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Abstract. The arrival of indistinguishability obfuscation (iO) has
transformed the cryptographic landscape by enabling several security
goals that were previously beyond our reach. Consequently, one of the
pressing goals currently is to construct iO from well-studied standard
cryptographic assumptions.

In this work, we make progress in this direction by presenting a reduc-
tion from iO to a natural form of public-key functional encryption (FE).
Specifically, we construct iO for general functions from any single-key
FE scheme for NC1 that achieves selective, indistinguishability security
against sub-exponential time adversaries. Further, the FE scheme should
be compact, namely, the running time of the encryption algorithm must
only be a polynomial in the security parameter and the input message
length (and not in the function description size or its output length).

We achieve this result by developing a novel arity amplification tech-
nique to transform FE for single-ary functions into FE for multi-ary
functions (aka multi-input FE). Instantiating our approach with known,
non-compact FE schemes, we obtain the first constructions of multi-input
FE for constant-ary functions based on standard assumptions.

Finally, as a result of independent interest, we construct a compact
FE scheme from randomized encodings for Turing machines and learning
with errors assumption.

1 Introduction

The ability to cryptographically obfuscate computer programs holds great
prospects for securing the future digital world. While general-purpose program
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obfuscation remained an elusive goal for several decades, this changed recently
with the seminal work of Garg et al. [26] who gave the first candidate construc-
tion of indistinguishability obfuscation [8] (iO) for P/poly. Since then, iO has
been used to realize several advanced cryptographic primitives that were pre-
viously beyond our reach, including deniable encryption [45], collusion-resistant
functional encryption [26], round-optimal multiparty computation [25], and so
on. Indeed, by now, iO has been established as a central hub of cryptography.

The tremendous appeal of iO motivates the goal of constructing it from
well-studied, standard cryptographic assumptions. However, not much is known
in this direction. The security of candidate iO constructions, initiated by [7]1,
is proven in the “generic graded encoding model” and lacks a reduction in the
standard model. The recent works of Pass et al. [43] and Gentry et al. [33] seek to
rectify this situation by constructing iO from various assumptions on multilinear
maps [24]. In particular, Pass et al. [43] reduce the security of their construction
to an “uber assumption” on multilinear maps while Gentry et al. [33] provide a
reduction to the “multilinear subgroup elimination assumption” (stated in their
paper) on composite-order multilinear maps [22].

Till date, these remain the only known constructions of general-purpose iO.
Further, all of them rely on a common cryptographic primitive, namely, multilin-
ear maps. This is an unsatisfactory situation, especially in light of several recent
attacks on multilinear maps [13,21,23,30]. This calls for new constructions of iO
from other, more familiar cryptographic primitives.

1.1 This Work

In this work, we make progress in this direction by providing a new construction
of iO based on a natural form of functional encryption (FE). Along the way, we
also obtain new results on multi-input FE [35] that significantly improve upon
the prior results.

I. Indistinguishability Obfuscation from Compact FE. Our main result is a reduc-
tion from iO to any public-key functional encryption scheme that satisfies a nat-
ural “compactness” requirement on the encryption algorithm. Specifically, we
give a construction of iO for P/poly from any public-key FE scheme for NC1

that satisfies the following requirements:

– Security: It supports one key query and achieves selective, indistinguishability
security against sub-exponential time adversaries.

– Compactness: For any input message x, the running time of the encryption
algorithm is polynomial in the security parameter and the size of x. In partic-
ular, it does not depend on the circuit description size or the output length of
any function f supported by the scheme.2 We call such an FE scheme compact.

1 See the full version for a comprehensive list of works.
2 The compactness requirement can be further relaxed.



310 P. Ananth and A. Jain

We stress that we do not require function hiding property [1,11] from the under-
lying FE. Indeed, function-hiding public-key FE already implies iO.

On the use of Sub-exponential Hardness. Our reliance on sub-exponential hard-
ness of the underlying FE scheme is similar in spirit to the use of sub-exponential
hardness assumptions in the work of Gentry et al. [33]. Indeed, as discussed in
their paper, the use of sub-exponential hardness assumptions “seems” inherent
to realizing iO. We note, however, that to the best of our knowledge, no formal
proof supporting this intuition is known.

On the Existence of compact FE. While public-key FE is an extremely well-
studied notion, somewhat surprisingly, compact FE has remained largely unex-
plored. Previously, Goldwasser et al. [36] studied the notion of “succinct” FE
which, informally speaking, requires that the size of any ciphertext must be inde-
pendent of the function description size. We note, however, that this notion does
not preclude dependence on the function output length. Indeed, [36] focuses on
functions with single bit output, and their construction does not achieve our
desired compactness property for the case of functions with long output.

Compact FE with simulation-based security is known to be impossible for
general functions [2,20]. Concretely, in the case of adaptive simulation security,
the impossiblity result holds for a single key and message query. In the selective
security case, it holds for a single key and unbounded message queries.3 However,
we stress that for our main result, we only require the underlying compact FE
scheme to satisfy indistinguishability security in the selective model.

Presently, the only known constructions of compact FE for general functions
rely on iO [26,46].4 In contrast, non-compact FE can be based on LWE [36], or
even semantically-secure public-key encryption [37,44].

We hope that this work will bring attention to the natural goal of compact-
ness in FE and that it will be realized from standard complexity assumptions
in the future. With this view, we believe that the results in this work open
new doors to the eventual goal of realizing iO from well-studied cryptographic
assumptions, possibly avoiding multilinear maps altogether.

II. A Technique for Arity Amplification. At the heart of our results is a novel
technique for arity amplification in secret-key multi-input functional encryption
(MiFE), a notion introduced by Goldwasser et al. [35]. Specifically, we show
how to transform a selectively-secure secret-key MiFE scheme for i-ary functions
into another selectively-secure5 secret-key MiFE scheme for (i+1)-ary functions.
Interestingly, we achieve this by “knitting together” a secret-key FE scheme for

3 A related notion of reusable garbled circuits with output-size independence was
recently studied by Gentry et al. [31]. They proved an analogous impossibility result
for this notion in the case of simulation security.

4 The compact FE constructions of [26,46], in fact, achieve stronger security than
what we require. Specifically, they achieve security against unbounded key queries,
while we only require security against a single key query.

5 Unless stated otherwise, we only consider selectively-secure (Mi)FE schemes in the
subsequent discussion.
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i-ary functions with a public-key FE scheme for 1-ary functions. In order to prove
the security of our transformation, we build on program puncturing techniques
that were first introduced by Sahai and Waters [45] in the context of iO and
recently developed in the context of secret-key FE by Brakerski and Segev [16]
and Komargodski et al. [40].

Starting from a secret key FE scheme for single-ary functions (aka single-
input FE) and applying our transformation iteratively, we obtain a secret-key
MiFE scheme for multi-ary functions. This iterated procedure is sensitive to
the efficiency of the underlying single-input FE and yields different end results
depending upon whether the underlying FE scheme is compact or not.

More concretely, given a compact single-key FE scheme for NC1, we first
convert it into a compact FE scheme for general functions that supports an a
priori bounded polynomial number of key queries. This process involves multiple
steps, including the key query amplification step of Gorbunov et al. [37] and the
generic transformation from [4,31] for boosting the function family from NC1 to
general functions.

Then, instantiating our iterated approach with a sub-exponentially secure
compact FE scheme that supports (say) q number of key queries, we obtain
a secret-key MiFE scheme for polynomial-arity functions that supports q key
queries and q message queries. Instantiating this result for the case of q = 2 and
combining it with the MiFE to iO transformation of Goldwasser et al. [35], we
obtain iO for general functions.

III. MiFE for Functions with Small Arity from Standard Assumptions. We also
analyze our transformation for the case when the underlying FE scheme is non-
compact. Recall that in such a scheme, the running time of the encryption
algorithm may depend upon the function description size [37,44] or its output
length [36].

Bounded-Message Security from Standard Assumptions. Starting with a non-
compact FE scheme that supports an a priori bounded polynomial (say) q num-
ber of key queries, we obtain a secret-key MiFE scheme for constant-ary func-
tions that supports q message and q key queries. Instantiating the underlying
FE scheme with [37,44], we obtain the above result based on semantically secure
public-key encryption.6 This significantly improves over the state of the art in
this area in terms of security assumptions. In particular, prior constructions of
such an MiFE scheme either rely upon iO [35] or lack a security proof in the
standard model [10].

Unbounded-Message Security from iO. Starting with a non-compact FE scheme
that achieves security against unbounded key queries, we obtain a secret-key

6 At the cost of further decreasing the efficiency of encryption and restricting our
attention to a single key query, we can, in fact, obtain this result based on only
one-way functions. This requires a slight modification in our construction and proof.
In particular, to obtain this result, we must replace the underlying public-key FE
with a secret-key FE and then leverage the “one-shot” proof technique discussed in
Sect. 1.2. We defer the details to the full version of the paper.
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MiFE scheme for constant-ary functions that supports unbounded message and
key queries.

Presently, known constructions of public-key FE with security against
unbounded collusions rely upon iO and one-way functions [26,46] or specific
assumptions on composite-order multilinear maps [27]. Then, instantiating the
underlying FE scheme in our construction with [26], we obtain a secret-key
MiFE scheme for functions with constant arity that supports unbounded num-
ber of message and key queries based on iO and one-way functions. Previously,
such an MiFE scheme [35] was only known based on differing-inputs obfuscation
[3,8,14].

On the Optimality of Our Results. It is easy to see that a secret-key MiFE
scheme for 2-ary functions that supports a single key query and unbounded mes-
sage queries already implies a secret-key single-input FE scheme that supports
unbounded key and message queries. This observation is already implicit in [35].

In light of the above, we note that our results on secret-key MiFE with
bounded message queries are essentially optimal.

IV. Compact FE from Randomized Encodings for Turing Machines. Our final
contribution is a construction of a single-key, compact FE scheme from the
learning with errors (LWE) assumption and randomized encodings (RE) [6,38]
for Turing machines where the size of the encoding only depends on the size
of the Turing machine (TM) and not on its running time or the output length.
Combining this with our reduction from iO to compact FE, we get a construction
of iO for general circuits from sub-exponentially secure RE for Turing machines
and LWE.

Randomized encodings for circuits are known to exist from only one-way
functions [47]. In contrast, the problem of RE for TMs has received far less
attention. Recently, a few works [28,29,42] construct RE for RAM programs
from only one-way functions; however, the size of the garbled RAM program in
these schemes is proportional to the (worst-case) running time of the underlying
RAM program. Even more recently, [9,18,41] give constructions of RE for TMs
where the encoding size is independent of the running time of TM. However, all
of these results are based on iO.

We hope that our work will bring more attention to this natural goal, and
that it can be realized from standard cryptographic assumptions in the future.
This result is presented in the full version [5].

1.2 Our Techniques

Main Goal: Arity Amplification. The starting point of our iO construction
is the recent work of Goldwasser et al. [35] who showed a transformation from
secret-key MiFE to iO. Concretely, [35] proved that secret-key MiFE for (n+1)-
ary functions that supports a single key query and 2 message queries implies
iO for all functions with input length n. Very roughly, in order to obfuscate a
function f with input length n, their idea is to use the first MiFE ciphertext to
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hide the function and use the remaining n positions to encode f ’s input domain
à la Yao’s garbled circuits [47]. This, coupled with a secret key for the universal
circuit yields an indistinguishability obfuscation of f .

Given their result, our goal of constructing general-purpose iO from public-
key single-input FE reduces to the task of constructing secret-key MiFE scheme
for polynomial-ary functions from a public-key FE for single-ary functions. To
help the presentation, we ignore the succinctness requirements on the underlying
FE for now, and revisit it later.

At a first glance, it is not clear at all how to proceed towards realizing the
above goal.

Knitting together Two FE Instances. Towards that end, let us first consider a
weaker goal of constructing secret-key MiFE for 2-ary functions. Roughly speak-
ing, our main idea is to “knit” together an instance of a secret-key single-input
FE scheme with an instance of public-key single-input FE to obtain a secret-key
MiFE for 2-ary functions. Here, the importance of using both a secret-key FE
and a public-key FE will become clear once we explain our approach.

More concretely, the 2-ary MiFE scheme is constructed as follows:

• The master secret key of the 2-ary scheme consists of a key pair (pk,msk) of
the underlying public-key FE scheme as well as a master secret key msk′ of the
underlying secret-key FE scheme. Further, a key for a function f is computed
as a key Kf of the underlying public-key FE scheme for f .

• In order to encrypt a message m1 corresponding to the first position, we
generate (using msk′) a function key of the underlying secret-key FE scheme
for the following function Genc

[m1,K,pk]: it contains the message m1, a key for
a pseudorandom function (PRF) K, and the public key pk hardwired in its
description. On input a message (m2, tag), Genc

[m1,K,pk] outputs an encryption
(using pk) of the combined message m1‖m2 w.r.t. the underlying public-key
FE. Here, the randomness r for encryption is derived as r ← PRFK(tag).

A message m2 corresponding to the second position is encrypted (along
with a random tag) using the encryption algorithm of the underlying secret-
key FE scheme.

• In order to decrypt a pair of ciphertexts (c1, c2) using a function key Kf , we
first decrypt c2 using c1 (recall that c1 corresponds to a function key of the
secret key FE scheme) to produce a new ciphertext c̃ corresponding to the
underlying public-key FE scheme. Finally, we decrypt c̃ using Kf to get the
desired output.

The correctness of the above construction is easy to verify. A careful reader,
however, may immediately notice a security problem. Note that in order to
prove security, we must ensure that the first ciphertext hides the message m1

and the PRF key K. However, this is not necessarily guaranteed by the above
construction.

We solve this problem by building upon the recent elegant result of Brakerski
and Segev [16] who give a generic transformation from any single-input secret-
key FE scheme into another secret-key FE scheme that satisfies function hiding.



314 P. Ananth and A. Jain

Specifically, instead of using a standard secret-key FE, we will use a function-
hiding secret-key FE in the above construction. We then rely upon the function-
hiding property of the function key to argue that m1 and K remain hidden. As
we will see later, this technique, when generalized to the MiFE setting, is vital
to our overall approach.

We highlight another subtle point in the above construction: suppose that
we want the 2-ary MiFE scheme to support q ≥ 2 message queries. Then, since
the function keys of the underlying secret-key FE scheme act as ciphertexts in
the 2-ary MiFE scheme, we need the underlying secret-key FE scheme to, in
fact, support q key queries. To obtain such an FE scheme, we leverage [37] to
transform a single-key FE scheme into a q-key FE scheme. We refer the reader
to the full version for more details.

Overview of Proof Strategy. Proving the security of the above construction turns
out to be quite non-trivial. Suppose that we wish to prove security for q message
queries (for each position), say {x0

i , y
0
i }q

i=1, {x1
i , y

1
i }q

i=1. Further, for simplicity,
let us restrict our attention to a single function key query f . One plausible proof
strategy would be to construct a sequence of roughly q hybrids where at any
step i ∈ [q], we switch from (x0

i , y
0
i ) to (x1

i , y
1
i ). However, note that in the case

of MiFE, an adversary can compute “cross-terms” from the challenge message
pairs. That is, the adversary is allowed to compute (xb

i , y
b
i ) for any i, j ∈ [q].

Indeed, this is why the security definition of MiFE requires that f(x0
i , y

0
j ) =

f(x1
i , y

1
j ) for all i, j ∈ [q]. However, note that in the above proof strategy, the

adversary might end up computing f(x1
i , y

0
j ) which will allow him to distinguish

between two successive hybrids.
A plausible solution to overcome the above problem is to argue indistinguisha-

bility in one shot. That is, instead of arguing indistinguishability one message-
pair at a time, we instead switch all the challenge message pairs corresponding to
challenge bit 0 with the ones corresponding to challenge bit 1. Implementing this
strategy successfully, however, will require “hardwiring” and “unhardwiring” of
the (public-key) encryption of all the q2 message pairs (xb

i , y
b
j) (each of which cor-

responds to a different output) in the challenge ciphertexts for the first position
that correspond to function keys of the underlying secret-key FE scheme. While
this is tolerable for the case of arity 2 (and more generally for constant arity),
it quickly becomes prohibitive for large arity. Indeed, for arity n = poly(λ), the
number of possible outputs (and therefore the message pair combinations) is
exponential.

We solve the above problems by carefully employing a “one-input-at-a-time”
strategy where we consider roughly q2 intermediate hybrids (and qn in the case
of arity n; see below). Very briefly, our proof involves careful hardwiring and un-
hardwiring of the (public-key) encryption of each of the q2 message pairs (xb

i , y
b
j),

one at a time, in the challenge ciphertexts for the first position that correspond to
function keys of the underlying secret-key FE scheme. Furthermore, we crucially
ensure that the adversary cannot learn an output of the form f(x0

i , y
1
j ) at any

point in the hybrids. In order to implement these ideas, we rely upon program
puncturing techniques that were originally introduced in the context of iO [45]
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and recently developed in the secret-key FE setting by [16,40]. In particular,
as in the work of [40], we rely on function hiding property of the underlying
secret-key FE scheme to argue indistinguishability of these core hybrids. We
finally note that our proof strategy bears resemblance to the proof methodology
in several recent works [9,18,19,32,33,41].

Note that in the above proof strategy, it was crucial that we use a public-key
FE in our construction. To see this, suppose we were to replace the public-key FE
with an instance of a secret-key FE, referred to as FE (while the other secret-key
FE instance used in the construction is referred to as FE ′). Note that now, the
challenge ciphertexts corresponding to the first position would contain the master
secret key (say) msk of FE . Then, in order to execute the aforementioned proof
strategy, it would seem that we need to somehow “puncture” msk such that it
allows encryption all messages except a select message (say) xb

i‖yb
j . Furthermore,

the punctured msk should not allow generation of any function keys, except Kf .
However, it is not clear how to realize such a notion of secret-key FE. By using
public-key FE, we are able to bypass the above difficulties since by definition,
the public key does not need to be hidden.

Climbing the Arity Ladder. The above approach can be generalized to transform
a secret-key MiFE scheme for i-ary functions into a secret-key MiFE scheme
for (i + 1)-ary functions. Concretely, this transformation consists of two steps:
first, by using ideas from [16], we add function privacy property to the i-ary
MiFE scheme. Next, we combine the resultant scheme with a “fresh” instance
of a public-key single-input FE scheme to obtain an (i + 1)-ary MiFE scheme.

In more detail, as in the 2-ary case, the ciphertext corresponding to the
first position will consist of a function key of the underlying (function private)
c-ary MiFE scheme for the function Genc

[m1,K,pk] which is defined similarly to the
2-ary case, except that here it takes as input messages m2, . . . ,mi+1 (along with
random tags) and outputs an encryption (using pk) of the combined message
m1‖ . . . ‖mi+1 w.r.t. the underlying public-key FE. The ciphertexts correspond-
ing to remaining i positions will correspond to ciphertexts of the underlying
c-ary MiFE scheme. The function key for a function f in the c + 1-ary scheme
will correspond to a key Kf for the same function f of the underlying public-key
single-input FE scheme.

By applying the above ideas iteratively, we can transform a secret-key single-
input FE into a secret-key multi-input FE. Our iterated construction is depicted
in Fig. 1. The security of the construction follows along the same lines as dis-
cussed above.

The Role of Compactness. Upon “unrolling” our construction of n-ary MiFE
scheme, one can observe that it involves n instances of a single-input FE scheme.
Specifically, in the n-ary MiFE scheme, each of the ciphertexts corresponding to
the first n − 1 positions corresponds to a function key of (a different instance
of) a single-input FE, while the ciphertext corresponding to the nth position
corresponds to a ciphertext of a single-input FE scheme. The function key at
position n − 1 computes an encryption corresponding to the function key at
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Fig. 1. The Iterated Construction. (q)-FE denotes a single-input public-key FE scheme
that supports q key queries. (q1, q2)-MIFEi denotes a secret-key MiFE scheme for i-ary
functions that supports q1 key and q2 message queries. Finally, FH refers to function
hiding.

position n − 2 which in turn computes an encryption corresponding to the func-
tion key at position n − 3, and so on.

With the above view, it is easy to see that the complexity of the above
construction becomes prohibitive for n = ω(1) when it is instantiated with a
non-succinct FE scheme. On the other hand, instantiating the construction with
a succinct FE scheme allows us to go all the way to n = poly(λ).

We remark that the above discussion is oversimplified. We refer the reader
to the technical parts of the paper (and the full version [5]) for more details.

2 Preliminaries

Throughout the paper, we denote the security parameter by λ. We assume that
the reader is familiar with basic cryptographic concepts [34].

Given a PPT sampling algorithm A, we use x
$←− A to denote that x is the

output of A when the randomness is sampled from the uniform distribution.

Punctured Pseudorandom Function Families. The works of [12,15,39] con-
structed a strengthening of PRF families that is commonly known as punctured
pseudorandom function families. Unlike the standard notion of PRFs, this prim-
itive is accompanied by a puncturing algorithm that takes as input x, a PRF key
K and outputs a punctured key Kx that allows one to evaluate the output of
PRF on any input other than x. The security guarantee states that the output
of PRF on x is indistinguishable from random even if the adversary gets a key
punctured on x.

2.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation (iO) that was defined
by Barak et al. [8].

Definition 2.1 (Indistinguishability Obfuscator (iO)). A uniform PPT
algorithm iO is called an indistinguishability obfuscator for a circuit class {Cλ},
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where Cλ consists of circuits C of the form C : {0, 1}λ → {0, 1}, if the following
holds:

– Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}λ (i.e.,
it belongs to the input space of C), we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– Indistinguishability: For any PPT distinguisher D, there exists a negligible
function negl(·) such that the following holds: for all sufficiently large λ ∈ N,
for all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all inputs x,
we have:

∣
∣
∣Pr[D(iO(λ,C0)) = 1] − Pr[D(iO(λ,C1)) = 1]

∣
∣
∣ ≤ negl(λ)

2.2 Public-Key Functional Encryption

Syntax. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where each Xλ, Yλ

are sets of size, functions in λ. Let F = {Fλ}λ∈N be an ensemble where each Fλ

is a finite collection of functions. Each function f ∈ Fλ takes as input a string
x ∈ Xλ and outputs f(x) ∈ Yλ.

A public-key functional encryption (FE) scheme FE for F consists of four
algorithms (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec):

– Setup. FE.Setup(1λ) is a PPT algorithm that takes as input a security para-
meter λ and outputs a public key, (master) secret key pair (FE.pk,FE.msk).

– Key Generation. FE.KeyGen(FE.msk, f) is a PPT algorithm that takes as
input a master secret key FE.msk, a function f ∈ Fλ and outputs a functional
key FE.skf .

– Encryption. FE.Enc(FE.pk, x) is a PPT algorithm that takes as input a public
key FE.pk, a message x ∈ Xλ and outputs a ciphertext ct.

– Decryption. FE.Dec(FE.skf , ct) is a deterministic algorithm that takes as
input a functional key FE.skf , a ciphertext ct and outputs a string y.

The correctness property guarantees that the output of the decryption on input
a functional key of f ∈ Fλ and a ciphertext of x ∈ Xλ yields f(x) ∈ Yλ.

Selective Security. We recall indistinguishability-based selective security for FE.
This security notion is modeled as a game between the challenger and the adver-
sary where the adversary can request functional keys and ciphertexts from the
challenger. Specifically, the adversary can submit function queries f to the chal-
lenger and receive corresponding functional keys. It can also submit a message
query of the form (x0, x1) and in response, the challenger encrypts message
xb and sends the ciphertext back to the adversary. The adversary wins the
game if she can guess b with probability significantly greater than 1/2 and if
f(x0) = f(x1) for all function queries f . The only constraint here is that the
adversary has to declare the challenge messages at the beginning of the game
itself.
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The term (qkey, μ)-secure FE scheme refers to the setting where the adversary
can request up to qkey queries and he can succeed in the game with probability
at most μ.

Compactness. We now define the notion of compact FE that will play a central
role in our main result on iO. In a compact FE scheme, the running time of
the encryption algorithm only depends on the security parameter and the input
message length. In particular, it is independent of the complexity of the function
family supported by the FE scheme. Note that a direct consequence of this is
that the size of the public key must also be independent of the complexity of the
function family.

Definition 2.2 (Compact FE). Let p(·) be a polynomial. A (qkey, μ)-selectively
secure public-key FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec),
defined for an input space X = {Xλ} and function space F = {Fλ} is said
to be compact if for all λ ∈ N, the size of any public key FE.pk is p(λ), where
(FE.msk,FE.pk) ← FE.Setup(1λ), and the running time of the encryption algo-
rithm FE.Enc, on input 1λ, FE.pk and a message x ∈ Xλ, is p(λ, qkey, |x|).
Remark 2.3. We can define the notion of unbounded compact FE in the same
manner as above except that we now allow the number of key queries made by
the adversary in the security game to be an arbitrary polynomial.

3 Function Private Multi-input Functional Encryption
(MiFE)

The concept of multi-input functional encryption was proposed by Goldwasser
et al. [35]. Standard FE only allows for computing on a single ciphertext, i.e., it
only supports single-ary functions. In contrast, multi-input functional encryption
(MiFE) allows for (joint) computation over multiple ciphertexts. In other words,
it supports multi-ary functions.

Analogous to standard FE, one can consider MiFE in two settings, namely,
public-key and secret-key setting.7 In this work, we will restrict our attention to
the secret-key setting.

The security notion we are interested in is stronger than the one considered
in Goldwasser et al. [35]. We expect the functional keys to hide the function
it is associated with. This concept, termed as function privacy was previously
considered in the single ary private key FE setting by Brakerski-Segev [16]. We
extend their notion to the multi-input functional encryption setting as well.

We first present the syntax of a MiFE scheme and later we formalize the
function privacy property.
7 Goldwasser et al. [35] also define a more general notion of MiFE where there is

different encryption key for each input position. When the adversary knows all (resp.,
none of) the encryption keys, then this notion captures the public-key (resp., secret-
key) setting.
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Syntax. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where each Xλ, Yλ

are sets of size, functions in λ. Let F = {Fλ}λ∈N be an ensemble where each
Fλ is a finite collection of n-ary functions. Each function f ∈ Fλ takes as input
strings x1, . . . , xn, where each xi ∈ Xλ, and outputs f(x1, . . . , xn) ∈ Yλ.

An MiFE scheme MIFEn for n-ary functions F consists of four algorithms
(MIFEn.Setup,MIFEn.KeyGen,MIFEn.Enc,MIFEn.Dec) described below:

– Setup. MIFEn.Setup(1λ) is a PPT algorithm that takes as input a security
parameter λ and outputs the master secret key MIFEn.msk.

– Key Generation. MIFEn.KeyGen(MIFEn.msk, f) is a PPT algorithm that
takes as input the master secret key MIFEn.msk and a function f ∈ Fλ. It
outputs a functional key MIFEn.skf .

– Encryption. MIFEn.Enc(MIFEn.msk,m, i) is a PPT algorithm that takes as
input the master secret key MIFEn.msk, a message x ∈ Xλ and an index
i ∈ [n]. It outputs a ciphertext MIFEn.ct.

Here index i signals to the encryption algorithm that message x corre-
sponds to the ith input of functions f ∈ Fλ.

– Decryption. MIFEn.Dec(MIFEn.skf ,MIFEn.ct) is a deterministic algorithm
that takes as input a functional key MIFEn.skf and a ciphertext MIFEn.ct. It
outputs a value y ∈ Yλ.

Remark 3.1. From now on, we use the phrase “encryption of m in the ith position”
to refer to the process of executing MIFEn.Enc on the input (MIFEn.msk,m, i).

Correctness. There exists a negligible function negl(·) such that for all sufficiently
large λ ∈ N, every n-ary function f ∈ Fλ and input tuple (x1, . . . , xn) ∈ X n

λ

Pr

[
MIFEn.msk ← MIFEn.Setup

(
1λ
)
; MIFEn.skf ← MIFEn.KeyGen (MIFEn.msk, f) ;

MIFEn.Dec
(
MIFEn.skf , {MIFEn.Enc (MIFEn.msk, xi, i)}n

i=1

) �= f (x1, . . . , xn)

]

is at most negl(λ). In the above expression, the probability is taken over the
random coins of all the algorithms.

We present the function privacy definition below. Similar to the single ary
setting, we can consider two security notions – selective and adaptive. We first
give the selective security definition since this is the definition we are going to
consider throughout this paper.

Definition 3.2 (Selective Function Private MiFE). A secret-key MiFE
scheme MIFEn for n-ary functions F is (qkey, qmsg, μ)-selective function private
if for any PPT adversary A, there exists a function μ(λ) such that for all suffi-
ciently large λ ∈ N, the advantage of A is

AdvMIFEn

A =
∣
∣
∣Pr[ExptMIFEn

A (1λ, 0) = 1] − Pr[ExptMIFEn

A (1λ, 1) = 1]
∣
∣
∣ ≤ μ(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptMIFEn

A (1λ, b) is defined
below:
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1. Message Queries: A submits qmsg number of queries,
{(

(xj
1,0, x

j
1,1), . . . ,

(xj
n,0, x

j
n,1)

)}

j∈[qmsg]
, with xj

i,0 ∈ Xλ, to the challenger C.

2. C computes MIFEn.msk ← MIFEn.Setup(1λ). It then computes MIFEn.ctji ←
MIFEn.Enc(MIFEn.msk, xj

i,b) for all i ∈ [n] for all j ∈ [qmsg]. The challenger
C then sends

{

(MIFEn.ctj1, . . . ,MIFEn.ctjn)
}

j∈[qmsg]
to the adversary A.

3. Function Queries: The following is repeated up to qkey times: A submits a
function query (f0, f1) ∈ F2

λ to C. The challenger C computes MIFEn.skf ←
MIFEn.KeyGen(MIFEn.msk, fb) and sends it to A.

4. If there exists a function query (f0, f1) and a challenge message query
(

(x1,0,

. . . , xn,0), (x1,1, . . . , xn,1)
)

such that f0(x1,0, . . . , xn,0) �= f1(x1,1, . . . , xn,1),
then the output of the experiment is set to ⊥. Otherwise, the output of the
experiment is set to b′, where b′ is the output of A.

Remark 3.3. When μ is a negligible function in the security parameter, then
we omit it from the notation and simply refer to (qkey, qmsg)-function privacy of
MiFE.

Constructing Function Private MiFE. In the single ary setting, Brakerski-
Segev [16] gave a generic transformation that converts any secret key single
ary FE into a function private secret key single ary FE. We observe that tech-
niques, similar to those used in Brakerski-Segev, can be adapted to obtain a
transformation from any i-ary MiFE into a function private i-ary MiFE in the
secret key setting. We defer the technical details to the full version.

4 Our Transformation: From c-ary to (c + 1)-ary MiFE

In this section, we show how to transform a secret-key MiFE scheme for c-ary
functions into an MiFE scheme for (c + 1)-ary functions, for c ≥ 1.

Our transformation proceeds in two steps:

1. Starting with an MiFE scheme for c-ary functions, we first apply the function
privacy transformation (mentioned towards the end of Sect. 3) to obtain a
function private MiFE scheme MIFEc for c-ary functions.

2. Next, we convert MIFEc into an MiFE scheme MIFEc+1 for c+1-ary functions.
We refer to this step as the arity amplification step.

We now describe the arity amplification step. We construct an MiFE scheme
for c + 1-ary functions MIFEc+1 with function space Fc+1 and message space
X c+1.

Notation. We use the following tools in our transformation: (a) A function
private MIFE scheme for c-ary functions, denoted as MIFEc = (MIFEc.Setup,
MIFEc.KeyGen,MIFEc.Enc,MIFEc.Dec). Let F fp,c and X fp,c be the associated
function space and message space, respectively. (b) A public-key FE scheme
for single-ary functions, denoted as FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).
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Let F fe and X fe be the associated function space and message space, respectively.
(c) A puncturable pseudorandom function family, denoted as F = PRFK(·).

Setup MIFEc+1.Setup(1λ): On input a security parameter λ, sample a master
secret keyMIFEc.msk ← MIFEc.Setup(1λ) ofMIFEc and a key pair (FE.pk, FE.msk)
← FE.Setup(1λ) of FE. Output MIFEc+1.msk = (MIFEc.msk,FE.pk,FE.msk).

Key Generation MIFEc+1.KeyGen(MIFEc+1.msk, f): On input master secret key
MIFEc+1.msk and a function f ∈ Fc+1, parse MIFEc+1.msk = (MIFEc.msk,FE.pk,
FE.msk). Sample a functional key FE.skf ← FE.KeyGen(FE.msk, f) for function
f . Output MIFEc+1.skf =FE.skf .

Encryption MIFEc+1.Enc(MIFEc+1.msk, x, i): On input master secret key
MIFEc+1.msk, message x ∈ X c+1 and index i, parse MIFEc+1.msk = (MIFEc.msk,
FE.pk,FE.msk).

1. If i = 1, then draw a PRF key K ∈ {0, 1}λ at random. Initialize the index
vector I = (0, . . . , 0). Compute MIFEc.skG ← MIFEc.KeyGen(MIFEc.msk, G)
where the circuit G = GenCT

(c)
[x,1,K,FE.pk,I] ∈ F fp,c is described in Fig. 2. Out-

put the ciphertext MIFEc+1.ct = MIFEc.skG.
2. Else, if 2 ≤ i ≤ c + 1, then perform the following steps:

– If the input message x is of the form (x1, x2, 1, τ, i − 1) then compute
MIFEc+1.ct ← MIFEc.Enc(MIFEc.msk, (x1, x2, 1, τ, i), i)

– Else, choose a tag τ ∈ {0, 1}λ at random. Compute MIFEc+1.ct ←
MIFEc.Enc(MIFEc.msk, (x, x, 1, τ, i), i).

Output the ciphertext MIFEc+1.ct.

Fig. 2. Description of GenCTc.

Decryption MIFEc+1.Dec(MIFEc+1.skf ,MIFEc+1.ct1, . . . ,MIFEc+1.ctc+1): On
input (MIFEc+1.skf ,MIFEc+1.ct1, . . .,MIFEc+1.ctc+1), perform the following
steps:
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1. Parse: (a) MIFEc+1.skf = FE.skf , (b) MIFEc+1.ct1 = MIFEc.skG, and (c)
MIFEc+1.cti = MIFEc.cti−1 for all i �= 1, where MIFEc.cti−1 denotes the
ciphertext corresponding to (i − 1)th position in MIFEc.

2. Next, compute FE.ct∗ ← MIFEc.Dec(MIFEc.skG,MIFEc.ct1, . . . ,MIFEc.ctc).
3. Finally, compute y ← FE.Dec(FE.skf ,FE.ct∗). Output y.

This completes the description of the scheme.

Correctness. We now argue the correctness of MIFEc+1. Let MIFEc.sk be a valid
functional key for the function GenCT[x1, j1,K,FE.pk, I] w.r.t. MIFEc. For i ∈
[c], let MIFEc.cti be a valid encryption of xi+1 w.r.t. MIFEc. By the correctness of
MIFEc.Enc, we have that the output of MIFEc.Dec(MIFEc.skGenCT,MIFEc.ct1, . . . ,
MIFEc.ctc) is FE.ct∗, where FE.ct∗ is a valid encryption of (x1, . . . , xc+1) w.r.t. FE.
Further, from the correctness of FE, it follows that the output of FE.Dec(FE.skf ,
FE.ct∗) is f(x1, . . . , xc+1), where FE.skf is a valid functional key of f w.r.t. FE.
The proof of security can be found in the full version [5].

5 Multi-input FE from Single-input FE

In Sect. 4, we gave a general transformation from a secret-key MiFE scheme
for c-ary functions to another secret-key MiFE scheme for c + 1-ary functions.
Using this transformation, we now give a construction of a secret-key MiFE
scheme for functions with n = poly(λ) arity. Later we will use this construction
to obtain our main result on iO. We will also consider different instantiations of
this construction which yield new results on constant-ary MiFE from standard
assumptions.

We construct a n-ary (q, q)-secure MiFE scheme MIFEn. To obtain this con-
struction we start with a q-secure8 public-key FE scheme. This implies a single-
ary (q, q)-secure secret-key MiFE scheme, MIFE1.

(Iterated) Construction of MIFEn (Informal description):
Repeat the following two steps for c = 1, . . . , n:

1. Function Privacy Transformation: Using the MiFE function-privacy
transformation (mentioned towards the end of Sect. 3), convert the (q, q)-
secure MiFE scheme MIFEc, obtained in the previous iteration, into a
function-private (q, q)-secure MiFE scheme MIFEfp

c , also supporting c-arity
functions.

2. Arity Amplification: The function-private c-ary (q, q)-secure MiFE scheme
MIFEfp

c obtained in the previous step is then transformed into a c+1-ary (q, q)-
secure MiFE scheme, using the transformation presented in Sect. 4. In this
step, we additionally use a q-secure public-key FE scheme FE.

8 Throughout this section, we only consider selectively secure public-key FE and secret
key MiFE schemes. For simplicity of notation, we omit the use of the word “selective”
in the rest of this section and assume that it is implicit.
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The efficiency properties of the underlying public-key FE scheme determines
the value of n that we can achieve in the above construction. Consequently, we
consider two different instantiations of the underlying public-key FE scheme that
yield different results. We discuss these instantiations next.

iO from Compact FE. We start by stating our main result for secret-key MiFE
for polynomial-arity functions.

Theorem 5.1. For all n = poly(λ), the above proposed scheme MIFEn is (q, q)-
secure for any polynomial q, assuming that FE is

(

1, 1
(64q)(n+1)2 ·2λ

)

-selectively
secure compact public-key FE scheme.

The core non triviality in the above theorem is to argue that the size of parame-
ters does not grow exponentially with the number of iterations. At a high level,
this is because the compactness of FE ensures that the growth of the parameters
at the ith level (i-ary MiFE) depends only on the security parameter, level i
and the message length. The actual calculations can be found in the appropriate
section in the full version.

We now invoke a theorem by [35] that shows how to obtain iO for functions
of input length n from a n-ary MiFE for a specific function family. We thus have
the following main theorem.

Theorem 5.2. Assuming the (2, 1
(128)n22λ

)-security of compact public-key selec-
tively secure FE public key FE scheme for polynomial time computable functions,
the scheme iO is an indistinguishability obfuscation scheme for P/poly.

Constant ary MiFE. If we restrict our attention to just constant ary MiFE then
we can obtain a construction based on public key encryption encryption schemes.
We state the result formally below.

Theorem 5.3. For any constant n, the above proposed scheme MIFEn is (q, q)-
selectively secure assuming that FE is a q-selectively secure (not necessarily com-
pact) public-key FE scheme.

Combining Theorem 5.3 with [37,44], we obtain the following result.

Corollary 5.4. For any polynomial q = q(λ), there exists a (q, q)-selectively
secure secret-key MiFE scheme for constant-arity functions, assuming the exis-
tence of semantically-secure public-key encryption.

The reason why we can only achieve constant arity is because the growth of
parameters in this case could be exponential. If we start from any public key
FE scheme, the size of the parameters at each level grows proportional to the
size of the parameters at the next level. This stems from the fact that the FE
scheme that we start off with could be such that the encryption complexity
might depend on the function complexity. And hence, the number of iterations
that can be performed is just a constant. A detailed explanation is provided in
the full version.
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