the cipher is larger than its block size.

These new improvements and techniques are illustrated with four applications
which improve previously known attacks. In Section @, the sieve-in-the-middle
algorithm combined with the improved biclique construction is applied to 8
rounds (out of 12) of PRINCE, with 2 known plaintext-ciphertext pairs, while
the previous best known attack was on six rounds. Due to the page limitation,
the other three applications are presented in the full version of this paper [J]
only. In [9], we describe a sieve-in-the-middle attack on 8 rounds of PRESENT,
which provides a very illustrative and representative example of our technique.
This attack applies up to 8 rounds, while the highest number of rounds reached
by classical MITM is only 6. A similar analysis on DES is presented in [9];
our attack achieves 8 rounds, while the best previous MITM attack (starting
from the first one) was on 6 rounds. The cores of these two attacks have been
implemented, confirming our theoretical analysis. In [9], we also show that we
can slightly improve on some platforms the speed-up factor in the accelerated
exhaustive search on the full AES performed by bicliques. The time complexity
of the sieve-in-the-middle algorithm highly depends on the sieving probability
of the middle sbox, i.e., on the proportion of pairs formed by a partial input
and a partial output which correspond to a valid transition for S. We then give
some results which allow to estimate the sieving probability of a given sbox. In
particular, we show that the sieving probability is related to the branch number
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of the sbox, and we give a lower bound on the minimal number of known input
and output bits which may provide a sieve.

2 The Sieve-in-the-Middle Attack

2.1 Basic Idea

The basic idea of the attack is as follows. The attacker knows one pair of plaintext
and ciphertext (P,C) (or several such pairs), and she is able to compute from
the plaintext and from a part K of the key candidate an m-bit vector u, which
corresponds to a part of an intermediate state x. On the other hand, she is able
to compute from the ciphertext and another part Ko of the key candidate a p-
bit vector v, which corresponds to a part of a second intermediate state y. Both
intermediate states x and y are related by y = S(z), where S is a known function
from F7 into Fgl, possibly parametrized by a part K3 of the key. In practice, S
can be a classical sbox, a superbox or some more complex function, as long as
the attacker is able to precompute and store all possible transitions between the
input bits obtained by the forward computation and the output bits obtained
backwards (or sometimes, these transitions can even be computed on the fly). In
particular, the involved intermediate states x and y usually correspond to partial
internal states of the cipher, implying that their sizes n and n’ are smaller than
the blocksize.

K1

Forward computation with K1 F -—
A u

. ; K3
Middle Shox with K3 S <
v

K2

Backward computation with K2 B I —

K=(K1 U K2, K3, K4)

Fig. 1. Generic representation of Sieve-in-the-Middle

Then, the attacker is able to compute some pairs (u,v) in F5* x F5 and
she wants to determine whether those pairs can be some valid parts of a pair
(x,S(x)) for some x € F§ (and for some K3 if S depends on a part of the key).
If it appears that no input « € F¥ can lead to a given (u,v), then the keys
(K1, K3) from which (u,v) has been obtained do not form a valid candidate for
the key. In such a case, the (m + p) positions corresponding to (u,v) can be
used as a sieve. The sieving probability is then the proportion of pairs (u,v)
corresponding to valid parts of (z, S(z)). Obviously, in classical MITM attacks,
u and v correspond to the same n-bit part of an intermediate state and S = Id,;
the sieving probability is then equal to 27"™. We now define precisely when a pair
(I, J) of input and output positions can be used as a sieve.
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Definition 1. Let S be a function from F% into F5 . Let I € {1,...,n} and J C
{1,...,n'} be two subsets with respective sizes m and p. The sieving probability
of (I,J), denoted by 7, is the proportion of all elements in F5' P which can
be written as (x;,1 € I;S;(x),j € J) for some x € F3. The pair (I, J) is called
an (m,p)-sieve for S if mry < 1.

The smaller 77 7, the better the sieving, because more candidates will be dis-
carded. If S depends on a ksz-bit value key K3, the definition similarly applies
but S must be seen as a function with (k3 + n) inputs.

When a large number of inputs and outputs of S can be computed by the
attacker, they can be used as a sieve, as shown in the following proposition.

Proposition 1. Any pair (I,J) of sets of size (m,p) with m +p > n is a sieve
for S with sieving probability mr 5 < on—(m+p)

Proof. For any given u, there exists exactly 2"~ values of x such that (z;,7 €
I) = w. Thus, (S;(z),j € J) can take at most 2"~™ different values, implying
that 77y < 27— (m+p),

However, smaller subsets I and J may provide a sieve even when m + p < n.
This issue will be extensively discussed in Section Bl More generally, u and v may
consist of some information bits of x and vy, i.e., of some linear combinations of
the bits of x and y. We then define two linear functions L : x € F§ +— u € Fy*
and L' : y € F} +— v € FL. The corresponding sieving probability 7 is now
the proportion of (u,v) such that there exists x € F§ with L(z) = w and
L'(S(x)) = v. Then, m can be seen as the sieving probablhty of I ={1,...,m}
and J = {1,..., p} for the function L'0SoL~! where L is any linear permutatlon
of F4 such that (L(x);,i € I) = L(x).

2.2 Description of the Attack

We now precisely describe the improved MITM attack and provide its complex-
ity. The secret key K is divided into four (possibly non-disjoint) parts, K; to
Ky. Kq (resp. K») is the part of the key used in the forward (resp. backward)
computation, while K3 is involved in the middle S function only (see Fig. [I).
The key bits corresponding to K4 are not involved in the MITM step. In the fol-
lowing, k; denotes the length of the key part K;, while k is the total key length.
Moreover, K1 N K5 denotes the bits shared by K7 and K5, and s corresponds to
the size of this intersection.

We denote by I (resp. J) the set of input positions of S (resp. output positions)
corresponding to u (resp. v). The fact that a pair (u,v) corresponds to a valid
pair of inputs and outputs of S is characterized by a Boolean relation R with
(m + p) inputs defined by

R(u,v) =1if and only if 3z € Fy : (2,9 € I) =w and (S(z);,j € J)=v.
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The attack proceeds as follows.

for all 2% values of K1 N K5 do
ﬁf + () and Ly + 0
// Forward computation
for all 2¥1—* values of the remaining bits of K; do
compute u = Fg, (P) and add u to L
// Backward computation
for all 2¥2—* values of the remaining bits of Ko do
compute v = Bk, (C) and add v to L,
// Merging step
Merge Ly and Ly, w.r.t. Relation R and return the merged list Lgo;.
// Testing the remaining candidates
for all K with (K1, K5) in L4 do
if Ex(P) = C then
return K
Section 23] details some efficient algorithms for merging the two lists £y and
Ly (i.e. for recovering all the (u,v) which satisfy R(u,v) = 1) with complexity
lower than the product of their sizes.

With a Single Plaintext-Ciphertext Pair. Obviously, the whole secret key
can be recovered only if the key length does not exceed the blocksize. Otherwise,
2k=b possible keys will be returned in average where b is the blocksize. The time
complexity of the attack is given by:

27 (le_KCF + 2k;‘)_ﬁcB + Cmerge) + 7r2kcE y

where 7 is the sieving probability of (I, J) as defined in Definition[l] cg is the cost
of one encryption, while ¢ and cg correspond to the costs of a partial encryption
in the forward and backward directions. In most cases, cp ~ cg ~ ¢g/2. Cmerge
is the time complexity of the merging step, and it depends on k3. Its value is
discussed in the following section. The average time complexity of the attack
needs to be compared to 2*cg which is the cost of the exhaustive search. The
memory complexity is mainly determined by the memory needed in the merging
step. In some cases, it can be improved by storing only one among the two lists
L and L, when the auxiliary lists used in the merging step remain smaller.

With N Plaintext-Ciphertext Pairs. If N plaintext-ciphertext pairs are
available to the attacker, then the average number of keys returned by the attack
is 28N implying that the whole key will be recovered when N > k/b. The main
modification in the attack concerns the last step where all key candidates in L,
are tested: before performing an exhaustive search over (K1 N K3) and Ky for
testing all keys with (K7, K2) € Lo, an additional sieving step is performed
in order to reduce the size of L. Once a new solution (K7, Ks) € L, has
been found, (N — 1) additional pairs (u;, v;) generated from the other plaintext-
ciphertext pairs are considered, and only the keys for which R(u;,v;) = 1 are
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kept in Ls, (note that, in some very particular situations, it might be more
efficient to directly include in £; and £, the values v and v generated from
several plaintext-ciphertext pairs, and then merge the lists). The average size of
Lo after this additional sieving step is then w¥N2Fi1+k2=2% Byt this formula
should be adapted to the case where S depends on a part of the secret key
K3: indeed the merging step determines a candidate for (K7, K2, K3). Then, the
sieving probability of the additional sieving step ' differs from 7 since the value
of K3 is now fixed. 7’ is then the sieving probability of (I, J) for Sk, averaged
over all K3. Then, in the case of N plaintext-ciphertext pairs, the cost of the
forward and backward computations are multiplied by N, while the cost of the
testing part decreases:

2K (NQI“_“CF + N2F2=Fep + Cme,ge) +w(n )N 12key .

2.3 Merging the Two Lists Efficiently

Very often, the middle function S can be decomposed into several smaller sboxes,
and the merging step can be performed group-wise. The problem of merging
two large lists with respect to a group-wise Boolean relation has been defined
and addressed by Naya-Plasencia in [19, Section 2]. Here, we focus on three
algorithms proposed in [I9], namely instant matching, gradual matching and an
improvement of the parallel matching due to [I0]. We provide general and precise
formulas for the average time and memory complexities of these three algorithms.
Actually, in our case, the lists to be merged may be small. Then, the construction
of some auxiliary tables, which had a negligible cost in [19] for large lists, must
now be taken into account. It might even become the bottleneck of the algorithm.
Thus, when the involved lists are small, it is harder to determine a priori which
algorithm is the most efficient in a given case. Then, in each application, we need
to check thoroughly which algorithm provides the best complexity. The optimal
case may even sometimes correspond to the combination of two algorithms.

In the following, we consider two lists, £ 4 of size 2¢4 and Lp of size 2¢5, whose
roles are interchangeable. The elements of both lists can be decomposed into
t groups: the i-th group of a € L4 has size m;, while the i-th group of b € Lp
has size p;. The Boolean relation R can similarly be considered group-wise:
R(a,b) = 1 if and only R;(a;,b;) = 1 for all 1 < ¢ < ¢. The sieving probability
7 associated to R then corresponds to the product of the sieving probabilities
m; associated to each R;. Since each R; corresponds to an sbox S; with n;-bit
inputs, a table storing all (a;,b;) such that R;(a;,b;) = 1 can be built with
time complexity 2™, by computing all (z;, S;(z;)), z; € F3*. The corresponding
memory complexity is proportional to m;2™iTPi. This cost won’t be included
in the cost of the merging algorithm since, in the sieve-in-the-middle process,
the tables will be built once for all and not 2 times. As we will see, in some
situations, these tables can be built “on-the-fly” with much fewer operations.

A complete description of the three matching algorithms is provided in the
full version [9]. It is worth noticing that the size of the list L4, returned by the
matching algorithm is not included in the memory complexity since each of its
elements can be tested in the attack as soon as it has been found.
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Instant Matching. Instant matching successively considers all elements Lp:
for each b € Lp, a list L4y, of all a such that R(a,b) = 1 is built, and each
element of L, is searched within £ 4. Its complexity is

Time = 72°8T™ 4 72fa+5 and Memory = 2°4 + 28

Gradual Matching. Gradual matching is a recursive procedure: all elements
are decomposed into two parts, the first ¢’ groups and the last (¢t — t’), with
t' < t. For each possible value § of the first ¢ groups, the sublist L () is built.
It consists of all elements in £p whose first ¢’ groups take the value 8. Now, for
each a such that R;(a;, 8;) = 1,1 < i < ¢/, Lp(B) is merged with the sublist
L 4(a)) which consists of all elements in £4 whose first ¢’ groups take the value

. . . 5t )
. Then, we need to merge two smaller lists, of respective sizes 2¢4~2i=1™ and
’
2B P .

t/
. t/ . .
Time = H m; | 2Xi= mitpi Crmerge and Memory = 2fa 4 ofs
i=1

where Crerge is the cost of merging the two remaining sublists.

Parallel Matching without Memory. We give here the first general descrip-
tion of the memoryless version of parallel matching. This algorithm applies an
idea from [I0] to the parallel matching algorithm from [19]: instead of building
a big auxiliary list as in the original parallel matching, we here build small ones
which do not need any additional memory. In parallel matching, the elements
in both lists are decomposed into three parts: the first ¢; groups, the next ¢,
groups, and the remaining (t —t; — t2) groups. Both lists £4 and Lp are sorted
in lexicographic order. Then, £4 can be seen as a collection of sublists £4(«),
where L£4(a) is composed of all elements in £4 whose first ¢ groups equal a.
Similarly, L is seen as a collection of £L5(8). The matching algorithm then pro-
ceeds as follows. For each possible value « for the first ¢ groups, an auxiliary list
L a7 is built, corresponding to the union of all £Lg(3) where (a, 3) satisfies the
first ¢ relations R;. The list L., is sorted by its next ¢ groups. Then, for each
element in £4(«), we check if a match for its next to groups exists in Lg4y,. For
each finding, the remaining (¢t — t1 — t2) groups are tested and only the elements
which satisfy the remaining (¢ — t; — t2) relations are returned. Details on the
evaluation of the time and memory complexities are given in [J].

t1 o t1+t2 1+t t1+to
Time = | [[m |22 2mm 4 [ J] m | 29 mnnarip [ I m | 2%+t

i=1 i=t1+1 i=1

t1
Memory = 2¢4 + 2°7 4 (H m) 2ls
i=1
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3 Combining Sieve-in-the-Middle and Bicliques

Sieve-in-the-middle, as a generic technique, can be combined with other improve-
ments of MITM attacks, in particular with bicliques [4I18]. The general purpose
of bicliques is to increase the number of rounds attacked by MITM techniques.
Here, we briefly describe how bicliques can increase the number of rounds at-
tacked by the previously described sieve-in-the-middle algorithm. This can be
done at no computational cost, but requires a higher data complexity. In order to
avoid this drawback, we then present an improvement of bicliques which applies
when the key length exceeds the block size of the cipher.

3.1 Sieve-in-the-Middle and Classical Bicliques

The combination of both techniques is depicted on Figure 2} the bottom part is
covered by bicliques, while the remaining part is covered by a sieve-in-the-middle
algorithm. In the following, Hg, : X — C denotes the function corresponding
to the bottom part of the cipher, and Kg represents the key bits involved in
this part. Then, Kg is partitioned into three disjoint subsets, K5, Kg and K7.
The value taken by K; with 5 < ¢ < 7 will be represented by an integer in
{0,...,2% — 1}. A biclique can be built if the active bits in the computation
of Hg,(X) when Kg varies and the active bits in the computation of H;(; (@)
when K35 varies are two disjoint sets. In this case, an exhaustive search over K7 is
performed and a biclique is built for each value h of K7 as follows. We start from
a given ciphertext C? and a chosen key K = (0,0, h) formed by the candidate
for K7 and the zero value for K5 and Kg. We compute X2 = H(I&,L(C’O). Next,

we compute backwards from C° the intermediate state X} = H, i 0{ L (CY) for each
possible value i for K5. Similarly, we compute forwards from X2 the ciphertext
Z = Hy,j,n(X})) for each possible value j of K. Since the two differential paths
are independent, we deduce that H; j ,(X}) = Ci for all values (i, j) of (K5, Kg).
Then, the sieve-in-the-middle algorithm can be applied for each K7 and each
value for (K7 N K3). The list £, of all output vectors v is computed backwards

P
K1
Forward computation with K1 F e E—
L. K3
Middle Sbox with K3 | S -
K2
Backward computation with K2 B -
X
K6 K5 K8=(K5,K6,K7)
Bicliques l H 'T <
~

Fig. 2. Generic representation of Sieve-in-the-Middle and bicliques
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from X for each value i of K5 and each value of K5 \ (K1 N K3). The list £
of all input vectors u is computed forwards from all plaintexts P,{ corresponding
to C,{ for each value j of K¢ and each value of K7 \ (K7 N K3). We then merge
those two lists of respective sizes 252955l and 21K1UKs|

As in classical MITM with bicliques, the decomposition of Kg should be such
that the bits of K5 do not belong to K, the bits of K¢ do not belong to Ko and
the bits of K7 should lie in (K7 N K2). The best strategy here seems to choose
(K5, Kg) such that the bits of K5 belong to K3 \ (K1 N Ks), and the bits of Kg
belong to K3 \ (K1 N K>). In this case, we have to add to the time complexity of
the attack the cost of the construction of the bicliques, i.e., 287 (2ks 4-2k6¢) ey (very
rarely the bottleneck), where ¢y is the cost of the partial encryption or decryp-
tion corresponding to the rounds covered by the bicliques. The main change is
that the data complexity has increased since the attack now requires the knowl-
edge of all plaintext-ciphertext pairs (P}, C} ) corresponding to all possible values
(4,h) for (Kg, K7). The data complexity then would correspond to 2*s+k7 pairs
of plaintext-chosen ciphertexts, but it is usually smaller since the ciphertexts C;,
only differ on a few positions.

3.2 Improved Bicliques for Some Scenarios

Now, we describe a generic idea for improving bicliques in certain scenarios and
reducing the data complexity to a single plaintext-ciphertext pair. Our improve-
ment usually applies when the total key size of the cipher is larger than the
block size. This occurs for instance when whitening keys are used. A detailed
and successful application is demonstrated on PRINCE in Section @l The main
idea of our improvement is to gather some parts of the partial exhaustive search
over K7 into different groups such that, within a group, all obtained ciphertexts
C7 are equal to C°.

We consider a biclique repartition of keys consistent with the sieve-in-the-
middle part: we choose K5 C K2\ (K1NK3) as previously, and some set K C K3
(this differs from the classical biclique construction where we had K¢ C K1\ (K10
K>)). Let A be the positions of the bits of C which may be affected by K} when
computing forward from X, and let AY be the positions of the bits of X which
may be affected by Ag and K during the backward computation. In classical
bicliques, the path generated in the backward direction by the different K5 must
be independent from the path generated in the forward direction by the different
K. Here, we also require this first path generated by K to be independent from
the backward path generated when the ciphertext bits in positions A§ vary.
For instance, in the example depicted on Figure[3, H follows the Even-Mansour
construction, i.e., it is composed of an unkeyed permutation H’ and the addition
of two whitening keys K, and K;. The positions of K5 and K, are represented
in red and blue respectively, and it can be checked that the corresponding paths
are independent.

In this situation, an improved biclique without any additional data can be
built if the size of AF is smaller than k§. In our context, the algorithm has to
be repeated for each value h for K, = K\ (K5 U K§), but the index h will
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AX

K: )

- | Ka

— |
+ Ky

ﬁ | e |

Fig. 3. Example of the improved biclique construction

be omitted in the description. First, we precompute the values obtained from a
chosen C? when K takes all possible values. If the number of information bits
in AY is less than k§, all 2% transitions can be represented by several lists £;,
each containing the different values of K} which all map C° to the same value
of the state X, X, (see Figure4(a)). For the sake of simplicity, we assume that
all these lists have the same size 2°. In most cases, we have £ = kj — |AZ|. For
the example depicted on Figure Bl we assume that H’ is such that the function
obtained by restricting its inputs to the positions in AZ and its outputs to the
positions in Ag is a permutation. Then, it clearly appears that the number of
bits in AF is equal to the number of bits of Kj N K}, and thus strictly smaller
than the number of bits of Kj. More precisely, there are exactly 2¢ values of K},
with ¢ = |K§ N K,| , which provide the same value of X = H'~}(C° + K;) + K,
when K, varies and all other bits are fixed.

0, Ké € Ly

. 0: K; 0

XO CO X] C

. 0

X, X;+V; C

2k6 —1
X7 + v21\'571 CO
X2k6_1

(a) Step 1 (b) Step 2: to be repeated for the

2%6 ¢ values of j

Fig. 4. Improved biclique construction
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Now, for each of the 2k =4 values of X ;, all transitions from C° to X; through
different values of K§ € £; can also be seen as the 2¢ biclique transitions from
X; to C° through some particular values of the key K{ (these transitions are
represented in black on Figure .

Now, the second step consists in building the bicliques in the other direction:
from C° for each value of X;. For each of the 2k6—¢ values of j, we fix the
value of K{ to a constant value K, appearing in £;. This way, the part of
X corresponding to Ay is the same for all the transitions of the bicliques,
and this property holds even when K5 is modified since both corresponding
paths are independent. We then consider the 2¥5 possible values i for K5 and
compute the corresponding X = X; + V; (see Figure . We then deduce
the 2%s+%6 transitions H(X; + Vi)ixy = C° for all K € L;, from (2% +
2’“3_“"“5) computations of the function. Indeed, the first term in the complexity
corresponds to the precomputation phase (Step 1), and the second one to the
number of lists £;, 2’“2347 multiplied by the cost for building the bicliques in
the other direction. The main advantage of this construction is that it can be
combined with the sieve-in-the-middle part as previously described, but it now
requires a single plaintext-ciphertext pair, the one formed by (P°, C?).

Finally, we assume that the bits of K5 belong to Ko \ (K1 N K3), the bits of
K belong to K3 and the bits of K7 are the bits from (K; U Ka) \ (K5 U K{),
the time complexity of the attack is:

247 (2% + 287078 ) ¢y 4 2+ 2820 + 2 Crperge + 2V

where Crerge is the cost of merging the lists of size 2k1=% and 252—% with respect
to the sieving conditions.

A similar idea can also be used for choosing an appropriate K5 which delays
the propagation of the unknown bits during the forward computation. This will
be shown in the case of Prince.

4 Application to PRINCE

PRINCE is a lightweight block cipher designed by Borghoff et al. [6]. Though be-
ing very recent, it has already waked the interest of many cryptanalysts [2TJT6//I].
The best known attacks so far on the proposed cipher, including the security
analysis performed by the authors, reach 6 rounds. In particular, MITM with
bicliques (without guessing the whole key) is said to reach at most 6 rounds (out
of 12). In [106], a reduction of the security by one bit is presented, and in [I] an
accelerated exhaustive search using bicliques is presented. Here, we describe how
to build sieve-in-the-middle attacks on 8 rounds with data complexity 1 (or 2
if we want to the whole key instead of a set of candidates). In addition to the
new sieve-in-the-middle technique, we use the improved method for constructing
bicliques presented in Section
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4.1 Brief Description of PRINCE

PRINCE operates on 64-bit blocks and uses a 128-bit key composed of two 64-bit
elements, K, and Kj. Its structure is depicted on Figure il PRINCE is based
on the so-called FX-construction: two whitening keys W;, = (K, + K;) and
Wour = (K. 4+ K3) are xored respectively to the input and to the output of a
12-round core cipher parametrized by K} only. The value of K/, involved in the
post-whitening key is derived from K, by K| = (K, >> 1) ® (K, > 63).

Ko+ Ko RCs K, RCs K, RC11 K, + Ky

AL—-»~-AM é)»(i)a

Fig. 5. Structure of PRINCE

The round function is composed of:

— a non-linear layer Sp corresponding to 16 parallel applications of a 4 x 4
shox o.

— a linear layer P o M, where M is the parallel application of 4 involutive
mixcolumns operations on 16 bits each (defined either by MO or by M(l)).
This transformation is then followed by a permutation P of the 16 nibbles
which is the same as the ShiftRows transformation used in the AES.

— the addition of a round constant RC; and of the subkey Kj.

The first 5 rounds in PRINCE correspond to the previous round permutation
R, while the last 5 rounds are defined by the inverse permutation R~'. The two
middle rounds correspond to the successive applications of Sg, M and Sgl.

4.2 Sieve-in-the-Middle and Improved Bicliques on 8 Rounds

Sieve-in-the-Middle on Six Rounds. We first describe the sieve-in-the-
middle part of the attack, which covers Rounds 1 to 6 (see Figure [d]). The
internal state X after Round 6 is supposed to be known, as well as the plaintext.
The sieving step is done with respect to a function S which covers Round 3 and
the Sp level of Round 4. This middle function S can then be decomposed as
four 16 x 16 superboxes: the colored nibbles in the middle of Figure [0l represent
the nibbles belonging to the same superbox.
The 128 keybits in PRINCE are then decomposed as depicted on Figure [Tt

— K3, i.e. the keybits known in the forward direction, are represented in white
and in blue in K} and the first whitening key W;,. They correspond to all
bits K} and W, except the 11 leftmost bits of the third 16-bit group in K.
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Fig. 6. Sieve-in-the-middle attack on 8 rounds of PRINCE with data complexity of 1

— Ko, i.e. the keybits known in the backward direction, are represented in
white and in red in K}, and W;,. They correspond to all bits of K} and W;,
except the leftmost nibble of K} and the 16 bits at positions 0 and 49 to 63
in Wzn

It follows that the intersection (K; N K3) consists of £ = 97 information bits of
(Ka, Kp): the 49 white bits in K}, and the 48 white bits in W,.

The algorithm is described on Figure [6l where each nibble which contains
'K’ is known in the backward computation, each nibble which contains 'k’ is
known in the forward computation and ’1’ means that there is a known bit in
the nibble. The right part of the figure represents the key. We will exploit the
fact that, for each 16 x 16 mixcolumns operation, there exist 4 output bits (one
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Bits deduced from K1 n K2
Bits deduced from K2
Bits deduced from K1

Fig. 7. Decomposition of the key in the attack on 8 rounds of PRINCE. W;,, = K, ® K}
and Wour = (Ko >> 1) @ (Ko > 63) @ Kb

per nibble), as well as 8 information bits of the output, which do not depend on
a given input nibble. Each of these 8 information bits corresponds to the sum
of two output bits (see [9), Sect. 6.2] for details). In the backward computation,
from State X and K5, we can compute 3 nibbles of each input of the mixcolumns
operations at Round 5. Then, we deduce one bit in each nibble of the output of
the middle function S, as well as 32 information bits which involve the outputs
of two different superboxes. When considering s < 4 superboxes together, the
number of information bits known is reduced to 8 if s = 2, and to 20 if s = 3.

In the forward computation, from the plaintext P and K, we compute three
input nibbles of each superbox. From the mixcolumns operation in Round 2
whose input is partially known, we can also have 4 additional information bits
on the input of the middle function S. When considering s < 4 superboxes
together, the number of information bits known is reduced to 0 if s = 2 and to
1if s = 3.

Then, we need to merge the two lists £ and L of respective sizes 2 and
211, Since m = 4 x 12 + 4 = 52 input bits and p = 4 x 4 + 32 = 48 output bits
are known, the total sieving probability 7 is at most 204~ (52+48) — 9-36 T the
following, the tables 7T; providing all transitions for the four superboxes S; are
supposed to be knownLl.

We are going to first apply the instant matching on the first two blocks (orange
and green), i.e., instant matching as described in [9, Algo. 1] with parameters
ny = ng = 16 and my = mo = 12 and p; + p2 = 8 + 8 = 16. The sieving prob-
ability of these two superboxes together is then m; o = 232-(24416) — 9-8 We
consider L4 = Ly, and Lp = L. From the corresponding formula in Section 23]
we get that the time complexity of this step is 27824116 1 278215 ~ 212 With
this complexity we have found 257 o = 27 input-output pairs of S which are
valid for the first two superboxes. We can now check whether each of these pairs
is also valid for the two remaining superboxes. Now, the sieving probability for
the remaining part is at most 2736 x 218 = 2728 35 the total sieving probability
is at most 2736,

Therefore, at the end of the merging step, for each guess of the k = 113
bits of (K1 N K3), we have a probability of 2772% = 2721 of finding a correct
configuration for the 15 remaining bits of (K7, K2). This means that the testing
step will consider 2113721 = 292 keys, and it will recover 24 possible candidates

! The orange and green superboxes that involve common key bits only can be com-
puted on the fly and will be used first for the instant matching. For each pair we
obtain, the whole key is already known, so we can repeat the on-the-fly procedure.
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for the whole key. If two plaintext-ciphertext pairs are available, the testing step
will consider 292736 = 256 keys instead of 292, leading to performing a test over
256 candidates for recovering the correct key.

Improved Bicliques Part. Our attack combines the previous sieve-in-the-
middle algorithm with bicliques built as described in Section B.2] without in-
creasing the data complexity. We define K} as the five nibbles corresponding
to the union of the leftmost nibble of K} and the four leftmost nibbles of the
whitening key Wy, = (K. + Kj). Then, A§ is represented on Figure [6 by the
four 'O’ symbols in the line before C. Also, AZ then corresponds to the 'O’
symbols in X. Then, |A§| = 16 and |A¥| = 16. The remaining 'O’ show the
path from A§ to AX. All 220 transitions obtained when K} varies correspond,
for each one of the 26 possible values of j, to 2* biclique transitions from X; to
C. Then, Kj is defined as the 11 leftmost bits of the third 16-bit group of Kjy,
implying that K3 is equal to K3\ (K1NK>). The path generated in the backward
direction, represented in red, is then independent from the blue path generated
by K}, and also from the path with 'O’ symbols from A§ to AX.

The complete algorithm then consists in performing an exhaustive search
over the kK = 97 common bits corresponding to the white bits of K; and W,
in Figure [l The previously described bicliques determine 2'6 states X;, and 24
transitions from each X; to C. Then, for each X, we examine the corresponding
24 values of K. For those K}, we compute forwards from the plaintext P the
list of all 2* vectors u. It is worth noticing that even if the red bits of K, and K},
are unknown in the forward direction, their sum is known (see Fig.[d)). Similarly,
the list £ of all vectors v is computed backwards from the 2! X? and their
associated value i for Ks5. From the formula given in Section B2 we deduce
that, for one plaintext-ciphertext pair, the time complexity is

Time = 297 (220+216+11) C4+2M T 21180, 1097 912 9=36 9128 9124,

We have then gained more than four bits over the exhaustive search (2!28¢p).
The memory complexity is of 22°, corresponding to the precomputed table in
the construction of the improved bicliques, since the transition tables for the
superboxes can be computed on the fly.

5 Sieving Probability and Related Properties of the Sbox

5.1 General Properties

In this section, we focus on the general problem of theoretically estimating the
sieving property provided by two subsets I C {1,...,n} and J C {1,...,n},
with respective sizes m and p, for a given function S from F¥ into F’QLI. In partic-
ular, we provide some results on the minimal value of (m + p) for which a sieve
exists. In the following, S denotes the function from F% into F} corresponding
to the p coordinates of S defined by J. Also, for any affine subspace W, S}y de-
notes the restriction of S to W, i.e., the function defined on W by Sy (z) = S(x).
Obviously, Sy can be identified with a function of dim W input variables.
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For a given input set I, V denotes the linear subspace V = {x € F} :z; =
0,7 € I'}. Then, the sieving probability of (I, .J) can be expressed in terms of the
sizes of all Range(Sy)j,+v when u varies (see Prop 2 in [9]). Most notably, we
deduce:

Corollary 1. The sieving probability of (I,J) satisfies w7, > 27P, with equality
if and only if Sy does not depend on its inputs at positions in {1,...,n}\ I.

Link with the branch number of S. We associate to S the (nonlinear) code
Cs of length (n 4+ n’) and of size 2™ defined by Cs = {(z,S(x)),x € F§}. The
minimum distance of Cg is the lowest value of wit(x + y) + wt(S(z) + S(y))
for distinct z,y. It corresponds to the branch number of S. Obviously, when
m+p > n, the sieving probability of any (I, .J) of size (m, p) is at most 2"~ ("+P)
(see Prop[ll). Now, the following proposition shows that this upper bound is tight
when (m + p) exceeds some bound depending on the branch number of S.

Proposition 2. Let m and p be two integers with m + p > n. Then, all (m,p)-
sieves have probability gn—(m+p) if and only if m+p > n+n' — dpin where dpin
is the branch number of S (i.e., the minimal distance of Cg).

For instance, the branch number of the 4 x 4 PRESENT sbox is equal to 3. It
follows that any (m,p) sieve with m + p > 6 has probability 27~ (m+p),

Lower Bound on the Minimal Value of (m + p). Even if the code Cs is a
nonlinear code, its dual distance can be defined as follows (if Cg is linear, this
definition coincides with the minimum distance of the dual code C3).

Definition 2. Let C be a code of length N and size M over F, and A =
(Ao, ..., AN) be its distance distribution, i.e., A; = &#{(x,y) e CxC
dH(xa y) = Z} .

Let A" = (A}, ..., Aly) be the image of A under the MacWilliams transform,
A(X,)Y) = AX + (¢ — 1)V, X = Y) where AX,Y) = YN A, XN=Yi and
A(X,Y) = N AXN=iYi. The dual distance of C is the smallest nonzero
index i such that Al # 0.

The dual distance of Cg is a lower bound on the lowest (m + p) for which an
(m, p)-sieve exists.

Theorem 1. Let d* be the dual distance of the code Cs. Then, for any (m,p)
such that m + p < d*, there is no (m, p)-sieve for S. Moreover, there exists no
(m, p)-sieve for S with m+p < n if and only if Cs is an MDS code, which cannot
occur if S is defined over Fa.

In some scenarios, S is defined over a larger alphabet, and I and J may be
defined as two sets of byte (or nibble) positions. Then, the previous theorem
proves that, if the corresponding code Cg is an MDS code, there is no (m, p)-
sieve for m + p < n, and we deduce also from Proposition 2] that all (m, p)-sieve
with m + p > n have probability 27~ (m+p),
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5.2 Sieving Probability for Some Particular Values of (m, p)

(m, 1)-Sieves and Nonlinearity. When p = 1, a pair (I, {j}) of size (m,1) is
a sieve if and only if S; is constant on some coset u + V. Therefore, if (I, {j})
is a sieve, then S; is (n — m)-normal, i.e. constant on an affine subspace of
dimension (n —m). In particular, it can be approximated by an affine function
with a probability at least 3 (142~™) [I1]. It follows that, if S provides the best
resistance to linear cryptanalysis for even n, then it has no sieve (I,{j}) with
|[I] < § — 1. As an example, the AES Sbox does not have any (2, 1)-sieve.

(n — 1, p)-Sieves. When m = n — 1, the sieving probability can be easily
determined by the difference table of S.

Proposition 3. Let I = {1,...,n} \ {¢} and let J C {1,...,n'} with |J| = p.
Then,

TI,J = 27(1)71) - 27(p+n) Z 6(657 (OJa 6)) )
BeFy’ P

where 6(a,b) = {z € F : S(x +a)+ S(x) = b}| is the element of indez (a,b) in
the difference table of S, and ey is the input vector with a 1 at position £. Thus,
(I,{j}) is a sieve except if S; is linear in x,.

Since the branch number of the PRESENT sbox is 3, Prop.[2implies that (m, p)-
sieves with m + p = 5 exist for this sbox. Indeed, by considering its difference
table, we get that all (I,J) of size (3,2) correspond to a sieving probability
71,0 € {3,3 — 29,5 — 1} For instance, the sieve used in the attack in [9],
I=1{0,1,2} and J = {0, 1} has probability ;. We also derive from Prop. B the

exact sieving probability involved in the attack on the DES in [9].

6 Conclusions

The main contributions of this paper are a generic improvement of MITM at-
tacks, the sieve-in-the-middle technique, which allows to attack more rounds,
and an improved biclique construction which avoids the need of additional data.
These two methods have been applied to PRESENT, DES, AES and PRINCE.
Moreover, some general results on the sieving probability of an sbox are given,
which allow to theoretically estimate the complexity of the attack.

A future possible line of work is to investigate some possible combinations
with other existing MITM improvements: with the guess of intermediate state
bits [12], or with the all-subkeys approach [15]. A promising direction would be to
try to make a first selection within each of the two lists before the merging step,
by keeping only the input values (resp. output values) which have the lowest
probability of corresponding to a valid transition. This introduces some non-
detection probability, since some correct candidates would be discarded, but the
sieving would be improved. Such an approach does not seem easy, but it would
surely be a big step forward for further improving MITM attacks.
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