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Abstract. Multiple encryption—the practice of composing a blockci-
pher several times with itself under independent keys—has received con-
siderable attention of late from the standpoint of provable security.
Despite these efforts proving definitive security bounds (i.e., with match-
ing attacks) has remained elusive even for the special case of triple en-
cryption. In this paper we close the gap by improving both the best
known attacks and best known provable security, so that both bounds
match. Our results apply for arbitrary number of rounds and show that
the security of £-round multiple encryption is precisely exp(k+min{x (¢ —
2)/2),n(¢' —2)/€'}) where exp(t) = 2° and where ¢/ = 2[£/2] is the small-
est even integer greater than or equal to ¢, for all £ > 1. Our technique
is based on Patarin’s H-coefficient method and relies on a combinato-
rial result of Chen and Steinberger originally required in the context of
key-alternating ciphers.

1 Introduction

Let E: {0,1}" x {0,1}™ — {0,1}™ be a blockcipher with key space {0,1}* and
message/ciphertext space {0,1}". The £-cascade of E, denoted E“), is the block-
cipher of key space {0, 1}** and of message space {0, 1}" obtained by composing
FE (¢ times with itself under independent keys. Thus

EY (@) = Bty (B, (- (Biy (2)) . ..)) (1)

where k = ki| ... | ke € {0,1}**. (The inverse of E®) is computed the obvious
way.) In particular EV) = E.

Since E® has longer keys than E for £ > 2, the (-cascade can be viewed as a
natural mechanism for increasing the key space of a blockcipher and, hence, po-
tentially, enhancing the security level. Security does not necessarily increase lin-
early with the key length, however. For example there exist meet-in-the-middle
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(key-recovery) attacks against cascades of length 2 that cost no more? than
generic (key-recovery) attacks against cascades of length 1 [11]. Indeed, when a
variant of DES with longer keys was needed, designers eschewed double encryp-
tion (cascades of length 2) in favor of triple encryption [11,31]. The standard
which eventually resulted, so-called Triple DES [2,15,35], is still widely deployed.

Even while generic attacks have guided the considerations of designers since
the beginning, finding nontrivial provable security results for multiple encryption
in idealized models remained an open problem for a very long time. In the ideal
model which we and most previous authors envisage [1,4,16,17,22] the security
of the f-cascade is quantified by the information-theoretic indistinguishability
of two worlds, “real” and “ideal”. In the “real” world the adversary A is given
oracle access to an ideal® cipher E, to its inverse E~!, and to a randomly keyed
(-cascade instance E}g@) of E (for hidden k) as well as to the inverse (E,(f))f1 of

the ¢-cascade; in the “ideal” world the ¢-cascade instance E,(f) is replaced by a
random independent permutation 7 and its inverse 7—!. The adversary knows
the value 7 in question.

The case £ = 1, while quite simple, is already instructive to analyze. In that
case the adversary must distinguish between E,gl) = Fj and a random permuta-
tion 7, while being given oracle access to E. Since F is ideal, it is easy to argue
that the adversary has no advantage as long as it has not queried its oracle F on
key k. With k being uniform at random, and with other queries to E/7/Ej giv-
ing no clue as to the value of k, the adversary’s distinguishing advantage is thus
upper bounded by—and in fact basically equal to—¢/2", where ¢ is the number
of queries made. (We note this bound holds even if n is very small compared to
k, e.g., n = 1,2. For the sake of completeness, we formalize the argument just
sketched in Appendix C of our full version [10].) An easy reduction* argument,
moreover, shows that E® is at least as secure as E(") for all » < £. Hence E(®
achieves at least x bits of security for all £ > 1, and the basic question is to
determine how security grows with .

The first nontrivial results obtained pertaining to this question were by Aiello
et al. [1] who show that E,(f) is slightly harder to distinguish from a random

7 than E,(Cl) = E). More precisely, Aiello et al. show that A’s distinguishing
advantage for £ is upper bounded by an expression of the form ¢? /225 as
opposed to ¢/2" for E (| where ¢ is the number of queries made by A. In either
event, thus, EM and E® both essentially offer s bits of security, given the
meet-in-the-middle attack for length two cascades of cost ¢ = 2% [11]. (See also
the full version of this paper [10], which revisits Aiello et al.’s result.)
Subsequently we will write exp(x) for 2%, somewhat in line with the computer
science convention of writing log(t) for log,(t). We thus say, e.g., that E(Y) and
E®) “achieve security exp(x)”, in the sense that it requires about exp(x) = 2%

2 This should be qualified: the memory costs are much larger and the query complexity
is slightly greater [1].

3 Le., E(k,-) : {0,1}" — {0,1}" is a random permutation for each key k € {0, 1}*.

4 Since the adversaries considered are information-theoretic, we note that we don’t
even have to consider the reduction’s running time lossiness.
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Table 1. Security lower and upper bounds for cascaded encryption (in log). Here,
¢ = 2[¢/2]. All results in bold are derived in this work.

E® security tight
(=1,2 K [1,11] v
(=34 Kk +min{x/2,n/2} [4,17] X

Kk + min{k, n/2} v
k + min{x({' — 2)/¢',n/2} [17])* X
625 K + min{k(¢ —2)/2,n(¢’ —2)/¢'} v

*Starting from ¢ > 16, Lee [22] proved an improved security bound of exp(k +
min{k,n} — 8n/L).

queries to achieve constant distinguishing advantage between the real and ideal
worlds for those cascade lengths.

After Aiello et al. a complicated history of improved security bounds ensues,
including work by Bellare and Rogaway [4] for length 3 cascades, by Gazi and
Maurer [17] (who corrected some errors in Bellare-Rogaway and who generalized
their approach to larger numbers of rounds), and by Lee [22]. For reasons of
space, however, we eschew a detailed discussion of these prior results in this
proceedings version, and refer the reader to the synopsis in Table 1.

On the attack side Lucks [26] found an attack of cost x + n/2 for length 3
cascades (thus matching the Bellare-Rogaway security bound for length 3 cas-
cades in the regime x > n). Gazi found an attack of cost k + n(¢' — 2)/¢ for
arbitrary ¢ generalizing Lucks’s attack. (Moreover GaZzi was the first to give a
mathematically rigorous analysis of Lucks’s attack.)

Despite this series of results obtaining matching upper and lower bounds on
security has remained elusive for all £ > 3. In the case £ = 3, for example, all we
know is that the security of E(®) lies somewhere in the interval

[exp(k + min{x/2,n/2}), exp(k + n/2)]

which leaves open the question of the true security for k < n. For £ > 5, moreover,
exact security remained open regardless of the ratio between £ and k.

OUR RESULTS. In this paper we close the remaining gaps between upper and
lower bounds for all ¢, up to customary lower-order terms. More precisely, we
show that E® has security

exp(k +min{x(¢' — 2)/2,n(l' —2)/0'}) (2)

by exhibiting matching attacks and security proofs, for all £ > 1. (Note by the
form of (2) that new attacks are only needed when x(¢' —2)/2 < n(¢' —2)/¢';
otherwise the attacks of Gazi suffice.) One can observe from (2) that ¢ = 2r
rounds buy the same amount of security as £ = 2r — 1 rounds. In fact, we expect
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the curve describing the adversary’s advantage to be slightly more advantageous
for 2r — 1 rounds than for 2r rounds, as observed by Aiello et al. for r = 1, but
our analysis is not fine-grained enough to verify this.

TECHNIQUES. Tightening the security bounds for triple encryption is already
an interesting problem in itself. Besides devising a new rather easy attack of
cost exp(2k), it turns out that the bound directly follows from tightening a key
combinatorial lemma in Bellare and Rogaway’s original proof (Lemma 10 in [5]).

We found the case of larger number of rounds (in particular, £ > 5) to be more
challenging. While we copied the basic approach of Bellare and Rogaway [4] and
of Gazi and Maurer [17] some significant structural changes were required in
order to achieve tightness. In particular, we had to rebundle a key two-step
game transition from [17] into a single-step transition. Moreover we found that
the best way to handle this (now rather delicate) single-step transition was by
Patarin’s H-coefficient technique [37]. Here we drew inspiration from Chen and
Steinberger [8] and, indeed, reused the key combinatorial lemma of that paper.
Roughly speaking, this lemma gives an explicit expression for the probability
that

(Ppo---oPy)(a)=b

where each P; is a partially defined random permutation of {0,1}", where o
denotes function composition, where a,b € {0,1}" are two values such that
Py (a) and P[l (b) are undefined. Here the probability is expressed (in particular,
lower-bounded) as a function of the number of edges® already defined in the P;’s
as well as of the number of “chains” of various lengths® formed by those edges in
the composition P; o--- o P,. (In our case P; = E},, where k = kq|| ... ||k¢ is the
secret key.) It is noteworthy that the security proofs for three different classes of
composed ciphers (key-alternating ciphers [8], cascade ciphers (this paper), and
XOR-cascade ciphers [8,16,18]) now rely on this lemma.

In order to successfully apply the H-coefficient technique and Chen and Stein-
berger’s lemma a crucial step is to upper bound the probability of the adversary
obtaining (too many) long chains in Pyo---o0 P; = Ey, o --- o Ej, . Like Bellare
and Rogaway [4] and like Gazi and Maurer [17] before us, we do this by upper
bounding the total number of query chains of a given length formed by all of the
adversary’s queries to E, regardless of the underlying key, and then by apply-
ing a Markov inequality—but in our case we strive for tight bounds on the total
number of query chains. At first glance the combinatorial question is nonobvious
(especially given the presence of an adaptive adversary) but we observe that on
any path of queries at least half the queries are “backwards” (meaning contrary
to the path’s direction, in this instance) for at least one of the two possible ways
of orienting the path (as a given path can be traversed right-to-left or left-to-

> If x € {0,1}™ is a value such that y = P;(x) is defined, then the pair (z,y) is also
called an edge of P;, equating P; with a bipartite graph (more precisely, a partial
matching) from {0,1}" to {0,1}". The composition P; o --- o P; is visualized by
“gluing” these bipartite graphs sequentially next to one another.

6 See the previous footnote.



24 Y. Dai et al.

right). Together with some classical balls-in-bins occupancy results, this simple
symmetry-breaking observation gives an easy means of upper bounding the total
number of query chains formed, and the bounds obtained are also tight. We refer
to Proposition 1 for more details.

OTHER RELATED WORK. We have already briefly mentioned related work on
key-alternating ciphers [7,8,14,21,38] as well as on XOR cascades [16,18,22], to
which the beautiful work of Rogaway and Kilian on DESX (a special case of an
XOR-cascade) should be added [19].

Coming back to cascade ciphers, Merkle and Hellman [31] show an attack on
two-key triple encryption, which attack is revisited by Oorschot and Wiener [34].
(See also [33].) Even and Goldreich [13] present a medley of observations on
multiple encryption in various models, including some conclusions which are
disputed by Maurer and Massey [27]. The best paper award at CRYPTO 2012, by
Dinur et al. [12], concerns, in large part, non-information-theoretic key-recovery
attacks on cascade ciphers.

We finally point that similar questions (though using very different techniques)
have been pursued in the computational setting, in which one seeks to amplify
the computational indistinguishability of a PRP by composing it with itself [25,
28,29,32]. See in particular [39] which culminates this line of work.

OPEN QUESTIONS. As will be seen, our results actually hold even if the adversary
is always allowed to make 2™ queries to its permutation oracle (which is E,(f)
or 7) for free, i.e., to entirely learn its permutation oracle for free. It would be
interesting to know if better bounds can be achieved by restricting the number of
permutation queries. This is all the more relevant given that many applications
will impose limitations on the number of encryptions/decryptions available to
the adversary.

2 Definitions

BLOCKCIPHERS AND CASCADES. A blockcipher is a function E : {0,1}" x
{0,1}"™ — {0,1}"™ such that E(k,-) : {0,1}" — {0,1}" is a permutation for
each key k € {0,1}". We also write Ey(x) for E(k,z). By the “inverse” E~! of
E we mean the blockcipher B~ : {0, 1} x {0,1}" — {0,1}" such that E; ' is
the inverse permutation of Ej, for each k € {0,1}".

For a blockcipher E and an integer £ > 1 we define the £-cascade of E, written
E® | by equation (1). We note that E(*) is a blockcipher of key space {0, 1}%*
and of message space {0,1}".

IDEAL CIPHERS. A blockcipher E : {0,1}" x {0,1}"™ — {0, 1}™ which is sampled
uniformly at random from the space of all blockciphers of key space {0, 1}" and
of message space {0,1}" is called an ideal cipher. In this case Ej is a random
independent permutation of {0,1}" for each k € {0,1}".

SECURITY GAME. Let ¢, k and n be given. Let A be an information-theoretic ad-
versary (or “distinguisher”) with oracle access to, among others, an ideal cipher
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E:{0,1}* x {0,1}" — {0,1}", which we write A¥ but by which we mean that
A can query both E and E~!. (Along the same lines writing A™ indicates that A
has access to both 7 and 7= when 7 is a permutation.) Then A’s distinguishing
advantage against (-cascades, written Advy>:", (A) is defined as

AdvES (A) = Pr[k* & {0,1}%%; APEY = 1) - Prfr & Py AP = 1]

l,kn

where the notation “
k& {0,110 AP B = 1

indicates the event that A outputs 1 after interacting with oracles E/E~! and

E,gﬁ) / (E,gﬁ))_l where k* is sampled uniformly at random from the key space of
EW and hidden from A; whereas the notation

W(iP;AE’Tr=1

indicates the event that A outputs 1 after interacting with oracles E/E~! and
7/m~1 where 7 is a permutation of {0,1}" sampled uniformly at random from
the set of all permutations of {0,1}", here denoted P; and where in either case
the sampling of the ideal cipher E at the start of the experiment is kept implicit
for the sake of succinctness.

We write
Advcasc (q)

l,k,n

for the supremum of Advy’’,

adversaries A. (The notation Adv

(A) taken over all g-query information-theoretic

T, 1s thus overloaded.)

3 Statement of Results

LOWER BOUNDS. Our paper’s main result is the following theorem (as always,
¢ =2[¢/2]; we also write (¢ + 1)’ for 2[(¢ + 1)/2], etc):

Theorem 1. (a) If ¢ > 2" then, for every real number C > 1,

02 4 / 8q v/
np(L+1)'/2
Advis,(q) < o1 + on + c +2™C (25+7l>

where o = £22° 7n)zl/2- Furthermore if ¢ > n2™ we can improve « to o/ =
52261413’/2 < 028¢"
(b) If ¢ < 2™ then, for every C > 1 such that Cq < ortn—2

G4 B Py (8N a8
casc (L+1)"/2
Adv@,n,n(Q) < 9r+1 + on + C + on c 9K + (2Kt /2
where B = (?2¢(3log q + 2)5'/2.
Moreover (a) and (b) also hold if the adversary is allowed to ask, for free, all
possible 2™ queries to its second oracle.
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The presence of the adjustable constant C' is typical of security proofs involving
a threshold-based “bad event”. For given parameters g, n, x and ¢ there some
optimal C that minimizes the bound.

Theorem 1 is, unfortunately and evidently, hard to parse. By analytically
optimizing C and making a few other simplifications, however, Theorem 1 yields
the following, slightly more digestible corollary:

Corollary 1. (a) If ¢ > 2™ then

52
AV (9) < 0y +

or+n (L' =2) /¢

8¢ o) (0+3)’
)

Ly a(l/2 +2)e4/? (

where a = 6225(771)['/2. Furthermore if ¢ > n2™ we can improve « to o/ =
022614712 < 28%
(b) If ¢ < 2" and 2°(3n +2)¢'/2 < 2" then

P A €3f'q2 2/(4+3)’ a8
casc
AQVEEL(9) S oy T o TAE2HD | o nr + ot

where B = (?2¢(3log q + 2)5//2.
Moreover (a) and (b) also hold if the adversary is allowed to ask, for free, all
possible 2™ queries to its second oracle.

The proof of Corollary 1 from Theorem 1 can be found in the full version [10].
We note the constraint 2¢(3n + 2)[/2 < 2" that appears in the second part
of Corollary 1 is almost always satisfied by practical parameters and is always
asymptotically verified as n — oco. (Indeed, we imagine ¢ as fixed whereas n, kK —
oo according to some fixed ratio.)
It directly follows from Corollary 1 that Advy,(g) is small if

lk,n
q < exp(k + min{x(¢' —2)/2,n(f' —2)/¢'})

(note k + k(' —2)/2 = Kkl'/2 and ¢2/2r¢/24n < q/25¢/2 when ¢ < 2") or, a
little more precisely, if
¢ < (276/2(7n)7f'/4£72)(£+3)’

~exp(k + min{x(¢' —2)/2 —2¢,n(t' —2)/¢' — 3}). (3)
We emphasize that the above threshold is a coarse estimate, which takes into
account the factors of all three non-negligible expressions in Corollary 1. (Note
that logg < m in the second part of Corollary 1, so 8 < «.) Indeed, if ¢ is a
factor r smaller than the expression on the right of (3), then it is easy to see from

Corollary 1 that the adversary’s advantage is upper bounded by either pt'/(e+3)
or r#/(+3)" 4 disregarding the negligible terms ¢2/2%+1 and 4/2".

UPPER BOUNDS. In Section 4 we present a simple attack of query complexity

- exp(kl'/2)
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that succeeds in distinguishing (F, E,(f)) from (F, ) with overwhelming advan-
tage. This complements the previously quoted attack by Gazi, of query complex-
ity

C-exp(k +nl —2)/0)

and which also succeeds with overwhelming advantage. Hence the gap left be-
tween lower and upper bounds is essentially the gap left between

min{¢ - exp(kt'/2),0 - exp(k +n(l' —2)/0)}

and the right-hand side of (3).

4 An Attack of Cost exp(rkf'/2)

In this section we describe a new “meet-in-the-middle-attack” on E® of com-
plexity exp(kf’/2), which complements Gazi’s attack of query complexity exp(k+
n(¢’ —2)/¢"). A precise statement is given by the following theorem.

Theorem 2. For any integer p, 1 < p < 2"~ 1, there ewists an adversary A
making at most ,OEQKK//Z queries to E and at most p queries to E](f)/ﬂ', such that

Advese (A) >1— 2;%7;;(7171).

l,k,n

Proof. The adversary A, which implements a meet-in-the-middle attack, is given
by the pseudocode of Fig. 1. A starts by querying p messages mi,...,m, to
E,ge) /7, thus obtaining their corresponding ciphertexts ci, ..., ¢,. Then for each
of these message/ciphertext pairs (m;, ¢;) it evaluates the first [£/2] block ciphers
for all possible keys starting from m; and the last [¢/2] block ciphers in inverse
direction starting from ¢;. One possible key k = (k]| .. .| k¢) must “stand out”
unless A is in the ideal world. Thus A returns 1 if and only if there is a key
compatible with all p message-ciphertext pairs (m;,¢;). It is easy to see that A
makes p queries to Eg) /7 and

p([€/225T/21 4 | 0/2) 2518020y < ppost'/2

queries to E, as claimed.

Clearly, in the real world (E,gz), E), for (kj, k%) = k we have a; x; = b; ks, for
alli=1,...,p, so A returns 1. We consider the probability that A returns 1 in
the ideal world (m, E). For each key k = (k1| ... ||k¢), Ex, © - - - o Ej, becomes a
truly random permutation, independent of 7. For this key, the probability that
Ey, 00 Ey, (m;) =¢; for every i = 1,..., p is upper bounded by

(2 —p) _ 1 oo
(2n)! “\2"—p+1 — 9p(n—1)"

The theorem follows by a union bound over all possible keys. O
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fix distinct mq,...,m, € {0,1}"
for r =1 to pdo
query ¢; < R(m;)
forall ki = (ki||...[|k7,/a1) € {0, 1}<1/?]
query a; iy < By, o0 Epr(my)

[e/21
forall k, = (kfy o144l .- |1k7) € {0, 1}7L4/2
query bi,k}} — Ekﬁ/zwl 0---0 Ek;l(ci)
forall (k7, k%) € {0, 1}/ x {0, 1}~1¢/2]
if ai’kz = bz,k}‘—{ for all i = 1, ceey P
return 1
return 0

Fig. 1. The adversary A for Theorem 2. The oracle to E,(f) /7 is denoted R.

5 Preliminary Reductions and Proof Overview

MODIFICATIONS OF BELLARE AND ROGAWAY [4]. In view of proving Theorem
1, we start by modifying the distinguishability game in the following way. At the
very start of the experiment we send a symbol x € {1, T} to the adversary. In
the ideal world we send x = T, and in the real world we also send x = T unless
k; =k} for some i < ¢, where k* = kf||...||k; is the secret key, in which case
we send * = L. Since the adversary is free to disregard x, this modification is
without loss of generality.

Next, we make a second modification, namely that if x = | then we forbid
the adversary from making any queries. Since * can only be L in the real world
this is without loss of generality either (as the adversary already knows which
world it is in anyway).

Now we make yet another modification to the real world, by generating a
random permutation 7 like in the ideal world at the beginning of the experiment.
If x = T we answer queries to EY by 7 instead and, to compensate, we define
Ey; =mo E_i‘l 0---0 Ek_el_1 (thus “overwriting” Ejy). Since this simply trades
the randomness of E; for the randomness in 7, it is easy to see that this is an
equivalent way of defining the real world.

Note that both worlds now involve an independent” random permutation .
For each fixed permutation S one can also consider the distinguishing experiment
where 7 is set to S in each world. A simple averaging argument over m shows,
moreover, that there must exist some S for which the adversary’s distinguishing
advantage is at least as great when = is fixed to S as when 7 is random. We can
thus assume without loss of generality that 7 is not sampled at random, but set

" The real world now has three “random tapes”: one for k*, one for 7, and one for the
ideal cipher E. Every query made by the adversary is deterministically answered as
a function of these three random tapes, and these random tapes are independently
sampled. This is the sense in which 7 is “independent” from other randomness in
the real world.
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to the same fixed permutation S in both worlds. Since S is fixed, now, and since
we are quantifying over all information-theoretic adversaries A, we can assume
that A knows S and, hence, makes no queries to its second oracle.

To summarize, modifications so far amount to this: in the real world, we abort
the experiment if k; = k} for some ¢ < £, whereas in the contrary (generic) case
there is some fixed permutation S, known to the adversary, such that Ej. =

So Ekgl 0---0 Ek}l g The ideal world never aborts.

FURTHER NORMALIZATIONS. Since A is information-theoretic we can assume
without loss of generality that A is deterministic.

As in [8] we will also modify the experiment by giving the secret key to A after
it has finished making all its queries. More precisely, in the real world we give
the “real” key k* used to key the second oracle E,gﬁ) whereas in the ideal world
(where no such key exists) we sample a “dummy” key k* € {0, 1}** uniformly
at random and give this dummy key to A. Since A is free to disregard this extra
information this is also without loss of generality.

TRANSCRIPTS. The interaction of A with its oracles is encoded by a transcript
which, basically, is a list of questions asked and answers received, together also
with the key value received at the end of the experiment.

More precisely, a transcript can be encoded by a triple of the form (x, Qg, k*)
where x € { L, T}, where k* € {0, 1}* is the final key value received, and where
QE is an unordered set of triples of the form (k,z,y) € {0,1}*x {0,1}"x {0,1}"
with each such tuple indicating that either F(k, x) was queried with answer y or
that E~1(k,y) was queried with answer 2. Indeed, A’s interaction with its oracles
can be unambiguously reconstructed from such an “unordered and undirected”
set Qg by using the fact that A is deterministic, cf. [8].

We write T for the set of all possible transcripts.

PROBABILITY SPACE OF ORACLES. Let P be the set of all permutations from
{0,1}™ to {0,1}". Then a blockcipher of key space {0,1}" and message space
{0,1}™ can be viewed as an element of P<P(*) (2%_fold direct product). Thus,
an ordered pair

(B, k*) € PP % {0, 1}
uniquely determines a real-world environment for A. More precisely, unless x = |

in which case A receives no further information except for k*, A’s ideal cipher
oracle E is defined by

E,’c ifk#k;
Ek: /71 /71 : p— *
SOEk;O"'OEkLl lfk—kg

where k* = k{|| ... | k;. We thus identify elements of
Oy = PR 5 {0, 1}

with real-world oracles. We view {2x as a probability space with uniform measure
(indeed, the definition of the real-world experiment induces uniform measure on
2x).
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We similarly define
Dy = pexp(r) o {0, 1}5[

to be identified with the set of all ideal-world oracles, and which we also view as
a probability space with uniform measure. Here the last coordinate corresponds
to the “dummy key” given to the adversary at the end of the experiment. We
emphasize that, for (E, k*) € 2y, the ideal cipher oracle to which A has access
is precisely FE, i.e., with no key being overwritten as a function of k* and S this
is precisely the difference between the real and ideal worlds in the (generic) case
when kj & {ki,... . k;_}.

We can view the transcript produced by A in the real world as a random
variable defined over {2x. Formally, let X : {2x — 7T be the function defined by
letting X (w) be the transcript obtained by running A on oracle w. Thus X is a
random variable of range T, and the distribution of X is exactly the distribution
of transcripts in the real world. We similarly define Y : 2y — T, so that YV is
the transcript distribution in the ideal world.

The H-coefficient technique [36,37], in its simplest form, states that if we can
divide T into a set of (so-called) “good” transcripts 71 and (so-called) “bad”
transcripts 7Tz, such that®

7]

Pr[X
Y

PI‘[ Z 1 — &1 (4)

7]

for some €1 > 0 and for all 7 € 77, then the adversary’s distinguishing advantage
is upper bounded by

PI‘[Y S 75] +ée1.
We refer to [8] for more details.

COMPUTING TRANSCRIPT PROBABILITIES. Another key insight of the H-coefficient
technique is that the probability of obtaining a transcript in either world can be
computed via the formulas

_ [compx(7)|

PrY =)= TON L Py =) = [compy (7)] (5)

|92y |

as long as Pr[Y = 7] > 0, and where compx(7) C 2x (resp. compy-(7) C £2y)
is the set of real-world (resp. ideal-world) oracles that are compatible with a
transcript 7, where “compatibility” is defined the obvious? way: an oracle w is
compatible with a transcript 7 if each individual query in 7 is compatible with w
(in particular, 7’s key value should match w’s key value). See [8] and Appendix
D of our full version [10] for further discussion of these identities.

8 By convention, the ratio Pr[X = 7]/Pr[Y = 7] is considered to be oo if
PrlY =7]=0.

9 Slightly more formally—but less intuitively—an oracle (or “environment”) w is com-
patible with a transcript 7 if there exists some (wlog, deterministic) adversary A’
that produces 7 as transcript when given w as oracle.
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TERMINOLOGY: CHAINS. Let 7 = (%, Qg, k*) be a transcript, where k* = k|| .. . ||
k;. Loosely following [17], a tuple (h, zp, kht1, Tht1, Kht2, - - -, Khtr, Thgr) where
0 < h </¢—1isaninteger, where 1 < r </, and where

(ki,zi-1,7;) € Qp ifi—1#1¢
(k‘i,S—l(xi_l),xi) €EQgr ifi—1=1¢

for h4+1 < i < h+r (in particular, x; € {0,1}"™ and k; € {0,1}" for each z;, k;)
is called an r-chain of T starting at index h or simply an r-chain of 7. Moreover,
an r-chain is said to fit 7 if kpy; = k:;kH_i for 1 < i < r, indices taken mod ¢
and in the range {1,...,¢}. We sometimes commit a slight abuse of language by
saying that a chain “fits k*” instead of “fits 7”7 when it is clear which transcript
T is intended.

By means of emphasis, a chain which doesn’t (necessarily) fit the key of 7 is
said to be generic; thus all r-chains of 7 are by definition generic.

THE REST OF THE PROOF IN A NUTSHELL. Broadly, our “bad transcripts” are
transcripts that either have a bad key (i.e., k} = k; for some i # j) or transcripts
with too many (long) fitting chains, where “too many” depends geometrically
on the chain length 7, as might be expected. When there are not too many long
chains that fit the transcript’s key, indeed, we are in a position to apply the
lemma of Chen and Steinberger [8] to show that the probability of obtaining the
given transcript in the real world is not far off from the probability of obtaining
the same transcript in the ideal world, as required by (4).

The main technical challenge that arises is that of upper bounding the prob-
ability of obtaining too many length r chains that fit the key. Here one must
emphasize that this probability (which is the probability of obtaining a “bad”
transcript) is being computed in the ideal world. In the ideal world, the key
value k* € {0,1}"* is chosen at random after all queries are completed. Hence,
by a Markov bound, it suffices to show that, with high probability, not too many
generic r-chains are created by the adversary’s queries. We deliver a tight bound
on the number of generic chains by using a fairly simple argument, as already
discussed in the paper’s introduction (see in particular Proposition 1 in Section
6). See further details in Section 6.

6 Proof of Theorem 1

For the remainder of the proof of Theorem 1 we will assume that n > 2 and
also, if ¢ > 2™, that

ot n g \[¢/?]
4Cq <2 and c2 (0 )T <1 (6)
These assumptions are without loss of generality because the first part of The-
orem 1 is void otherwise, as can easily be checked. We also let N = 2™.
We start by making a few more definitions that will be useful for the definition
of bad transcripts and thereafter. Firstly, for a transcript 7 = (x, Qg, k*) we let
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JBC, @ be the sets of queries in () g obtained respectively by forward and back-
ward queries to FE by the adversary. (To wit, a query to E is forward, a query
to E~! is backward.) We note that while Qr does not explicitly encode for-
ward/backward information by design, such information can be uniquely recon-
structed from Qg given the fact that A is deterministic; hence, this information
is implicitly contained in Qg.

The mazimum forward query occupancy of 7, denoted fwd(7), is given by

fwd(r) := max [{(kz.y) € QL :y = vo}l (7)

and bwd(7), the mazimum backward query occupancy, is similarly given by

bwd(7) = X {(k,z,y) € Qp : x = zo}.

We also define
fitkey(7, 7, h)

as the number of r-chains in 7 that fit £* and that start at position h.

Note that back-of-the-envelope computations suggest that fwd(7) and bwd(7)
should be around ¢/N for ¢ > N = 2" and should be around log(q) < n for
g < N. This motivates the definition of the following threshold {(q):

3log(q) +2 ifg <N,
C(q) == { Tng/N if N <q<nN,
14q/N if nN < q.

For now, the factors 3log(q) + 2, 7n and 14 that appear in the definition of
¢(q) should be more or less ignored; these coefficients are necessary to make
bad transcripts, as defined next, unlikely. (We distinguish between the cases
N < g < nN and nlN < ¢ only so that we can give a slightly sharper bound
in the latter case. Also we allow cases to overlap for the sake of typographical
and conceptual convenience.) In fact, we find it convenient to factor ((¢q) into
“essential” an “non-essential” parts ¢’(q) and ¢”(q):

31 2 ifg< N
, oglg) +2 ifqg=<N, , 1 ifg<N,
¢"(q) =1 7n if N <g¢<nN, ¢'(q) = . (8)
14 if nN < o/N gz N
if nN <gq.

Thus ((q) = ¢"(¢)¢'(q). Note also that ((¢g) < 2% by the wlog assumptions made
in (6).

BAD TRANSCRIPTS. We say that a transcript 7 = (x, Qg, k*) is bad if either (i)
ki = kj for some i # j, or (ii) fwd(7) > ((g) or bwd(r) > ((q), or (iii) there
exists some h, 0 < h < ¢ — 1 such that

fitkey(7, ¢, h) > 1,
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or (iv) there exists some r, 1 <r < ¢ and some h, 0 < h < £ — 1 such that
fitkey(, 7, h) > Cz,.

where

9)

We let Tz be the set of bad transcripts, and let 73 = 7\ 72. One can note that every
transcript with » = L is a bad transcript, since in that case k; = k; for some ¢ # £.

(/(q) [r/2]
)

zp = min{q, N} - (

BOUNDING THE PROBABILITY OF BAD TRANSCRIPTS. Here we attach ourselves
to upper bounding Pr[Y" € T3], as required by the H-coefficient technique. This
is the probability of obtaining a bad transcript in the ideal world.
The probability that two subkeys of k* are equal is obviously at most (2)2_"€ <
(2 /25+1, For the other two events we need the help of the following lemmas:
Lemma 1. One has
2 2
> < > <
Prifwd(r) > @) < . and  Prlwd(n) > (o)) <
for all ¢, n.
(Here Pr, .y indicates that 7 is sampled according to the ideal world distribution
on transcripts. The same probabilities could equivalently be written Pr[fwd(Y") >

¢(q)], Prbwd(Y) > ¢(q)].)

Lemma 2. One has
Pr [fitkey(r, ¢, h) > 1A fwd(7) < ((q) A bwd(7) < ((q)] < 2°¢" (@)1 /%12

foreach0 < h</{-—1, and

. 2r<—//(q) [r/2]
lery[fltkey(T, r,h) > Cz ANMwd(7) < {(g) A bwd(T) < ((q)] < o

foreach1 <r</¢,0<h<{—1 with z. as defined in (9).

We can combine Lemmas 1 and 2 by a union bound. When ¢ > N condition (iii)
is implied by condition (iv) since
Oz = ON q \I¢/2]
m <2~+n)
is less than 1 by (6). In this case, therefore, we don’t need to incorporate the
first part of Lemma 2 into the union bound. Using the fact that » < ¢ and that
¢"(q) > 1 we can upper bound ¢”(¢q)["/?1 by ¢"(q)[*/?!, thus obtaining

A LA ()RR (ayle) if g > N,
Py eml<{” . (10)
Lo+ A2 () (2 + 02)C) i g < N

since there are ¢ choices for h and ¢? choices for the pair (r,h).
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The proof of Lemma 1 (which involves a few subtleties because permutations
“lose randomness” after = 2™ queries) can be found in the paper’s full version
[10].

For Lemma 2, a key component is given by the following proposition, which
happens to be a key part of our proof and which sharpens similar bounds found
in [4,17]:

Proposition 1. Assume T = (%, Qg, k*) is a g-query transcript such that fwd(7)
< ({(q), bwd(1) < {(q). Then the total number of r-chains of T starting at position
h is at most

2" min{q, N} - C(q) /21251772,

Proof. Let v = (h,zn, knt1, Tht1,- - -, Khtr, Thir) be an r-chain of 7. Thus either
(kiyxi—1,@;) € QE or (ki,xi—1,2;) € Qg for h+1 < i < h+7r. Let v’s signature
be the string sig” € {4+, —}" such that (k;, z;—1, ;) € QSEZg;/ forh+1<i<h+r.
We start by fixing a signature sig® € {+,—}" and by upper bounding the
number of r-chains v of 7 starting at position h such that sig” = sig®. We can
assume without loss of generality that sig® contains at least as many —’s as +’s,
i.e., that the number of —’s is at least [r/2].
If v = (h,xn, kni1, Thit,- - khir, Thir) is a v-chain with signature sig® then
there are, firstly, at most
min{q, N}

choices for xj, given that (kp41,xn, 2p+1) € Qg. Then, presuming xz, fixed, there
are at most 2% choices for xj, 1 if sig) = + and at most ((g) choices for x4 if
sig) = —, given that 7 is a transcript such that bwd(7) < ((g). Similarly, each
subsequent step introduces a factor of either 2% or ((¢) depending on the sign
of that step in sig®. Hence (and since 2% > ((q)) the total number of choices for
Th,kht1s ..., Ther 1S at most

r[lirl{q7 N} . C(Q) r7"/2] 2"€ LT/ZJ A
Multiplying by 2" to account for all possible signatures concludes the proof. O
Proof of Lemma 2. Since Pr[A A B] < Pr[A|B] we have

Plg/[fitkey(T, ryh) > T Afwd(7)
< Pl;/[fitkey(r, r,h) > T | fwd(T)

¢(g) Abwd(T) < ((q)]

< <
< ((q) A bwd(7) < ((q)]

where T' € {Cz, 1} is the bound we want to prove. When we condition on
fwd(7) < ¢(q) A bwd(7) < ((g), however, k* is still independent uniformly at
random (being entirely independent from Qg in the ideal world), and so the
expected number of r-chains that fit 7 at position A is upper bounded by

M T KT 1
T mln{q’N}C(q)" /212 [r/2] orr

(11)
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by Proposition 1. (Each r-chain of Qg, indeed, has probability of exactly 1/2%"
of being “hit” by k*.) Since r — [r/2] = [r/2], (11) can be written

! [r/2]
2'r<—// (q) [r/2] min{q, N} (C;g) ) — 2'r<—// (q) [r/2] 2

with z, as defined in (9). It thus follows by Markov’s inequality that

and

2r<~//(q) [r/2]

Pt [fitkey(, 7, 1) = Oz | fwd(7) < ((¢) Abwd(r) < ()] = = 7 ]

which proves Lemma 2 and inequality (10). O

REMAINING STEPS. Having upper bounded the probability of bad transcripts,
the rest of the proof concerns itself with lower bounding the ratio
Pr[X
Pr[Y

7]

7]

for good transcripts 7, and more precisely of showing this ratio is at least 1 — ¢
for

(clED2N (512 g <
- qj"\’f@C[(zH)/z] (;)Wﬂ if g > N.
For reasons of space we leave this part of the proof to the full version [10].
The overall approach, however, is quite similar to that espoused by Chen and
Steinberger [8], and the main technical tool required for this part of the proof is
indeed their own “path-completion lemma”.
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