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Abstract. We propose a nonce-based MAC construction called EWCDM
(Encrypted Wegman-Carter with Davies-Meyer), based on an almost xor-
universal hash function and a block cipher, with the following properties:
(i) it is simple and efficient, requiring only two calls to the block cipher,
one of which can be carried out in parallel to the hash function compu-
tation; (ii) it is provably secure beyond the birthday bound when nonces
are not reused; (iii) it provably retains security up to the birthday bound
in case of nonce misuse. Our construction is a simple modification of the
Encrypted Wegman-Carter construction, which is known to achieve only
(i) and (iii) when based on a block cipher. Underlying our new construction
is a new PRP-to-PRF conversion method coinedEncrypted Davies-Meyer,
which turns a pair of secret random permutations into a function which is
provably indistinguishable from a perfectly random function up to at least
22n/3 queries, where n is the bit-length of the domain of the permutations.

Keywords: Wegman-Carter MAC · Davies-Meyer construction ·
Nonce-misuse resistance · Beyond-birthday-bound security

1 Introduction

Wegman-Carter MACs. A Message Authentication Code (MAC) is a funda-
mental symmetric-key primitive that allows a sender to authenticate messages
by computing tags that can be verified by the receiver (the sender and the
receiver sharing a common secret key). Many MACs are based on some under-
lying cryptographic primitive such as a block cipher (e.g., CBC-MAC [BKR00])
or a hash function (e.g., HMAC [BCK96]). A different approach, pioneered by
Wegman and Carter [WC81] (building on earlier work by Gilbert et al. [GMS74]),
first treats the message M with an almost xor-universal (AXU) hash function1

H (i.e., a fast, combinatorial primitive rather than a slow, cryptographic one)
and masks the result with a one-time pad, resulting in information-theoretically
1 An AXU hash function is a keyed function with the property that for any two distinct

inputs, the probability over the draw of a random key that the outputs have a specific
difference is small.
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secure authentication. Since sharing a one-time pad for each message to authen-
ticate is not very practical, one can instead use a pseudorandom function F , as
first proposed by Brassard [Bra82], allowing the sender and the receiver to share
a short secret K rather than a long list of one-time pads. The mask for each
new message is then generated pseudorandomly by applying FK to a nonce N , a
value used at most once. This reintroduces a cryptographic primitive (and hence
a computational assumption), but only for treating a small nonce rather than a
potentially long message. The resulting nonce-based MAC, that we simply call
the Wegman-Carter (WC) construction, is

WC[F,H]K,Kh
(N,M) = FK(N) ⊕ HKh

(M),

where K is the key for the pseudorandom function F , Kh is the key for the AXU
hash function H, N is the nonce, and M is the message.2

The WC construction enjoys a very strong provable security bound when
nonces are never reused. Assuming that F is perfect (i.e., FK is a uniformly
random function), any adversary seeing at most qm honestly generated tags and
making at most qv verification queries (i.e., forgery attempts) succeeds with
probability at most εqv, where ε is the maximal differential probability of H,
namely

ε = max
X �=X′,Y

Pr [HKh
(X) ⊕ HKh

(X ′) = Y ] ,

the probabilities being taken over the random draw of the hashing key Kh. When
F is not perfect, there is an additional term accounting for its insecurity as a PRF
(more precisely, this corresponds to the best advantage an adversary can achieve
in distinguishing FK from a uniformly random function within qm + qv queries).

Many AXU hash functions have been proposed for instantiating this construc-
tion, most of them based on polynomial hashing [Kra94,Rog95,Sho96,HK97,
BHK+99,Ber00,KR00,KVW04,MV04,Ber05c]. See [Ber07] for more references
and a comprehensive survey of polynomial hashing. Universal hash functions
can also be constructed from a block cipher (e.g. by using the CBC mode with
prefix-free encoding [BR05,BPR05]), but in that case the provable maximal dif-
ferential probability depends on the PRP-security of the block cipher (hence,
this yields “computational” rather than “statistical” universal hash functions).

Nonce-Misuse Resistance. Despite the advantages just mentioned (efficiency
and excellent security bound), the WC construction has one major shortcom-
ing: it is very vulnerable to nonce-misuse. If a nonce is repeated even a single
time, consequences can be catastrophic [Jou06,HP08]. For example, in the case
of polynomial universal hashing, this can lead to a complete recovery of the hash-
ing key, which allows universal forgeries. To remedy this nonce-misuse problem,
the simplest option, which has been known for long, is to apply the PRF to
the output of the hash function. For instance, if the PRF takes 2n-bit inputs,

2 Here and in all the following, we assume to fix ideas that the outputs of the PRF
and the hash function are n-bit strings and the group operation is bitwise xor; this
can be easily adapted to any other abelian group.
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one can define the tag as FK(N‖HKh
(M)); this construction was analyzed

by Black et al. [BHK+99,BC09]. If F takes only n-bit inputs, one can instead
apply the PRF with an independent key to the output of the WC construction,
thereby defining the tag as

FK′
(
FK(N) ⊕ HKh

(M)
)
. (1)

If one gets rid of the nonce, simply defining the tag as FK(HKh
(M)), one

obtains a stateless MAC but the security bound includes an extra “birthday-
type” term εq2m.

Beyond-Birthday-Bound Security. There is another obstacle which can
prevent concrete implementations from enjoying the strong security bound
promised by the WC construction: pseudorandom functions are not always read-
ily available, and it is common to use a pseudorandom permutation instead, or
in other words to replace F with a block cipher E. However, as first pointed
out by Shoup [Sho96], this causes the proven security bound to drop to the so-
called birthday bound. Indeed, a random permutation can be distinguished from
a random function within q queries with advantage roughly q2/2n. For resource-
constrained environments, where lightweight cryptographic primitives based on
block ciphers with 64-bit blocks are likely to be implemented, this means that
security insurance is lost after 232 queries, which is often unacceptable, especially
when refreshing keys regularly is excluded.

A first solution to overcome the birthday bound while using only a block
cipher is to use a randomized construction. However, existing schemes either
require very strong properties from the block cipher such as the ideal cipher
model [JJV02] or resistance to related-key attacks [JL04], or require a rela-
tively large amount of randomness (at least 3n bits for the MACRX construction
of [BGK99]). The beyond-birthday-bound secure construction named MAC-R2
of Minematsu [Min10] uses a random n-bit IV per message and bears resem-
blance to the construction proposed in this paper, but it requires four calls to
the underlying block cipher. (Jumping ahead, our new construction requires only
two calls.) Moreover, reliable randomness might not always be available in some
environments, and it might sometimes be easier to maintain a state.

Another option is to implement FK in construction (1) from a block cipher
E using a so-called PRP-to-PRF conversion method [BKR98,HWKS98] with
beyond-birthday-bound security. (On the other hand, it is easy to see that the
outer PRF FK′ can be directly implemented by a block cipher without security
loss.) Perhaps the simplest such method is the “xor” construction EK1(N) ⊕
EK2(N), or its close single-key variant EK(N‖0) ⊕ EK(N‖1), which have been
analyzed in a number of papers [BI99,Luc00,Pat08a,Pat13,CLP14]. However,
all known methods require at least two block cipher calls; taking into account
the outer encryption layer, this amounts to three block cipher calls for the whole
construction. Is it possible to do better?
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Our Contribution. We propose a new nonce-based MAC based on a AXU
hash function and a block cipher with the following properties:

(i) it is simple and efficient, requiring only two calls to the underlying block
cipher, one of which can be carried out in parallel to the hash function com-
putation;

(ii) it provably provides security beyond the birthday bound when nonces are
never reused;

(iii) it provably retains security up to the birthday bound in case of nonce misuse.

Property (ii) ensures that the scheme is highly secure in the nominal use case
where nonces are never repeated, while property (iii) acts as a “safety net” if
anything goes wrong with nonces.

Our starting point is what we call the Encrypted Wegman-Carter construc-
tion, which is simply construction (1) where the outer PRF layer is replaced by
a block cipher, viz.

EK′
(
FK(N) ⊕ HKh

(M)
)
. (2)

As already briefly explained, this construction enjoys the same security bound
as the (unencrypted) WC construction when nonces are never repeated, and
is moreover nonce-misuse resistant up to the birthday bound. Replacing FK

by a simple block cipher call causes the security bound to drop to the birthday
bound even when nonces are not repeated, while using a PRP-to-PRF conversion
method with security beyond the birthday bound results in at least three block
cipher calls in total for the resulting construction.

Our main observation is that one can overcome the birthday bound in the
nonce-respecting scenario by instantiating FK using “only” the Davies-Meyer
(DM) construction. The DM construction is the easiest way to turn a block
cipher into a keyed function.3 Given a block cipher E : K × {0, 1}n → {0, 1}n,
the DM construction based on E is simply

DM[E]K(N) = EK(N) ⊕ N.

Note that this PRF construction is not secure beyond the birthday bound: given
black-box access to a function f : {0, 1}n → {0, 1}n, a distinguisher can simply
query f(Ni) for roughly 2n/2 distinct values Ni and look for collisions in values
f(Ni) ⊕ Ni. When f is a uniformly random function this will happen with
good probability, whereas when f = DM[E]K this cannot happen. However, this
attack is not possible anymore if one encrypts the output of the DM construction.

Using the DM construction to instantiate FK in construction (2) results
in a MAC construction based only on E and H, which we call Encrypted
Wegman-Carter with Davies-Meyer (EWCDM) construction, depicted on Fig. 1
and defined as

EK′
(
EK(N) ⊕ N ⊕ HKh

(M)
)
. (3)

3 Traditionally, the DM construction is rather seen as a way to turn a block cipher
into an (unkeyed) compression function.
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Fig. 1. The “Encrypted Wegman-Carter with Davies-Meyer” construction.

Our main result is that the EWCDM construction is secure up to roughly
22n/3 MACqueries and2n verificationqueries against nonce-respecting adversaries
(while against nonce-misusing adversaries it still enjoys birthday-bound security)
(Table 1). We stress that this does not hold for the (unencrypted) Wegman-Carter
construction with Davies-Meyer: if tags are computed as

T = EK(N) ⊕ N ⊕ HKh
(M),

then the resulting MAC scheme is only provably secure up to the birthday bound
against nonce-respecting adversaries.4 Hence, the outer encryption layer EK′

turns out to be twice useful: for providing nonce-misuse resistance on one hand,
and for cheaply enhancing security against nonce-respecting adversaries beyond
the birthday bound on the other hand.

We believe that our new construction would be an elementary and easy-
to-implement way to enhance the security of widely deployed authentica-
tion or authenticated encryption schemes such as Poly1305-AES [Ber05c] or
GCM [MV04] (in particular, note that this can be done in a black-box way on
top of an existing implementation of those schemes). The main cost would be
some additional latency due to the extra block cipher call, but depending on the
context this might be tolerable.

Proof Technique. At the heart of construction (3) is a novel PRP-to-PRF
conversion method: namely, if we make abstraction for a moment of the hash of
the message M , and if we simply denote P and P ′ in place of EK and EK′ , we
obtain a function of the nonce defined as

F (N) = P ′(P (N) ⊕ N).

4 Indeed, the outputs of this construction can be distinguished from random simply
by querying the MAC oracle for tags Ti with the same message and roughly 2n/2

distinct nonces Ni, and looking for collisions in Ti ⊕ Ni.
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For obvious reasons, we call this the Encrypted Davies-Meyer (EDM) construc-
tion. The main part of the proof consists in proving that this is a secure PRF
up to 22n/3 adversarial queries. (We prove this as a standalone result in the full
version of the paper [CS16]; this constitutes a good warm-up for the reader before
the more complicated security proof of the EWCDM construction in Sect. 4.)
However, since the hash of the message is “intermingled” within the EDM con-
struction, it does not seem possible to first prove that the outputs of the MAC
oracle are indistinguishable from random, and then handle verification queries
(as is usually done for proving the security of the standard Wegman-Carter con-
struction; see Theorem 1 in Sect. 3.1). Note that one cannot hope either to prove
security beyond the birthday bound by a sequence of games that would start by
replacing the DM construction EK(N) ⊕ N by a uniformly random function.

Hence, it seems that any proof aiming at security beyond the birthday bound
must handle MAC queries and verification queries both at the same time. For
this, we employ the H-coefficients technique, which has been introduced by
Patarin [Pat90,Pat91,Pat08b] and which recently regained attention since Chen
and Steinberger used it to analyze the iterated Even-Mansour cipher [CS14].
This technique gives a kind of “systematic” way to upper bound the statistical
distance between the answers of two interactive systems and is typically used to
prove (information-theoretic) pseudorandomness of constructions such as Feistel
networks. To the best of our knowledge, this is the first time the H-coefficients
technique is used for proving the security of a MAC (i.e., unpredictability rather
than pseudorandomness).

More Related Work. This paper focuses on nonce-based (hence stateful)
MACs, but there is also an important line of work aiming at constructing state-
less and deterministic MACs secure beyond the birthday bound. However, exist-
ing constructions [Yas10,Yas11,DS11,ZWSW12] are far more complex than the
one presented in this paper. We mainly mentioned works related to provable
security; there is also a large number of papers (motivated by the analysis of the
widely deployed GCM mode [MV04]) investigating attacks against polynomial
hash-based MACs [Fer05,HP08,Saa12,PC15,ABBT15].

Open Problems. We prove the security of the EWCDM construction in the
nonce-respecting scenario up to 22n/3 MAC queries, but we conjecture that secu-
rity actually holds up to close to 2n queries (a similar conjecture holds for the
Encrypted Davies-Meyer construction).

The EWCDM construction uses two distinct keys for the two calls to the
block cipher; a natural question is whether security beyond the birthday bound
also holds when the same key is used. We believe this to be true, but likely cum-
bersome to prove. The corresponding question regarding the Encrypted Davies-
Meyer construction is even more intriguing: How many queries are required to
distinguish P (x⊕P (x)) from a random function? It might well be that this con-
struction is secure up to close to 2n queries, which would yield the first optimally
secure PRP-to-PRF conversion method which uses a single permutation (unlike
P1(x) ⊕ P2(x)) and does not shrink the domain (unlike P (x‖0) ⊕ P (x‖1)).
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Table 1. Proven security bounds (omitting constants and the term accounting for
the PRP-security of the underlying block cipher) for the Wegman-Carter construc-
tion WC[E, H], the Encrypted Wegman-Carter construction EWC[E, H], and the new
Encrypted Wegman-Carter with Davies-Meyer construction EWCDM[E, H].

Nonce-respecting Nonce-misusing

WC[E, H] (qm + qv)
2/2n + εqv —

EWC[E, H] (qm + qv)
2/2n + εqv (qm + qv)

2/2n + ε(qm + qv)
2

EWCDM[E, H] q
3/2
m /2n + εqm + qv/2n + εqv (qm + qv)

2/2n + ε(qm + qv)
2

Finally, it would be interesting to investigate how the security of EWCDM
is affected by tag truncation. We believe that the only change to be made to the
bound of Theorem3 is to replace the term 6qv/2n by a term O(qv/2�), where �
is the length of the truncated tag, but this remains to be proven.

Organization. We first establish the notation and recall standard security
definitions in Sect. 2. In Sect. 3, we recall the previous security results on the
Wegman-Carter and the Encrypted Wegman-Carter constructions, and describe
our new EWCDM construction. We then prove the security of EWCDM in the
nonce-respecting scenario in Sect. 4 and in the nonce-misusing scenario in Sect. 5.
We also analyze the Encrypted Davies-Meyer PRP-to-PRF conversion method
in the full version of the paper [CS16].

2 Preliminaries

Basic Notation. Given a non-empty set X , we denote X ←$ X the draw of
an element X from X uniformly at random. The set of all functions from X
to Y is denoted Func(X ,Y), and the set of all permutations of X is denoted
Perm(X ). The set of binary strings of length n is denoted {0, 1}n. The set of all
functions from {0, 1}n to {0, 1}n is simply denoted Func(n), and the set of all
permutations of {0, 1}n is simply denoted Perm(n). For integers 1 ≤ b ≤ a, we
will write (a)b = a(a − 1) · · · (a − b + 1) and (a)0 = 1 by convention. Note that
the probability that a random permutation P ←$ Perm(n) satisfies q equations
P (Xi) = Yi for distinct Xi’s and distinct Yi’s is exactly 1/(2n)q.

PRFs and Block Ciphers. A keyed function with key space K, domain X ,
and range Y is a function F : K × X → Y. We denote FK(X) for F (K,X).
A (q, t)-adversary against F is an algorithm A with oracle access to a function
from X to Y, making at most q oracle queries, running in time at most t, and
outputting a single bit. The advantage of A in breaking the PRF-security of F
is defined as

AdvPRF
F (A) =

∣
∣Pr
[
K ←$ K : AFK = 1

]
− Pr

[
R ←$ Func(X ,Y) : AR = 1

]∣∣ .

A block cipher with key space K and domain X is a mapping E : K×X → X
such that for any key K ∈ K, X �→ E(K,X) is a permutation of X . We denote
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EK(X) for E(K,X). A (q, t)-adversary against E is an algorithm A with oracle
access to a permutation of X , making at most q oracle queries, running in time
at most t, and outputting a single bit. The advantage of A in breaking the
PRP-security of E is defined as

AdvPRP
E (A) =

∣
∣Pr
[
K ←$ K : AEK = 1

]
− Pr

[
P ←$ Perm(X ) : AP = 1

]∣∣ .

Note that we do not need the strongest “two-sided” version of PRP-security
(where the adversary also has access to a decryption oracle) since all construc-
tions considered in this paper only use the forward (encryption) direction of the
underlying block cipher.

MACs. Given four non-empty sets K, N , M, and T , a nonce-based keyed func-
tion with key space K, nonce space N , message space M and range T is simply
a function F : K × N × M → T . Stated otherwise, it is a keyed function whose
domain is a cartesian product N × M. We denote FK(N,M) for F (K,N,M).

Definition 1 (Nonce-Based MAC). Let K, N , M, and T be non-empty sets.
Let F : K×N ×M → T be a nonce-based keyed function. For K ∈ K, let VerK be
the verification oracle which takes as input a triple (N,M, T ) ∈ N ×M×T and
returns 1 (“accept”) if FK(N,M) = T , and 0 (“reject”) otherwise. A (qm, qv, t)-
adversary against the MAC-security of F is an adversary A with oracle access
to the two oracles FK and VerK for K ∈ K, making at most qm “MAC” queries
to its first oracle and at most qv “verification” queries to its second oracle, and
running in time at most t. We say that A forges if any of its queries to VerK
returns 1. The advantage of A against the MAC-security of F is defined as

AdvMAC
F (A) = Pr

[
K ←$ K : AFK ,VerK forges

]
,

where the probability is also taken over the random coins of A, if any. The
adversary is not allowed to ask a verification query (N,M, T ) if a previous query
(N,M) to FK returned T . The adversary is said nonce-respecting if it never
repeats a nonce N ∈ N in its queries to the first oracle FK .

We say that an adversary is nonce-misusing if it does not abide to the rule of
non-repeating nonces. The MAC-security of F in face of nonce-misusing adver-
saries is defined exactly as above, and can be rephrased as the standard (i.e.,
not nonce-based) MAC-security of a keyed function with domain N × M.

AXU Hash Functions. We will need the following definition of an almost
xor-universal (AXU) hash function.

Definition 2 (ε-AXU Hash Function). Let Kh, X and Y be three non-empty
sets and ε > 0. A keyed function H : Kh × X → Y is said to be ε-AXU if for
any distinct X,X ′ ∈ X and any Y ∈ Y,

Pr [Kh ←$ Kh : HKh
(X) ⊕ HKh

(X ′) = Y ] ≤ ε.
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3 Wegman-Carter MAC Constructions

3.1 The Standard Wegman-Carter Construction

We recall the standard Wegman-Carter construction [WC81] of a nonce-based
MAC from an ε-AXU hash function and a PRF. Let K, Kh, and M be
non-empty sets. Let F : K × {0, 1}n → {0, 1}n be a keyed function and
H : Kh × M → {0, 1}n be an ε-AXU hash function. The Wegman-Carter con-
struction based on F and H is the nonce-based keyed function with key space
K × Kh, nonce space {0, 1}n, message space M, and range {0, 1}n defined by

WC[F,H]K,Kh
(N,M) = FK(N) ⊕ HKh

(M).

We recall the classical security result for this construction [WC81] and sketch
the proof for completeness. Here and in all the following, tH is an upper bound
on the time needed to compute HKh

(M) for any key Kh ∈ Kh and any message
M ∈ M.

Theorem 1. Let F and H be as above. Then for any (qm, qv, t)-nonce-respecting
adversary A against the MAC-security of WC[F,H], there exists a (qm + qv, t′)-
adversary A′ against the PRF-security of F , where t′ = O(t+(qm +qv)tH), such
that

AdvMAC
WC[F,H](A) ≤ AdvPRF

F (A′) + εqv.

Proof. Fix a (qm, qv, t)-nonce-respecting adversary A. Consider the WC con-
struction where FK is replaced by a uniformly random function R, and let δ be
the advantage of A against this new construction. By a straightforward hybrid
argument, there is an adversary A′, making at most qm + qv oracle queries, and
running in time O(t + (qm + qv)tH), such that

AdvMAC
WC[F,H](A) ≤ AdvPRF

F (A′) + δ.

The answers R(N)⊕HKh
(M) of the MAC oracle are now uniformly random and

independent from Kh. Consider the i-th verification query (N ′,M ′, T ′) of the
adversary. If N ′ never appeared in the MAC queries of the adversary, then T ′

is valid with probability 2−n. If N ′ = N for some previous MAC query (N,M)
that returned T , then the verification query is valid iff

R(N ′) ⊕ HKh
(M ′) = T ′ ⇔ HKh

(M) ⊕ HKh
(M ′) = T ⊕ T ′,

which happens with probability at most ε by definition of an ε-AXU hash func-
tion. (If M = M ′, then one must have T 
= T ′ by definition of the security
experiment, and the forgery cannot be valid.) Since for an ε-AXU hash func-
tion with range {0, 1}n one has ε ≥ 2−n, in all cases the forgery is valid with
probability at most ε. By a union bound over the qv verification queries, one has
δ ≤ εqv, which concludes the proof. �
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Assume now that F is a family of permutations of {0, 1}n, or in other words,
a block cipher, that we denote E. Then E can be distinguished from a random
function with q queries and advantage roughly q2/2n by simply looking for colli-
sions in its outputs. In other words, by the PRP-PRF switching Lemma [BR06],
the best upper bound one can hope to prove for the PRF-advantage of adversary
A′ appearing in Theorem 1, assuming that E is a secure PRP, is

AdvPRF
E (A′) ≤ AdvPRP

E (A′) +
(qm + qv)2

2n+1
,

so that the security bound for the resulting construction WC[E,H] now has
a birthday-type term. Bernstein [Ber05a,Ber05b] proved a better (but still of
birthday-type) bound: as long as qm ≤ 2n/2, the adversary can forge with prob-
ability at most Cεqv, for some small constant C (in all practical cases, C ≤ 2).
Note that the distinguishing attack against E does not seem to translate into
a forgery attack against the MAC scheme, and it might be possible to improve
the security bound under additional assumptions on H and E.

3.2 Nonce-Misuse Resistance and the Encrypted Wegman-Carter
Construction

In general, the standard Wegman-Carter construction of the previous section
does not offer any security against nonce-misusing adversaries. Consider for
example the case where H is a polynomial-based hash function. Then any adver-
sary who gets two tags T and T ′ for two different messages M and M ′ generated
with the same nonce knows that HKh

(M) ⊕ HKh
(M ′) ⊕ T ⊕ T ′ = 0. The left

hand side is a polynomial in Kh whose coefficients depend on M , M ′, T and T ′,
and Kh is a root of this polynomial. Even though its degree can be quite high,
this is often enough to mount devastating attacks. This weakness was one of the
main criticism against the GCM authenticated encryption mode [MV04], whose
authentication relies on the standard Wegman-Carter construction [Jou06].

The classical way to remedy this situation and achieve nonce-misuse resis-
tance for Wegman-Carter MACs is to apply an extra PRF layer to the out-
put of the construction. When this additional layer is a block cipher, one
obtains what we call the Encrypted Wegman-Carter (EWC) construction. Let
F : K × {0, 1}n → {0, 1}n be a keyed function, E : K′ × {0, 1}n → {0, 1}n be
a block cipher, and H : Kh × M → {0, 1}n be an ε-AXU hash function. Then
the EWC construction based on F , E, and H has key space K × K′ × Kh, nonce
space {0, 1}n, message space M, and range {0, 1}n, and is defined by

EWC[F,E,H]K,K′,Kh
(N,M) = EK′

(
WC[F,H]K,Kh

(N,M)
)

= EK′
(
FK(N) ⊕ HKh

(M)
)
.

One can straightforwardly verify that the security of this construction against
nonce-respecting adversaries does not depend on E and that the upper bound
of Theorem 1 still holds. For nonce-misusing adversaries, one has the following
(the proof is omitted since it is exactly the same, mutatis mutandis, as the proof
of Theorem 4 of Sect. 5).
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Theorem 2. Let F , E and H be as above. Then for any (qm, qv, t)-nonce-
misusing adversary A against the MAC-security of EWC[F,E,H], there exists
a (qm + qv, t′)-adversary A′ against the PRF-security of F and a (qm + qv, t′′)-
adversary A′′ against the PRP-security of E, where t′, t′′ = O(t + (qm + qv)tH),
such that

AdvMAC
EWC[F,E,H](A) ≤ AdvPRF

F (A′)+AdvPRP
E (A′′)+

2(qm + qv)2

2n
+

(qm + qv)2ε
2

.

It is tempting to implement F from E. The simplest way to do so is simply
to let F = E, thereby obtaining the construction (overloading notation EWC[·])

EWC[E,H]K,K′,Kh
(N,M) = EK′

(
EK(N) ⊕ HKh

(M)
)
.

However, the resulting MAC suffers from the same birthday-bound type problem
against nonce-respecting adversaries as the unencrypted Wegman-Carter MAC
WC[E,H] of Sect. 3.1. As already mentioned in introduction, it is possible to use
a PRP-to-PRF conversion method to obtain security beyond the birthday bound,
but using the best known constructions yields a MAC that makes at least three
calls to the underlying block cipher. Our goal is to reduce the number of block
cipher calls to two, which seems to be the minimum to achieve both security
beyond the birthday bound and nonce-misuse resistance.

3.3 The New Construction EWCDM

The main contribution of this paper is to propose a much simpler solution that
allows to get beyond the birthday bound, namely using the Davies-Meyer (DM)
construction which turns a block cipher E : K × {0, 1}n → {0, 1}n into a keyed
function as

DM[E]K(N) = EK(N) ⊕ N.

Using the DM construction based on E to instantiate F in EWC[F,E,H]
results in a MAC construction based only on E and H, which we call
Encrypted Wegman-Carter with Davies-Meyer (EWCDM) construction and
denote EWCDM[E,H], illustrated on Fig. 1 and defined as follows:

EWCDM[E,H]K,K′,Kh
(N,M)

def= EWC[DM[E], E,H]K,K′,Kh
(N,M)

= EK′
(
EK(N) ⊕ N ⊕ HKh

(M)
)
.

As already explained in introduction, the DM construction is not PRF-secure
beyond the birthday bound. Still, our main result, that we state and prove in the
next section, is that the EWCDM construction is secure up to roughly 22n/3 MAC
queries and 2n verification queries against nonce-respecting adversaries (while
against nonce-misusing adversaries it still enjoys birthday-bound security).

The security proof entails an analysis of what we call the Encrypted Davies-
Meyer (EDM) PRP-to-PRF conversion method, which turns two independent
permutations P and P ′ of {0, 1}n into a function of {0, 1}n to {0, 1}n defined as

EDM[P, P ′](N) = P ′(P (N) ⊕ N).
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By “stripping off” from the security proof of EWCDM all details related to the
hash function and verification queries, one can extract a proof that the EDM
construction is a secure PRF up to 22n/3 adversarial queries. We do so in the
full version of the paper [CS16], and the reader might want to read this simpler
proof before proceeding to Sect. 4. However, as already explained in introduction,
it does not seem possible to prove the MAC-security of the EWCDM construction
in a modular way from the PRF-security of the EDM construction.

Finally, note that adding the hash of the message to the output of the EDM
construction (rather than “in the middle”) would result in a construction secure
up to 22n/3 queries against nonce-respecting adversaries, but insecure against
nonce-misusing ones since it is just an instantiation of the standard WC con-
struction of Sect. 3.1 (with the EDM construction as PRF).

4 Nonce-Respecting Security of EWCDM

4.1 Statement of the Result and Overview of the Proof

In all the following, we simply denote Π[E,H] the EWCDM construction based
on block cipher E and AXU hash function H. Our main security result is as
follows.

Theorem 3. Let M, K and Kh be non-empty sets. Let E : K×{0, 1}n → {0, 1}n

be a block cipher and H : Kh × M → {0, 1}n be an ε-AXU hash function.
Then for any (qm, qv, t)-nonce-respecting adversary A against the MAC-security
of Π[E,H] with q

3/2
m ≤ 2n/4 and qv ≤ 2n/4, there exists a (qm+qv, t′)-adversary

A′ against the PRP-security of E, where t′ = O(t + (qm + qv)tH), such that

AdvMAC
Π[E,H](A) ≤ 2AdvPRP

E (A′) +
5q

3/2
m

2n
+

εqm

2
+

6qv

2n
+ εqv.

Hence, assuming ε � 2−n, the EWCDM construction is secure up to qm �
22n/3 MAC queries and qv � 2n verification queries.

In the remaining of the section, we prove Theorem3. We fix a (qm, qv, t)-
nonce-respecting adversary A against the MAC-security of Π[E,H] and we let

δ = AdvMAC
Π[E,H](A).

As specified in Definition 1, adversary A has access to a MAC oracle
Π[E,H]K,K′,Kh

and a verification oracle VerK,K′,Kh
for a randomly drawn key

tuple (K,K ′,Kh).
The first step of the proof is standard and consists in replacing EK and EK′

by two random and independent permutations P and P ′, both in the MAC and
in the verification oracle (in other words, we replace the block cipher E by the
perfect cipher E∗ whose key space is the set of all permutations of {0, 1}n). Let
Π[E∗,H] denote the resulting construction. It is easy to show that there exists



EWCDM: An Efficient, Beyond-Birthday Secure 133

an adversary against the PRP-security of E, making at most qm + qv oracle
queries and runnig in time at most O(t + (qm + qv)tH), such that

δ ≤ 2AdvPRP
E (A′) + AdvMAC

Π[E∗,H](A). (4)

(We replace successively EK and EK′ by a random permutation, each time
constructing an hybrid PRP-adversary, and we consider the best of the two
adversaries). Our goal is now to upper bound

δ∗ def= AdvMAC
Π[E∗,H](A)

= Pr
[
(P, P ′) ←$ Perm(n)2,Kh ←$ Kh : AΠ[P,P ′,HKh

],Ver[P,P ′,HKh
] forges

]
,

where, overloading the notation, Π[P, P ′,HKh
] denotes the construction

Π[E∗,H] instantiated with permutations P , P ′, and hashing key Kh and
Ver[P, P ′,HKh

] denotes the corresponding verification oracle.
It will be more convenient to express δ∗ as a distinguishing advantage.

Namely, let Rand denote a perfectly random oracle with domain {0, 1}n × M
and range {0, 1}n, and Rej be an oracle with inputs in {0, 1}n × M × {0, 1}n

which always returns 0 (“reject”). Since the adversary cannot forge (i.e., have
the right oracle return 1) when interacting with (Rand,Rej), we have

δ∗ = Pr
[
AΠ[P,P ′,HKh

],Ver[P,P ′,HKh
] forges

]
− Pr

[
ARand,Rej forges

]
.

Consider now an adversary D which queries a pair of oracles (O1,O2) and outputs
a bit β, which we denote DO1,O2 = β. (We will refer to such an adversary as
a distinguisher.) Say that such an adversary is non-trivial if it never makes a
query (N,M, T ) to its right (verification) oracle if a previous query (N,M) to
its left (MAC) oracle returned T . Then

δ∗ ≤ max
D

Pr
[
DΠ[P,P ′,HKh

],Ver[P,P ′,HKh
] = 1

]
− Pr

[
DRand,Rej = 1

]
, (5)

where the maximum is taken over non-trivial adversaries. (This follows easily by
considering the particular D which runs A and outputs 1 iff A successfully forges.)
Hence, we see that δ∗ cannot be larger than the advantage of the best non-trivial
distinguisher between the two pairs of oracles (Π[P, P ′,HKh

],Ver[P, P ′,HKh
])

and (Rand,Rej).5 This formulation of the problem now allows us to use the H-
coefficients technique [Pat08b,CS14], as we explain in more details below.

The H-Coefficients Technique. From now on, we fix a non-trivial distin-
guisher D interacting either with the real world (Π[P, P ′,HKh

],Ver[P, P ′,HKh
])

for uniformly random permutations (P, P ′) and a random hashing key Kh, or
with the ideal world (Rand,Rej), making at most qm queries to its left (MAC)

5 While a verification query answered by 1 constitutes an obvious distinguishing cri-
terion between the two worlds, a more advanced adversary might also use the small
difference between the distributions of the answers of the left (MAC) oracle.
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oracle and at most qv queries to its right (verification) oracle, and outputting a
single bit. We let

Adv(D) = Pr
[
DΠ[P,P ′,HKh

],Ver[P,P ′,HKh
] = 1

]
− Pr

[
DRand,Rej = 1

]
.

We assume that D is computationally unbounded (and hence wlog deterministic)
and that it never repeats a query. Let

τm =
(
(N1,M1, T1), . . . , (Nqm ,Mqm , Tqm)

)

be the list of MAC queries of D and corresponding answers. Let also

τv =
(
(N ′

1,M
′
1, T

′
1, b1), . . . , (N

′
qv ,M ′

qv , T ′
qv , bqv )

)

be the list of verification queries of D and corresponding answers (with bi ∈
{0, 1}). The pair (τm, τv) constitutes the queries transcript of the attack. For
convenience, we slightly modify the security experiment by revealing to the dis-
tinguisher (after it made all its queries but before it outputs its decision bit) the
hashing key Kh if we are in the real world, or a uniformly random “dummy” key
Kh if we are in the ideal world (this is obviously wlog since the distinguisher can
ignore this additional piece of information). All in all, the transcript of the attack
is the triplet τ = (τm, τv,Kh). We will often simply name a tuple (N,M, T ) ∈ τm

a MAC query, and a tuple (N ′,M ′, T ′, b) ∈ τv a verification query.
A transcript τ is said attainable (with respect to distinguisher D) if the

probability to obtain this transcript in the ideal world is non-zero. In particular,
note that for an attainable transcript τ = (τm, τv,Kh), any verification query
(N ′

i ,M
′
i , T

′
i , bi) ∈ τv is such that bi = 0.6 We denote Θ the set of attainable

transcripts. We also denote Xre, resp. Xid, the probability distribution of the
transcript τ induced by the real world, resp. the ideal world. The main lemma
of the H-coefficients technique is the following one (see e.g. [CS14] or [CLL+14]
for the proof).

Lemma 1. Fix a distinguisher D. Let Θ = Θgood
Θbad be a partition of the set
of attainable transcripts. Assume that there exists ε1 such that for any τ ∈ Θgood,
one has7

Pr[Xre = τ ]
Pr[Xid = τ ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[Xid ∈ Θbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

The remaining of the proof of Theorem3 is structured as follows: in Sect. 4.2,
we define bad transcripts and upper bound their probability in the ideal world;
in Sect. 4.3, we analyze good transcripts and prove that they are almost as likely
in the real and the ideal world. Theorem3 follows easily by combining Eqs. (4)
and (5) above, Lemmas 1, 2 and 3 proven below.
6 Hence, some transcripts are attainable in the real world but not in the ideal world.

While this is unusual (in most H-coefficients-based proofs, the set of transcripts
attainable in the real world is a subset of those attainable in the ideal world), this
is not a problem for Lemma 1 to hold.

7 Recall that for an attainable transcript, one has Pr[Xid = τ ] > 0.
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4.2 Definition and Probability of Bad Transcripts

We start by defining bad transcripts. We say that a MAC query (Ni,Mi, Ti) ∈ τm

is collisioning if there exists another MAC query (Nj ,Mj , Tj) ∈ τm with j 
= i
such Ti = Tj , otherwise we say it is non-collisioning.

Definition 3. We say that an attainable transcript τ = (τm, τv,Kh) is bad if
one of the following conditions is met:

(i) the number of collisioning MAC queries in τm is more than
√

qm;
(ii) there exists two distinct MAC queries (Ni,Mi, Ti) and (Nj ,Mj , Tj) in τm

such that {
Ti = Tj

Ni ⊕ HKh
(Mi) = Nj ⊕ HKh

(Mj);

(iii) there exists a MAC query (Ni,Mi, Ti) ∈ τm and a verification query
(N ′

j ,M
′
j , T

′
j , bj) ∈ τv such that

⎧
⎨

⎩

Ni = N ′
j

Ti = T ′
j

HKh
(Mi) = HKh

(M ′
j).

We denote Θbad, resp. Θgood the set of bad, respectively good transcripts.

We quickly comment on these three conditions. Condition (i) captures the
case where there are too many tag collisions and will be needed when lower
bounding the probability of getting a good transcript in the real world. Condition
(ii) can only happen in the ideal world and hence allows to trivially distinguish;
in the real world, if Ni ⊕ HKh

(Mi) = Nj ⊕ HKh
(Mj), then, since Ni 
= Nj

because the adversary is assumed nonce-respecting, one necessarily has

P (Ni) ⊕ Ni ⊕ HKh
(Mi) 
= P (Nj) ⊕ Nj ⊕ HKh

(Mj)

which implies Ti 
= Tj by applying P ′ to both sides of the inequality. Similarly,
condition (iii) can only happen in the ideal world since in the real world, if
Ni = N ′

j , Ti = T ′
j , and HKh

(Mi) = HKh
(M ′

j), one should have bj = 1 (while
bj = 0 in the ideal world).

We now upper bound the probability to get a bad transcript in the ideal
world.

Lemma 2. For any integers qm and qv, one has

Pr [Xid ∈ Θbad] ≤ q
3/2
m

2n
+

εqm

2
+ εqv.

Proof. We upper bound the probabilities of the three conditions in turn. We
denote Θi the set of attainable transcript that satisfy the i-th condition. Recall
that, in the ideal world, Kh is drawn independently from the queries transcript.
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Conditions (i) and (ii). We will deal with conditions (i) and (ii) together,
using the fact that

Pr [Xid ∈ Θ1 ∨ Xid ∈ Θ2] ≤ Pr [Xid ∈ Θ1] + Pr [Xid ∈ Θ2 | Xid /∈ Θ1] .

Since the adversary does not make useless queries, its MAC queries are distinct.
In the ideal world, the values Ti for i ∈ {1, . . . , qm} are then simply chosen
uniformly and independently at random from {0, 1}n. We introduce the random
variable

C =
∣
∣{(i, j) ∈ {1, . . . , qm}2, i 
= j, Ti = Tj

}∣∣ .

The number of collisioning MAC queries is always lower than C. Note that

E[C] =
∑

1≤i≤qm

∑

1≤j≤qm
i�=j

Pr [Ti = Tj ] ≤ q2m
2n

.

By Markov’s inequality,

Pr [Xid ∈ Θ1] ≤ Pr [C ≥ √
qm] ≤ q

3/2
m

2n
.

Assume now that Xid /∈ Θ1, i.e., τm is such that the number of collisioning
MAC queries is lower than

√
qm. Recall that Kh is chosen independently from

τm in the ideal world. Fix any (i, j) such that i 
= j and Ti = Tj . Since the
number of collisioning MAC queries is lower than

√
qm, there are at most qm/2

such pairs of queries. Then, since H is ε-AXU, one has

Pr [Kh ←$ Kh : Ni ⊕ HKh
(Mi) = Nj ⊕ HKh

(Mj)] ≤ ε

and, by summing over the at most qm/2 such pairs of queries, one has

Pr [Xid ∈ Θ2 | Xid /∈ Θ1] ≤ εqm

2
.

Hence,

Pr [Xid ∈ Θ1 ∪ Θ2] ≤ q
3/2
m

2n
+

εqm

2
.

Condition (iii). We consider any verification query (N ′
j ,M

′
j , T

′
j , bj) ∈ τv and

upper bound the probability that condition (iii) is satisfied for this particular
query. Since the adversary is nonce-respecting, there is at most one MAC query
(Ni,Mi, Ti) such that Ni = N ′

j . We distinguish two cases:

– If the verification query comes after the MAC query, then since the distin-
guisher is non-trivial, either Ti 
= T ′

j , or Mi 
= M ′
j . In the former case, condi-

tion (iii) cannot be satisfied, while in the latter case, the probability over the
random draw of Kh that HKh

(Mi) ⊕ HKh
(M ′

j) = 0 is at most ε.
– If the MAC query comes after the verification query, then Ti is random and

independent from T ′
j and the probability that Ti = T ′

j is 2−n.
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Since for an ε-AXU hash function with range {0, 1}n one has ε ≥ 2−n, we see
that in all cases condition (iii) is met with probability at most ε. Thus, by
summing over every verification query, one has

Pr [Xid ∈ Θ3] ≤ εqv.

The Lemma follows by an union bound over all conditions. �


4.3 Analysis of Good Transcripts

We now analyze good transcripts and prove the following lemma.

Lemma 3. Assume that q
3/2
m ≤ 2n/4 and qv ≤ 2n/4. Then, for any good tran-

script τ , one has
Pr [Xre = τ ]
Pr [Xid = τ ]

≥ 1 − 4q
3/2
m

2n
− 6qv

2n
.

Let τ = (τm, τv,Kh) be a good transcript. Since in the ideal world the MAC
oracle is perfectly random and the verification always rejects, one simply has

Pr[Xid = τ ] =
1

|Kh| · (2n)qm
. (6)

We must now lower bound the probability of getting τ in the real world. We say
that a pair of permutations (P, P ′) is compatible with τm if

∀i ∈ {1, . . . , qm}, Π[P, P ′,HKh
](Ni,Mi) = Ti,

and we say that it is compatible with τv if

∀i ∈ {1, . . . , qv}, Π[P, P ′,HKh
](N ′

i ,M
′
i) 
= T ′

i .

We simply say that (P, P ′) is compatible with τ if it is compatible with τm and τv.
We denote Comp(τm), Comp(τv), and Comp(τ) the set of pairs of permutations
that are compatible with respectively τm, τv, and τ . Then one can easily check
(see for example [CS14] for a detailed explanation) that

Pr[Xre = τ ] =
1

|Kh| · Pr
[
(P, P ′) ←$ Perm(n)2 : (P, P ′) ∈ Comp(τ)

]
. (7)

MAC Queries Transcript. We will first consider the probability that a ran-
dom pair (P, P ′) is compatible with the MAC queries transcript τm. To ease the
notation, we reorder the transcript as follows. Let r be the number of distinct
tags T appearing in MAC queries. Then we rewrite the transcript so that all
queries with the same tag are consecutive, so that the MAC queries transcript
(that we still denote τm) is now

τm =
(
(N1,1,M1,1, T1), . . . , (N1,q1 ,M1,q1 , T1),
(N2,1,M2,1, T2), . . . , (N2,q2 ,M2,q2 , T2),
. . . ,

(Nr,1,Mr,1, Tr), . . . , (Nr,qr ,Mr,qr , Tr)
)
,
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where T1, . . . , Tr are distinct and
∑r

i=1 qi = qm.
Our goal is now to lower bound the probability that a random pair of per-

mutations (P, P ′) satisfies

∀i ∈ {1, . . . , r},∀j ∈ {1, . . . , qi}, P ′(P (Ni,j) ⊕ Ni,j ⊕ HKh
(Mi,j)

)
= Ti.

For this, we will consider the possible “internal” values Zi = (P ′)−1(Ti). We say
that a tuple Z = (Z1, . . . , Zr) of distinct values in {0, 1}n is good if

(a) all qm values Zi ⊕ Ni,j ⊕ HKh
(Mi,j) for i ∈ {1, . . . , r}, j ∈ {1, . . . , qi} are

distinct;
(b) for every verification query (N ′,M ′, T ′, b) ∈ τv such that N ′ = Ni,j and

T ′ = Tk for some i ∈ {1, . . . , r}, j ∈ {1, . . . , qi}, and k ∈ {1, . . . , r} with
k 
= i, one has

Zi ⊕ HKh
(Mi,j) ⊕ HKh

(M ′) 
= Zk.

Property (a) is needed since the values Zi ⊕ Ni,j ⊕ HKh
(Mi,j) are the images

by P of the (distinct) nonces Ni,j . Property (b) will be needed later when lower
bounding the probability that (P, P ′) is compatible with the verification tran-
script τv.

Given a good tuple Z, the probability, for a randomly drawn pair (P, P ′),
that
{

∀i ∈ {1, . . . , r},∀j ∈ {1, . . . , qi}, P (Ni,j) = Zi ⊕ Ni,j ⊕ HKh
(Mi,j),

∀i ∈ {1, . . . , r}, P ′(Zi) = Ti

(8)

is exactly
1

(2n)qm(2n)r
. (9)

(This is simply the probability that P satisfies q1 + . . . + qr = qm equations and
P ′ satisfies r equations.)

It remains to lower bound the number NZ of good tuples Z, which can
be done as follows. First, note that by definition of a good transcript, for any
i ∈ {1, . . . , r}, the values Zi ⊕ Ni,j ⊕ HKh

(Mi,j) for 1 ≤ j ≤ qi are distinct since
otherwise condition (ii) defining a bad transcript would be fulfilled (without
that, good tuples Z would not exist). In the following, for i, k ∈ {1, . . . , r} with
k < i, we denote q′

i,k the number of verification queries (N ′,M ′, T ′, b) ∈ τv such
that either N ′ = Ni,j for some j ∈ {1, . . . , qi} and T ′ = Tk, or N ′ = Nk,j for
some j ∈ {1, . . . , qk} and T ′ = Ti. Note that since a verification query can count
for at most one pair (i, k), one has

r∑

i=2

i−1∑

k=1

q′
i,k ≤ qv. (10)

Then,

– there are at least 2n possibilities for Z1;
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– once Z1 is fixed, there are at least 2n −1− q2q1 − q′
2,1 possibilities for Z2 since

Z2 must be different from the following values:
• Z1,
• Z1 ⊕ N1,j ⊕ HKh

(M1,j) ⊕ N2,j′ ⊕ HKh
(M2,j′) for all j ∈ {1, . . . , q1} and

all j′ ∈ {1, . . . , q2} (in order for property (a) to be fulfilled),
• Z1⊕HKh

(M1,j)⊕HKh
(M ′) for every verification query (N ′,M ′, T ′, b) ∈

τv such that N ′ = N1,j for some j ∈ {1, . . . , q1} and T ′ = T2, and Z1 ⊕
HKh

(M2,j) ⊕ HKh
(M ′) for every verification query (N ′,M ′, T ′, b) ∈ τv

such that N ′ = N2,j for some j ∈ {1, . . . , q2} and T ′ = T1, which amounts
to at most q′

2,1 values (in order for property (b) to be fulfilled);
– once Z1, . . . , Zi are fixed, there are at least 2n −i−qi+1

∑i
k=1 qk −

∑i
k=1 q′

i+1,k

possibilities for Zi+1 since Zi+1 must be different from the following values:
• Z1, . . . , Zi,
• Zk ⊕ Nk,j ⊕ HKh

(Mk,j) ⊕ Ni+1,j′ ⊕ HKh
(Mi+1,j′) for all k ∈ {1, . . . , i},

all j ∈ {1, . . . , qk}, and all j′ ∈ {1, . . . , qi+1},
• Zk⊕HKh

(Mk,j)⊕HKh
(M ′) for every verification query (N ′,M ′, T ′, b) ∈

τv such that N ′ = Nk,j for some k ∈ {1, . . . , i}, j ∈ {1, . . . , qk} and
T ′ = Ti+1, and Zk ⊕HKh

(Mi+1,j)⊕HKh
(M ′) for every verification query

(N ′,M ′, T ′, b) ∈ τv such that N ′ = Ni+1,j for some j ∈ {1, . . . , qi+1} and
T ′ = Tk for some k ∈ {1, . . . , i}, which amounts to at most

∑i
k=1 q′

i+1,k

values.

Hence, the number of good tuples Z = (Z1, . . . , Zr) is at least

NZ ≥
r−1∏

i=0

(

2n − i − qi+1

i∑

k=1

qk −
i∑

k=1

q′
i+1,k

)

. (11)

Verification Queries Transcript. From now on, we fix a good tuple Z.
We will now lower bound the probability that a random pair (P, P ′) is compatible
with the verification transcript τv, conditioned on (P, P ′) satisfying the set of
Eq. (8). (Recall that P is then fixed on qm values and P ′ is fixed on r values.)
For this, it will be easier to upper bound the probability that (P, P ′) is not
compatible with τv, i.e., that there exists (N ′,M ′, T ′, b) ∈ τv such that

P ′(P (N ′) ⊕ N ′ ⊕ HKh
(M ′)

)
= T ′. (12)

Fix any verification query (N ′,M ′, T ′, b) ∈ τv. We say that it is nonce-fresh,
resp. tag-fresh, if N ′, resp. T ′ does not appear in the MAC queries transcript
τm.8 We consider four possible cases.

8 We stress that this freshness definition is with respect to the entire MAC queries
transcript τm, independently of when the verification query was actually made by
the distinguisher.
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– Case 1: the verification query is both nonce-fresh and tag-fresh. Then P (N ′) is
random and two sub-cases can occur: if P (N ′) ⊕ N ′ ⊕ HKh

(M ′) ∈ Z, Eq. (12)
cannot be satisfied since the query is tag-fresh; on the other hand, if P (N ′) ⊕
N ′ ⊕ HKh

(M ′) /∈ Z, Eq. (12) is satisfied with probability 1/(2n − r) over
the choice of P ′. Hence, over the choice of (P, P ′), Eq. (12) is satisfied with
probability at most

1
2n − r

≤ 1
2n − qm

.

– Case 2: the verification query is nonce-fresh, but not tag-fresh. Then there
exists (N,M, T ) ∈ τm such that T = T ′. Let Z = (P ′)−1(T ) (this value is well
defined since we assume Eq. (8) are satisfied). Then Eq. (12) is satisfied iff

P (N ′) = Z ⊕ N ′ ⊕ HKh
(M ′),

hence with probability exactly 1/(2n − qm) since the query is nonce-fresh and
N ′ does not appear in Eq. (8).

– Case 3: the verification query is tag-fresh, but not nonce-fresh. Then there
exists a unique (N,M, T ) ∈ τm such that N ′ = N , so that P (N ′) is fixed by
Eq. (8). If P (N ′)⊕N ′ ⊕HKh

(M ′) ∈ Z, then Eq. (12) cannot be satisfied since
the query is tag-fresh. If P (N ′)⊕N ′ ⊕HKh

(M ′) /∈ Z, then Eq. (12) is satisfied
with probability

1
2n − r

≤ 1
2n − qm

.

– Case 4: the verification query is neither nonce-fresh nor tag-fresh. Then there
exists a unique (Ni,j ,Mi,j , Ti) ∈ τm such that N ′ = Ni,j and (Nk,Mk, Tk) ∈
τm (with possibly k = i) such that T ′ = Tk. If k = i, then Eq. (12) cannot be
satisfied since otherwise one would have

P (N ′) ⊕ N ′ ⊕ HKh
(M ′) = (P ′)−1(Ti) = P (Ni,j) ⊕ Ni,j ⊕ HKh

(Mi,j),

which implies HKh
(M ′) = HKh

(Mi,j) and condition (iii) defining a bad tran-
script would be fulfilled. On the other hand, if k 
= i, then Eq. (12) being
satisfied would imply

P (N ′) ⊕ N ′ ⊕ HKh
(M ′) = (P ′)−1(Tk) = Zk

⇒P (Ni,j) ⊕ Ni,j ⊕ HKh
(M ′) = Zk

⇒Zi ⊕ HKh
(Mi,j) ⊕ HKh

(M ′) = Zk,

and this would contradict property (b) of a good tuple Z. Hence, by definition
of a good transcript and a good tuple Z, we see that Eq. (12) cannot be
satisfied in that case.

Summarizing, we see that for any verification query, Eq. (12) is satisfied with
probability at most 1/(2n − qm). By a union bound over the qv verification
queries, we obtain that

Pr [(P, P ′) ∈ Comp(τv) | (P, P ′) satisfies Eq. (8)] ≥ 1 − qv

2n − qm
. (13)
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Summing Up. We can now lower bound the probability that a random pair
(P, P ′) is compatible with τ , that we denote

p(τ)
def= Pr

[
(P, P ′) ←$ Perm(n)2 : (P, P ′) ∈ Comp(τ)

]
.

Namely, summing over all good tuples Z, and using (9), (11), and (13), we have

p(τ) ≥ NZ × Pr [(P, P ′) satisfies Eq. (8)]
× Pr [(P, P ′) ∈ Comp(τv) | (P, P ′) satisfies Eq. (8)]

≥
∏r−1

i=0

(
2n − i − qi+1

∑i
k=1 qk −

∑i
k=1 q′

i+1,k

)

(2n)qm(2n)r

(
1 − qv

2n − qm

)
.

This, in turn, allows us to lower bound the ratio of the probabilities to obtain τ
in the real and the ideal world, namely combining (6) and (7) with the equation
above, we have

Pr [Xre = τ ]
Pr [Xid = τ ]

≥
(2n)qm

∏r−1
i=0

(
2n − i − qi+1

∑i
k=1 qk −

∑i
k=1 q′

i+1,k

)

(2n)qm(2n)r︸ ︷︷ ︸
A

×
(

1 − qv

2n − qm

)
. (14)

We focus on term A, that we can rewrite

A =
qm−1∏

i=0

(
1 +

i

2n − i

) r−1∏

i=0

⎛

⎜
⎜
⎝1 − qi+1

∑i
k=1 qk

2n − i︸ ︷︷ ︸
ai

−
∑i

k=1 q′
i+1,k

2n − i︸ ︷︷ ︸
bi

⎞

⎟
⎟
⎠ . (15)

The following “Bonferroni-type” inequality will be useful to further lower
bound A.

Lemma 4. Let r ≥ 1 be an integer and (ai)0≤i≤r−1 and (bi)0≤i≤r−1 be positive
reals such that ai ≤ 1/2 and bi ≤ 1/2 for all i ∈ {0, . . . , r − 1}. Then

r−1∏

i=0

(1 − ai − bi) ≥
r−1∏

i=0

(1 − ai)
r−1∏

i=0

(1 − 2bi).

Proof. The proof is by induction. We first prove it for r = 1. One has

(1−a0)(1−2b0) = 1−a0 −2b0 +2a0b0 = 1−a0 − b0 − b0(1 − 2a0)︸ ︷︷ ︸
≥0

≤ 1−a0 − b0.
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Assume that the result holds for r ≥ 1. Then

r∏

i=0

(1 − ai)
r∏

i=0

(1 − 2bi) =
r−1∏

i=0

(1 − ai)
r−1∏

i=0

(1 − 2bi) × (1 − ar)(1 − 2br)︸ ︷︷ ︸
≥0

≤
r−1∏

i=0

(1 − ai − bi) × (1 − ar − br − br(1 − 2ar))

=
r∏

i=0

(1 − ai − bi) − br(1 − 2ar)
r−1∏

i=0

(1 − ai − bi)

︸ ︷︷ ︸
≥0

≤
r∏

i=0

(1 − ai − bi).

The result holds for r + 1 and the lemma follows. �


We can apply this lemma to the r.h.s. of (15). Indeed, for any i ∈ {0, . . . , r −
1}, one has qi+1 ≤ √

qm (as otherwise condition (i) of a bad transcript would be
met), and q

3/2
m ≤ 2n/4 by assumption, so that

ai
def=

qi+1

∑i
k=1 qk

2n − i
≤ qi+1

∑i
k=1 qk

2n − qm
≤ 2q

3/2
m

2n
≤ 1

2
,

Moreover, by (10) and the assumption that qv ≤ 2n/4, one has

bi
def=
∑i

k=1 q′
i+1,k

2n − i
≤
∑i

k=1 q′
i+1,k

2n − qm
≤ 2qv

2n
≤ 1

2
.

Hence,

A ≥
qm−1∏

i=0

(
1 +

i

2n − i

) r−1∏

i=0

(

1 − qi+1

∑i
k=1 qk

2n − i

)
r−1∏

i=0

(

1 −
2
∑i

k=1 q′
i+1,k

2n − i

)

≥
qm−1∏

i=0

(
1 +

i

2n − i

) r−1∏

i=0

(

1 − qi+1

∑i
k=1 qk

2n − i

)(

1 −
2
∑r−1

i=0

∑i
k=1 q′

i+1,k

2n − qm

)

≥
qm−1∏

i=0

(
1 +

i

2n − i

) r−1∏

i=0

(

1 − qi+1

∑i
k=1 qk

2n − i

)

︸ ︷︷ ︸
A′

(
1 − 2qv

2n − qm

)
, (16)

where for the last inequality we used (10).
In order to further lower bound A′, we need to distinguish collisioning MAC

queries from non-collisioning ones. Up to reordering the MAC queries transcript,
we assume that non-collisioning queries come first, and we let s ∈ {0, . . . , r} be
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the integer such that qi = 1 for i ∈ {1, . . . , s}, and qi > 1 for i ∈ {s + 1, . . . , r}.
Note that since the transcript is good, one has

r∑

i=s+1

qi ≤ √
qm (17)

as otherwise condition (i) of a bad transcript would be fulfilled. Then

A′ ≥
qm−1∏

i=0

(
1 +

i

2n − i

) s−1∏

i=0

(

1 − qi+1

∑i
k=1 qk

2n − i

)
r−1∏

i=s

(

1 − qi+1

∑i
k=1 qk

2n − i

)

=
qm−1∏

i=0

(
1 +

i

2n − i

) s−1∏

i=0

(
1 − i

2n − i

) r−1∏

i=s

(

1 − qi+1

∑i
k=1 qk

2n − i

)

≥
qm−1∏

i=0

(
1 − i2

(2n − i)2

) r−1∏

i=s

(
1 − qi+1qm

2n − i

)

≥
qm−1∏

i=0

(
1 − i2

(2n − qm)2

) r−1∏

i=s

(
1 − qi+1qm

2n − qm

)

≥
(

1 − q3m
3(2n − qm)2

)(
1 −

qm

∑r
i=s+1 qi

2n − qm

)

≥
(

1 − 4q3m
3 · 22n

)(

1 − 2q
3/2
m

2n

)

, (18)

where for the last inequality we used (17) and qm ≤ 2n/2.
Combining (14), (16), and (18), we finally obtain (using qm ≤ 2n/2 once

again)
Pr [Xre = τ ]
Pr [Xid = τ ]

≥ 1 − 4q3m
3 · 22n

− 2q
3/2
m

2n
− 6qv

2n
.

Lemma 3 follows using q3m/22n ≤ q
3/2
m /2n by our assumption that q

3/2
m ≤ 2n/4.

5 Nonce-Misuse Security of EWCDM

In this section, we consider the security of the EWCDM construction when
the adversary is allowed to repeat nonces. In this setting, PRF-security implies
MAC-security, hence we can simply consider the EWCDM construction as a
function with domain N × M and study its pseudorandomness. Our result on
the PRF-security of the EWCDM construction is as follows.

Lemma 5. Let M, K and Kh be non-empty sets. Let E : K ×{0, 1}n → {0, 1}n

be a block cipher and H : Kh × M → {0, 1}n be an ε-AXU hash function.
Then for any (q, t)-(nonce-misusing) adversary A against the PRF-security of
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Π[E,H], there exists a (q, t′)-adversary A′ against the PRP-security of E, where
t′ = O(t + qtH), such that

AdvPRF
Π[E,H](A) ≤ 2AdvPRP

E (A′) +
q2

2n
+

q2ε

2
.

The corresponding MAC-security can easily be deduced from Lemma 5 using
the following generic result of Bellare et al. [BGM04, Proposition 7.3].

Lemma 6. Let F be a keyed function with output length n. Then for any
(qm, qv, t)-adversary A against the MAC-security of F , there exists a (qm+qv, t′)-
adversary A′ against the PRF-security of F , where t′ = O(t), such that

AdvMAC
F (A) ≤ AdvPRF

F (A′) +
qv

2n
.

Combining Lemmas 5 and 6, we obtain the following theorem (absorbing the
qv/2n term into (qm + qv)2/2n).

Theorem 4. Let M, K and Kh be non-empty sets. Let E : K×{0, 1}n → {0, 1}n

be a block cipher and H : Kh × M → {0, 1}n be an ε-AXU hash function.
Then for any (qm, qv, t)-nonce-misusing adversary A against the MAC-security
of Π[E,H], there exists a (qm + qv, t′)-adversary A′ against the PRP-security of
E, where t′ = O(t + (qm + qv)tH), such that

AdvMAC
Π[E,H](A) ≤ 2AdvPRP

E (A′) +
2(qm + qv)2

2n
+

(qm + qv)2ε
2

.

The proof of Lemma 5 is standard (indeed, the construction, seen as a keyed
function with domain N ×M, follows the classical “hash-then-PRF” paradigm).
We include it below for completeness.

Proof of Lemma 5. Fix a (q, t)-adversary A against the PRF-security of
Π[E,H]. The first step of the proof consists in replacing EK and EK′ by two
uniformly random and independent permutations P and P ′. It is easy to show
that there is an adversary A′ making at most q queries and running in time at
most t′ = O(t + qtH) such that

AdvPRF
Π[E,H](A) ≤ 2AdvPRP

E (A′) + AdvPRF
Π[E∗,H](A), (19)

where E∗ denotes the perfect cipher on {0, 1}n. Then, we use the PRP/PRF
switching lemma [BR06] to replace the random permutations P and P ′ by two
independent and uniformly random functions R and R′, obtaining

AdvPRF
Π[E∗,H](A

′) ≤ q2

2n
+ AdvPRF

Π[F ∗,H](A), (20)

where F ∗ denotes the perfect keyed function from {0, 1}n to {0, 1}n (i.e., the
keyed function with key space Func(n)).



EWCDM: An Efficient, Beyond-Birthday Secure 145

It remains to upper bound the PRF-advantage of A against Π[F ∗,H]. For
this, we use the H-coefficients technique. The adversary must distinguish between
two worlds:

– the real world in which it interacts with Π[R,R′,H] where R and R′ are two
uniformly and independently drawn functions from {0, 1}n to {0, 1}n;

– the ideal world in which it receives independent and uniformly random
answers.

Let τm = ((N1,M1, T1), . . . , (Nq,Mq, Tq)) be the list of all queries of A and the
corresponding answers. In order to have a simple description of bad transcripts,
we reveal to the adversary at the end of the experiment the key Kh and the
function R if we are in the real world, while in the ideal world we simply draw a
dummy key Kh ←$ Kh and a function R independently from the answers of the
oracle. All in all, the transcript of the interaction of A with its oracle is a tuple
τ = (τm,Kh, R) and, in this case, a transcript is said attainable (with respect
to an adversary A) if the probability to obtain it in the ideal world is non-zero.
We denote Θ the set of attainable transcripts. We also denote Xre, resp. Xid,
the probability distribution of the transcript τ induced by the real world, resp.
the ideal world.

We start by defining the set of bad transcripts.

Definition 4. We say that an attainable transcript τ = (τm,Kh, R) is bad if
there exists distinct queries (N,M, T ), (N ′,M ′, T ′) ∈ τm such that

R(N) ⊕ N ⊕ HKh
(M) = R(N ′) ⊕ N ′ ⊕ HKh

(M ′).

Otherwise we say that τ is good. We denote Θbad, resp. Θgood, the set of bad,
resp. good transcripts.

We first upper bound the probability to get a bad transcript in the ideal
world.

Lemma 7.

Pr [Xid ∈ Θbad] ≤ q2ε

2
.

Proof. Let τm be any attainable query transcript. Recall that, in the ideal
world, the key Kh and the function R are drawn uniformly at random and
independently from the query transcript τm. Fix any pair of distinct queries
(N,M, T ), (N ′,M ′, T ′). Two cases can occur:

– M 
= M ′: then the probability, over the random draw of Kh and R, that
R(N)⊕N ⊕HKh

(M) = R(N ′)⊕N ′ ⊕HKh
(M ′) is lower than ε by the ε-AXU

property of H;
– M = M ′: then, since we assume that the adversary never makes redundant

queries, N 
= N ′ and the probability that R(N)⊕N = R(N ′)⊕N ′ is 1/2n ≤ ε.

By summing over every possible pair of queries, one gets the result. �
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We then analyze good transcripts.

Lemma 8. For any good transcript τ , one has

Pr [Xre = τ ]
Pr [Xid = τ ]

= 1.

Proof. Let τ = (τm,Kh, R) be a good transcript. One has

Pr [Xid = τ ] =
1

|Kh| · 1
|Func(n)| · 1

(2n)q

since, in the ideal world, the oracle is perfectly random and the key Kh and the
function R are chosen uniformly at random and independently from the query
transcript.

We say that a function R′ ∈ Func(n) is compatible with the transcript τ if
R′(R(Ni) ⊕ Ni ⊕ HKh

(Mi)) = Ti for all i ∈ {1, . . . , q}. Let Comp(τ) be the set
of all compatible functions R′. Then it is easy to see that

Pr [Xre = τ ] =
1

|Kh| · 1
|Func(n)| · Pr [R′ ←$ Func(n) : R′ ∈ Comp(τ)] .

Since τ is a good transcript, the values R(Ni) ⊕ Ni ⊕ HKh
(Mi) are distinct.

Hence
Pr [R′ ←$ Func(n) : R′ ∈ Comp(τ)] =

1
(2n)q

and therefore Pr [Xre = τ ] = Pr [Xid = τ ]. �


Combining Lemmas 1, 7, and 8, one obtains

AdvPRF
Π[F ∗,H](A) ≤ q2ε

2
. (21)

Lemma 5 finally follows from Eqs. (19), (20), and (21).

Acknowledgments. Many thanks to Thomas Peyrin. This paper stemmed from dis-
cussions with him, and he took part to the early stages of this work.
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