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A b s t r a c t .  This paper proposes a bit commitment scheme, BC(-), and 
e1~icient statistical zero knowledge (in short, SZK) protocols in which, for 
any given multi-variable polynomial f ( X 1 ,  . . ,X~) and any given modu- 
lus n, prover :P gives (I1,. . ,h) to verifier V and can convince V that 
7 ~ knows (xl,.., xt) satisfying f ( x l , . . ,  x~) -- 0 (mod n) and I, = BC(x~) ,  
(i = 1, .., t). The proposed protocols are O(Inl) times more efficient than 
the corresponding previous ones [Dam93, Dam95, Oka95]. The (knowl- 
edge) soundness of our protocols holds under a computational assump- 
tion, the intractability of a modified RSA problem (see Def.3), while the 
(statistical) zero-knowledgeness of the protocols needs no computational 
assumption. The protocols can be employed to construct various practi- 
cal cryptographic protocols, such as fair exchange, untraceable electronic 
cash and verifiable secret sharing protocols. 

1 I n t r o d u c t i o n  

I . I  P r o b l e m  

In many cryptographic protocols, a party often wants to prove something related 
to his secret while concealing his secret from the others. Such relations are often 
specified by modular polynomials and bit commitments are very useful in such 
protocols. This paper focuses on the following problem: for given multi-variable 
polynomial f ( X 1 , . . , X t )  and modulus n, a par ty  (prover) P gives (I1, ..,It) to  
another par ty  (verifier) V and convinces 1; that  P knows (Xl, . . ,xt) satisfying 
] ( x l ,  .., x t )  - 0 (mod u) and I, -- B C ( x l ) ,  (i = 1, .., t) ,  without revealing the 
values, X 1 , . . ,  Xt.  

This problem is indeed raised on many cryptographic protocols. In fair ex- 
change and contract signing protocols based on RSA signatures [Dam93, Dam95], 
(n, e) is the public-key of the RSA scheme, f ( x )  = x e - m and  I = B C ( x ) .  
After proving that  7 ~ knows x satisfying the relations, P releases x bit by bit 
using I .  In untraceable off-line electronic cash protocols, restricted blind signa- 
tures [Bra95, Oka95] play an important  role, where, for instance, f ( x l ,  x2, x3) = 
( x l x 2 ) x ~  and  11 = B C ( x l )  and  I2 = B C ( x 2 ) .  After proving that  7 ) knows 
(X l ,X2 ,X3)  satisfying the relations, ]; stores /1 and /2. If 7 ~ double-spends a 
coin, ]; can get (Xl, x2) from x l x 2  as evidence of double-spending (See [Oka95] 
for more details). If f is a polynomial and n is a prime for Shamir's secret 
sharing scheme, some protocols related to secret sharing such as (publicly) veri- 
fiable secret sharing [CGMA85, Ped91, Sta96] can be interpreted as this type of 
problem. 
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1.2 Prev ious  Works 

Theoretically, the general construction of protocols to solve the above-mentioned 
problem has been already given assuming that a secure bit commitment scheme 
exists. This is derived from the results of zero knowledge proof for NP-language 
[GMRa89, GMW86, BCC86] and converting them to proof of knowledge [FFS88, 
TW87, BG92]. Depending on the types of the underlying bit commitment schemes, 
there exist two different results: namely, computational ZK (CZK) for interactive 
proof (IP) and perfect ZK (PZK) for argument (eomputationally-sound proof). 
However, those protocols are very inefficient in general. 

In 1993, Damg&rd proposed the first efficient protocol to solve the problem 
with a specific form for constructing a fair exchange and contract signing proto- 
col [Dam93, Dam95]. He proposed the protocols in which prover :P can convince 
verifier V that he knows s of bit commitment BC(s )  and that it is a Rabin sig- 
nature (s = m 1/2 mod n) or a RSA signature (s = m 1/~ rood n), for a message 
m. The protocols are PZK computationally-sound proof of knowledge systems 
(PZK arguments of knowledge). Those protocols essentially consist of some prim- 
itives: a bit commitment scheme and three protocols, which correspond to the 
basic, comparing, and rood-multi protocols in this paper. His basic protocol is the 
protocol in which P proves to l) that secret s is in a given range [a, b) and the 
comparing and mod-multi protocols are compositions of the basic protocol. It is 
easy to construct a PZK argument of knowledge for any multi-variable modular 
polynomial (f, n) based on these primitives. 

In 1995, Okamoto showed another application of the problem above. He con- 
structed an RSA-type restricted blind signature for his untraceable off-line elec- 
tronic cash [Oka95] by using similar primitives: a bit commitment scheme and 
three protocols, which are essentially equivalent to those of Damgs except 
for the bit commitment scheme. 

Unfortunately, both of their protocols are not so efficient, because 13, in their 
basic protocols, needs to request :P to open one of the commitments, BC(t) or 
BC(t+s), many times (the so called cut-and-choose method). 

1.3 Resu l t s  

This paper gives a more efficient solution to the problem above than previ- 
ous ones. We first propose primitives, a bit commitment scheme and four (sta- 
tistical) witness indistinguishable (WI) protocols (See [FS90] for WI). Then 
we construct, by using these primitives, statistical zero-knowledge protocols 
(SZK argument of knowledge) in which, for any given multi-variable polynomial 
f (X1 ,  .., Xt )  and any given modulus n, prover :P gives (I1, --,/t) to verifier ]3 and 
can convince l) that :P knows (Xl,..,  xt) satisfying f ( x l ,  .., xt) =- 0 (mod n) and 
I~ = BC(x i ) ,  (i = 1, .., t) without revealing any additional information. The pro- 
posed protocols are O(Inl) times more efficient than the corresponding protocols 
in [Dam93, Dam95, Oka95], because our protocols do not need to confirm that 
a secret is in any range nor to execute any (single-bit based) cut-and-choose 
method. At the same time, the communication complexity of our protocols is 
O(Inl) times less than those of [Dam93, Dam95] and [Oka95]. Although a set- 
up procedure for the parameter of the underlying bit-commitment is necessary 
and plays an essential role to satisfy the zero-knowledgeness of our protocols, 
the procedure can be done separately before the main parts of the protocols 
in pre-processing and can be shared by repeated execution of the main parts. 
(Similarly, a set-up procedure is also necessary in [Dam93, Dam95].) 
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A computational assumption, the intractability of a modified RSA prob- 
lem (defined in Def.3), is necessary to prove the (knowledge) soundness regard- 
ing (Xl, .., xt) in our protocols, while no computational assumption is required 
for (statistical) zero-knowledgeness. In addition, any poly-time bounded prover 
P ' can  open the bit commitment in any different ways with negligible probability 
under the factoring assumption. 

These protocols can be employed to construct various practical cryptographic 
protocols such as fair exchange, untraceable electronic cash and some protocols 
regarding secret sharing. In Section 5, we demonstrate how to employ the 
proposed protocols to construct the fair exchange and contract signing protocol. 

2 D e f i n i t i o n s  a n d  A s s u m p t i o n s  

This section mainly defines the factoring assumption and the modified RSA 
problem and its assumption; the modified RSA problem is a little different from 
the well-known RSA problem at the point that a cracking algorithm, A, can on 
input (N, Y) choose a convenient exponent, e (_> 2), to output (X, e) such that 
X -- ~ (mod N) (Of course, it is less intractable than the factoring problem 
since a cracking algorithm, A, which can factor N, can solve the modified RSA 
problem of N). The validity (soundness) of the whole protocols against 7 ~ can 
be guaranteed under Assumption 4 while the validity of the commitment against 

can be guaranteed under Assumption 2. 

Definition 1. f(n) is negligible in n if, for any constant c, there exists a con- 
stant, N, such that f in) < ( l /n)  ~ for any n > N. f(n) is non-negligible in n 
if, there exits constants c and N such that fin) > ( l /n)  c for any n > N. f(n) is 
overwhelming in n if, for any constant c, there exists a constant, N, such that 
f(n) > 1 - ( l /n)  r for any n > N. 

Assumption 2. (Factoring Assumption) A probabilistic polynomial-time gen- 
erator A1 exists which on input IlNI outputs composite N where N is a compos- 
ite of two prime numbers, P and Q, such that for any probabilistic polynomial- 
size circuit family, A, the probability that A can factor N is negligible. The 
probability is taken over the random choices of A1 and A. 

Definition 3. Modif ied RSA prob lem is, for given (N, Y), finding X and e 
( e >_ 2 ), such that Y - X ~ (rood N), where N is the composite of two prime 
numbers, P and Q. 

Assumption 4. (Modified RSA Assumption) A probabilistic polynomial- 
time generator A2 exists which on input IlNI outputs (N, Y) such that for any 
probabilistic polynomial-size circuit family A, the probability that A can solve 
the modified RSA problem is negligible. The probability is taken over the random 
choices of A2 and A. 

In this paper, we use the following symbols. "a ER S" means uniformly choos- 
ing a random element, a, from a set, S. Let ZN be a residue class ring modulo 
N, and Z~v the reduced residue class group. Other symbols and definitions will 
be set as needed. 
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3 B i t  C o m m i t m e n t  a n d  W I  p r o t o c o l s  

In this section, we propose a bit commitment scheme, and four WI protocols. The 
suitable parallel executions of those protocols, for any multi-variable polynomial 
](X1, .., Xt) and any modulus n, can construct an WI protocol over the relation 
( ( I 1 , . . , / t , h + l ) ,  ( x l , rh . . , x t , r t ,  y, rt+l) ) such tha t  y -- f ( x l , . . , x t )  (mod n) 
(For simplicity, we often call the protocol WI protocol to confirm y = f(Xl, .., xt) 
(mod n)). We show later, as an example, a WI protocol to confirm y =- ax 5 + 
b mod n. 

3.1 Bit Commitment  Scheme 
Our proposed commitment statistically reveals to the verifier no information of 
secret s in BC(s)  and holds computational validity against the prover. The valid- 
ity of the commitment is guaranteed if the factoring assumption (Assumption 2) 
holds true. The commitments are given by 

BCbo(S,r) = boSbr 1 rood N or BCbo(s,rl,r2) = boSb~11b~2 mod N. 

Here, (N, bo, bl, b2) is a set of system parameters given by verifier Y or au- 
thority (i.e. trusted third party). 

To set the system parameters, verifier ]2 (or authority) executes the following 
procedure: 

[Set-up procedure] 

1. ~ generates large primes, P and Q, including odd prime divisors, p and q, 
such that  p = (P  - 1)/2, q = (Q - 1)/2, and p ~ q). 

2. 12 finds at random gp e Gp\{1}, and gq E Gq\{1}, where Gp, Gq are sub- 
groups of the order p, q in Zb, Z~ respectively (The complexity of finding gp 
and gq is comparable to that  of finding generator elements of Z~ and Z~). 

3. ~ computes, bo E Z~v, by using the Chinese Remainder Theorem, such that  
bo = gp rood P and bo = gq rood Q (b0 is a generator element of Gpq). 

4. ]) finds at random a, ~ E Z~q and sets bl = bo a mod N and b2 = bo a rood N. 
5. Y sends (N, bo, bx, b2) to prover 7 ~ . Then Y proves that  he knows a,  a -1 , 

/~, and/~-1 such that  bl -- bo a mod N, and b2 -- bo a mod N in the zero 
knowledge manner (that is, the orders of b0, bl,and b2 are equivalent). 

In the bit-commitment phase, 7 ) sends to Y ,  BCbo (x, r) = b0Zbl r mod N or 
BCbo(X, rl,r2) = b0Zblrlb2 r2 mod N where x �9 [ 0, N) is a secret and r, rl,r2 �9 
[ 0, 2 raN) are auxiliary random numbers. 

L e m m a  5. ( I n d i s t i n g u i s h a b i l i t y ) / f r o  = O([N[), BCbo (x, r) and BCbo (x, rl, r2) 
statistically reveal no information of x to 12 . 

The following results show that  the validity (security) of these commitments 
are guaranteed if the factoring assumption (Assumption 2) holds true. 

L e n n n a  6. (Mil ler)  Let N = p~l ...p~m be the prime factorization of the odd 
integer g .  Let A(N) : lcm{p~l-l(pl - 1), ..,p~n~-l(pm -- 1)} (the Carmichael 
A-function) and L be a multiple of A(N) (i.e., A(N)IL ). There exists a prob- 
abilistic polynomial-time algorithm M which, on input (N, L), can output the 
factorization of N with non-negligible probability in INI. (Note: N is given by 
A1 and the probability is taken over the coin tosses of A 1 and M.)  
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The proof of Lemma 6 is implied by Theorem 2 in [Mi176]. 

Definition 7. (Generator ABC) Let ABe be a probabilistic polynomial-time 
algorithm which on input 11NI outputs (N, bo, bl, b2) where the distribution of 
N is equal to that of A2 and (bo, bl, b2) is generated by the Se t -up  p r o c e d u r e  
of the bit commitment scheme. 

Theorem8.  (Validity against 7)*) If  Assumption 2 holds true, there exists 
no probabilistic polynomial-time algorithm 7)* which, on input ( N, bo, bl), given 
by ABC, can output (sl, rx) and (s2, r2), with non-negligible probability in INI, 
where (s l , r l )  # (s2,r2) and bo'lb~ ' - bo82b~ 2 (mod g) .  (Note: the probability 
is taken over the coin tosses of ABc and 7)*.) 

Sketch of Proof: 
The proof is by contradiction. Assuming that a probahilistic polynomial-time 

algorithm 7)* can output (s l , r l )  and (s2, r2), with non-negligible probability, 
then we can construct a probabilistic poly-time algorithm M which can factor 
N with non-negligible probability. Let s -- sl - s2 ,  and r = r 2 - r l .  The algorithm 
P* above can be replaced by the algorithm which, on input (N, bo, bl), can output 

boSbl r - 1 (mod N), (1) 

where (s, r) r (0, 0). In addition, by Lemma 6, the algorithm M can be replaced 
by the algorithm which on input N outputs L' such that )~(N)[L'. 

The strategy of M is the following: 

Algor i thm M 

1. Input N generated by ABc to M. 
2. M picks bo ER ZN and t~ ER (0,2kN) (k = O([ND), then computes bl = 

bo a mod N. 
3. M inputs (N, bo, bl) to 7)*. 
4. If 7 ~* returns (s,r), go the next step, otherwise M halts. 
5. M outputs L = 2(r - as) if L r 0, otherwise halts. 

The algorithm M can output L with non-negligible probability. 
When M picks bo uniformly in ZN in Step 2, the probability that the order 

of b0 is pq is non-negligible because ~(Pq) (P-1)(q-D 1 #ZN = (2p+l)(2q+l) ~ ~' where ~o(.) is 
the Eulerian function and ~(pq) is the number of generators of Gpq. This means 
that the distribution of a non-negligible fraction (about 1/4) of (N, b, bl)'s picked 
by M is indistinguishable from those generated by ABe. 7 )* therefore outputs 
(s, r) with non-negligible probability in Step 4. In Step 5, the probability of 
L ~ 0 is non-negligible. This is because even infinite power 7)* can only know 
a0 -- c~ mod pq. Therefore, if a is uniformly picked in [0, 2kN), the probability 
of L r 0 is non-negligible. From equation (1), L - 0 (mod pq). This means 
that 

L = 2kpq : kA(N), (2) 

where k ~ 0, A(N) = lcm(P - 1, Q - 1). [] 
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Corollary 9. (Va l id i ty  aga ins t  79*) If  Assumption 2 holds true, there exists 
no probabilistie polynomial-time algorithm 79* which, on input ( N, bo, bl, b2), 
given by ABC, can output (t, u, v) ~ (0, 0, 0) such that b~b~b~ = 1 (mod N) ,  
with non-negligible probability. 

If base bo is clear, we use the expressions BC(s, r) and BC(s, rl ,  r2). If aux- 
iliary parameters are not important,  we use just  BC(s). 

3.2 Basic P r o t o c o l  

Let R (1) ( N , b o , b l )  :=  { ( / '  (x,r))[I = J~C(N,bo,bl)(X,r)). The basic protocol is (sta- 

tistical) witness indistinguishable (WI) over the relation ~(1) and convinces * ~( N,bo,bl  ) 
that  79 knows (x, r) such that I = BC(N,bo,bl)(x, r). 

[Basic P r o t o c o l ]  

1. )2 executes with 79 the set-up procedure for parameter (N, bo, bl, b2). 
2. 79 sets I = BC(N,bo,b~)(x,r) and sends it to V .  
3. 79 chooses w ~ w~ eR [0, 22raN) and sets w ~ w I by w ~ = w ~ - 22mN and 

w21 = w~ -22roW. 79 picks four elements, w2,3 's eR [ 0, 2raN), then computes 
0 1 2 t,,3 = BC(wi,  wj, wij), where 1 < i , j  < 2. 

4. 79 sends to 1?, four unordered commitments, ti,j's. 
5. )2 picks a challenge c � 9  [ 0, 2 m) and sends it to 79 . 

1 such that  X , R  �9 [0, 22raN), and o and R = c r + w j  6. 79 s e t s X  = c x + w  i 
sends to 1), the pair, ( X,  R, w?,,3 )" 

7. ]2 checks there exists a tij such that  BC(X,  R, w2j) = t, ,jI ~ (mod N).  

The completeness is obvious, since when X = cx+wi  ~ and R = cr+w~ (if 7 9 is 
honest, there exists X,  R E [ 0, 22raN) ), the left-hand side in the verification 
equation is equal to the right-hand, because 

8 1ll 0 r 1 2 0 1 2 
boXblRb2 ~~ =- bo c + 'bl c +W~bzW',~ =_ boW'bl~Jb2~',~I c (rood N).  

L e m m a  10. ( S o u n d n e s s )  Under Assumption 4, there exists a probabilistic poly- 
time algorithm M such that, for any probabilistic poly-time algorithm 7 9., if 
probabilistic interactive algorithm (79",1) ) accepts with non-negligible probabil- 
ity in INI, then M with ABe and 79*as oracles can extract (x,r) satisfying 
I = BC(N,bo,bl)(x,r) with overwhelming probability in IN I where I is given by 
79* as output. The success probability of (79",V) is taken over the coin tosses of 
79* and 1; (including ABe) ,  while the success probability of M over those of 
ABC, 79* and M. 

The proof of the soundness is given in Appendix A. 

L e m m a  11. (Witness Indist inguishable)  Ifm = O(IND andx, r �9 [0, 2"nN), 
the basic protocol is statistically witness indistinguishable over Rll),bo,bl ). 
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3.3 Checking Protocol 

The following protocol is considered as a kind of the basic protocol. However, 
since it is also utilized in the mod-mult i  protocol and in Subsection 3.6, we 

s tate  it as a different one. Let ~(2) "~(N,bo) :---- {(1,7)1 1 = b~ mod  N}.  The  checking 

"o (~) protocol is WI  over the relatl n R(N,ao) and convinces l) tha t  50 can know ~/such 

that  I = bo ~ mod  N.  

[Checking Protocol] 

1. ]) executes with 50 a set-up procedure for (N, b0, bl). 
2. 50 sets I -- bo 7 mod N and sends it to l ) .  
3. 50 chooses w ~ � 9  [ 0, 22"~l) and sets w ~ by w ~ = w ~ - 22ml. 50 picks two 

elements, 1, [ 0, 2raN), then computes tl BCbo(W ~ 1 = w i ), where 1 < w i s � 9  
i < 2 and I := max[b - a, N]. 

4. 50 sends to  ] ; ,  two unordered commitments ,  ti 's. 
5. l; picks a challenge c � 9  [ 0, 2 " )  and sends it to 50. 
6. 50 sets X := c(7 - a) + w  ~ �9 [ 0, 22ml), and sends to Y ,  the pair, (X,  wl) .  
7. Y checks there exists a tij such tha t  B C ( X , w  1) - t i(Ibo-a) ~ (mod N) .  

The following results are easily obtained by the propert ies of the basic pro- 
tocol. 

L e n ~ a a  12. ( S o u n d n e s s )  Under Assumption 4, there exists a probabilistic al- 
gorithm M such that, for any probabilistic poly-time algorithm 50", i f  probabilistic 
interactive algorithm (50",V) accepts with non-negligible probability in INI, then 
M with ABC and 50* as oracles can extract 7 satisfying I = bo ~ rood N with 
overwhelming probability in IN[ where I is given by 50*as output. The success 
probability of (50",1) ) is taken over the coin tosses of 50* and V (including 
ABC),  while the success probability of M over those of A B e ,  50* and M.  

L e m m a  13. (Witness Indistinguishable) If  m = O(INI) and 7 �9 [ a, b ), the 
checking protocol is statistically witness indistinguishable o v e r  R( N,bo).(2) 

3.4 Comparing Protocol 

Let Rl3),bo,bl,, ) := (((I1,I2), (x, rl,r2))]It = BCbo(X, rl) , I~ = BC~(x,  r2)}. The 

~(3) in which 50 can convince comparing protocol is WI  over the relation "~(N,bo,bl,~)' 
l) tha t  he knows (x, r l ,r2)  such t h a t / 1  = BCbo(X, rl) and I2 = BCa(x,  rz). 

[Comparing Protocol] 

1. ]) executes with 50 the set-up procedure for parameters  (N, bo, bt, b2). 
2. 50 sets 11 = BCbo(x, rl) and 12 = BCa(x,  r2), and sends them to ]) . 

0 1 2 3. P computes, for 1 _< i, j < 2, tii = BCbo (w ~ wJ, w, 2) and u,j = BCa(w i , Tlj , 71~j). 
4. 50 sends to V ,  four unordered pairs, (ti,3, ui j ) ' s .  
5. V picks a c ER [ 0, 2 "~) and sends it to 50 . 

o R1 := crl + w J ,  and R2 := c r 2 + w ~  such tha t  6. 50 sets X := c x + w  i ,  
X,  R1 R2 �9 [ 0, 22'~N). 50 then sends to V , the pair, 2 2 , (X, R1, R~, wi,~, 7h,k). 
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7. V checks that  there exists a pair ( tl,j, u~,k ) such that  

BCbo(X, Rl,W, 2) - ti,jI~ (mod N) and B C , ( X ,  R2,~j )  = u , , j~  (rood N).  

If l) sets a new base a, he has to convince P that  there exists an a such that  
a = b0 ~ mod N before executing this protocol, but  in many cases, a is set by 7) as 
a := 11. Note that  in the case of a := /1 ,  7) can show )2/2 = BCbo(x2,r lx l  +r2) .  
This means P can convince ]) that  commitments, BCbo (x, r l)  and BCbo (y, r2), 
satisfy y = x 2. 

The following results are easily obtained by the properties of the basic pro- 
tocol. 

Lem_ma 14. ( S o u n d n e s s )  Under Assumption 4, there exists a probabilistic al- 
gorithm M such that, for any probabilistic poly-time algorithm 7)*, i] probabilistic 
interactive algorithm (P*,V ) accepts with non-negligible probability in INI, then 
M ,  with A B C and 7)*as oracles, can extract ( x, r l , 7"2) with overwhelming prob- 
ability in INI, where (/1,I2) is given by 7)*as output, and h = bo~b~ ~ mod N,  
I2 = a~b~ 2 mod N.  The success probability of (7)*,)2) is taken over the coin 
tosses of P* and ]2 (including ABe) ,  while the success probability of M over 
those of ABe ,  7 )* and M .  

L e n n n a  15. ( W i t n e s s  I n d i s t i n g u i s h a b l e )  / I r a  = O(IN D and xl ,  rl ,  x2, r2 E 
[ 0, 2raN), the comparing protocol is statistically witness indistinguishable over 
R(3) 

( N,bo,bl ) " 

3.5 M o d - M u l t i  P r o t o c o l  

R(4) .-s L e t  .~ (N ,bo ,b l ) . - -  t ( ( I i , I2 ,  I3 ) , ( x l , r , , . . , x3 , r3 ) )  I Ii = BC(x~,r~), x3 - -  X l X 2  

(mod n) }. The mod-multi  protocol is WI over the relation n(4) (We call it "~( N,bo,bl ) 
a rood-multi protocol to confirm x3 - XlX2 (mod n)). In the mod-multi  proto- 
col, 7) can convince V that  he knows ( x l , x2 , x3 , r l , r2 , r3 )  such that  x3 - xlx2 
(mod n), where /1  = BCbo(Xl, r l) ,  I2 = BCbo (x2, r2) a n d / 3  = BCbo(X3, r3). 

[ M o d - M u l t i  P r o t o c o l ]  

1. ]2 executes with 7) the set-up procedure and sends to P ,  parameters (N, b0, bl, b2). 
2. P sets I i  ----- BCbo(Xl,rl) ,  12 = BCbo(X2,r2), and Is = BCbo(Xs, rs), and 

sends them to l ) .  
3. P sets I 5 = BCl2(Xl,r4) = BCbo(X, x2,rsxl  + r 4 ) ,  and Ia = BC~(d,  rd) 

where d = (xs - XlX2)/n. 
4. P executes in parallel with ]2 the comparing protocol for (I1,I~) and the 

three basic protocols f o r / 2 , / 3 ,  and Id. 
5. P computes 7 = (r2xl + r4 + rdn) -- r3, and executes with ]2 the checking 

protocol for b~ = I3(I~Id~) -1 rood N and range [ -2"~N, 22"~+1N) over the 
relation ~(2) "~(N,b~)" 

In this protocol, P executes one comparing protocol, three basic protocols, 
and one checking protocol for b~ in parallel. (in the case of xl = x2 the number 
of the basic protocols is reduced to two). This protocol is also WI. 
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L e m m a  16. ( S o u n d n e s s )  Under Assumption 4, there exists a probabilistic al- 
gorithm M such that, for any probabilistic poly-time algorithm 7 9., if  probabilistic 
interactive algorithm (79",1)) accepts with non-negligible probability in [NI, then 
M,  with AB e and 79*as oracles, can extract (Xl, r l ,  .., x3, r3) with overwhelming 
probability in IN[, where (I1,I2,I3) is given by 79*as output, Ii = BC(x i ,  r,)(i = 
1 , . . . , 3 )  and x3 - XlX2 (rood n). The success probability of (79",1;) is taken 
over the coin tosses of 7 9* and 12 (including A B e ) ,  while the success probability 
of M over those of A B e ,  79* and M.  

S k e t c h  o f  P r o o f :  
From lemma 10, if (P* , I ; )  has non-negligible success probability, we can con- 

struct a probabilistic poly-time knowledge extractor  M, which extracts (Xl, r l ,  .., 
x3, r3) and d such that  I, = BC(x i ,  ri) and x3 = XlX2 +dn (mod pq). Then the 
probability of x3 # XlX2 +dn is negligible. If it is non-negligible, we can construct 
an algorithm M' ,  with poly-time bounded 79*as an oracle, which can factor N 
given by A B e  with non-negligible probability in IN[. This is a contradiction. 
M '  indeed extract  L such that  L = 2(x3 - XlX2 - d n )  ( = 2kpq = kA(N) ) 
where A(N) = lcm(P - 1, Q - 1). By Lemma 6, this contradicts Assumption 2 
and thereby contradicts Assumption 4. Consequently, M extracts (Xl, x2, x3, d) 
such tha t  x3 -- XlX2 (mod n) with overwhelming probability in ]N[. [] 

L e m m a  17. ( W i t n e s s  I n d i s t i n g u i s h a b l e )  I f  m = O([N[) and Xx, rl, .., x3, r3 
E [ 0, 2raN), the rood-multi protocol is statistically witness indistinguishable over 
R(4) 

(N,b0,bl)" 

3.6 W I  p r o t o c o l  to  C o n f i r m  y -- ax  5 + b (mod n)  

We show, as an example, a WI protocol to confirm y -- ax 5 + b mod n. 
Let [Xl,X2;X3] be the mod-multi  protocol to confirm xa - xlx2 (mod n) 

and let [Xl;X2] be the mod-multi  protocol to confirm x2 - Xl 2 (mod n). 
Prover 79 sets (Iy, Ix, Id, I1,12,13) as (BCbo (y, r~), BCbo (x, r), BCbo (d, rd), 

BCbo(tl), BCbo(t2), BCbo(t3,r3)) where d = y-(at3+b) tl = x 2 m o d n ,  t2 
x 4 mod n and t 3 = X 5 mod n. 7 ) executes with V the two basic protocols for I v 
and Id and the three mod-multi  protocols, [x; tl], [tl; t2], and [x, t2; t3], in parallel. 
79 then executes with V a checking protocol for b~ and range [ -2 raN,  22re+iN), 

where 7 = ar3 + rdn -- ry and b~ =_ I~bob(IyId) -1 (mod N).  

4 S t a t i s t i c a l  Z e r o  K n o w l e d g e  P r o t o c o l  

In this section, we state the main results of this paper. As mentioned above in 
Section 3, for any multi-variable polynomial f ( X t ,  .., Xt) and any modulus n, we 
can construct a statistical WI protocol to prove that  P knows (xl,  r t ,  .., xt, rt ,  
y, r t+l)  such that  iT, -- BC(x i , r l )  (i = 1,. . , t ) ,  / t+l  = BC(y ,  rt+l), and y - 
] (Xl , . . , x t )  (mod n). This WI protocol can be transformed to the following 
statistical zero knowledge (SZK) protocol. 

Here, we define some terminology. Let ] be a multi-variable polynomial. 
Let 3 :={( ] ,n) l  S(Xl , . . ,x t )e  Z t s.t. f ( x l , . . , x t )  - 0 mod n}. We can assume, 
without loss of generality, coefficients of f ,  number of variables in f ,  i.e. t, and 
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parameters (N, bo, bl, b2) are related to modulus n regarding their size (that is, 
the size of them is O(InD). 

The SZK protocol is constructed as follows: 

[SZK Pro toco l ]  
c o m m o n  i n p u t :  (f,n). 
o u t p u t :  I1,--, It, N, b0, bl, and the remaining conversation of (7) , V ). 
k n o w l e d g e  of  7) : (xi, r l ,  .., xt, rt) such that  I, = BC(N,bo,bl) (X,, r,) (i = 1, .., t) 

and f (x l , . . , x t )  -- 0 (mod n). 

1. %; executes with 7) a set-up procedure for (N, bo, bl,/)2)- 
2. 7) se t s / ,  := BCbo(xi,ri) (i = 1, ..,t), It+l := BCbo(O, rt+l), and sends them 

to %). 
3. 7) executes, with l ; ,  the WI protocol mentioned above to prove that  7) knows 

x l , r l , . . , x t , r t ,  and y, rt+l such that  Ii = BC(xi , r i )  (i = 1,. . , t) ,  / t+l  = 
BC(y ,  rt+l), and y =_ f ( x l , . . , x t )  (mod n) where y = 0. 

4. 7) sends rt+l to 1). 
5. %; checks that  It+l = BC(O, rt+O (mod N). 

P r o v e r  7 ~ Verif ier  %) 

( ~l~rl~ . . , x t , r t , O ,  r t+l  ) 

s e t - u p  p r o c e d u r e  
for (N, bo, bl, b2) 

( 

11, ..., It+l 
) 

a WI protocol 
to confirm 
f(xl ,  .., xt) 
-- 0 mod n. 

?t+l 

11, .., It, It+l 

r t+l  ) / t+ l  ------ BC(0 ,  r t+l)  

Fig. 1. The SZK protocol that convinces V that /)knows (Xl,..,Xt) satisfying 
](Xl,.. ,xt) -- 0 (rood n) and Ii ---- SC(x  0 (i = 1,.., t). 

T h e o r e m  l8 .  (Soundness )  Under Assumption 4, there exists a probabilistic 
poly-time algorithm M such that, for any probabilistie poly-time algorithm P* 
and for any input ( f ,n )  E S,  if probabilistic interactive algorithm (TP*,]; ) accepts 
on input ( f ,n )  with non-negligible probability in [nl, then M,  with ABO and 
7)*as oracles, can extract (xl, rl ,  . . . ,  xt, rt) with overwhelming probability in 
Inl, where I, = B C ( x , , r  0 and It(x1, ..,xt) - 0 mod n. The success probability 
of (P*,Y ) is taken over the coin tosses of 7 )* and Y (including ABe) ,  and the 
success probability of M over those of ABe ,  7)* and M.  
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Sketch of  Proof: 
Assume that  (79",])) has non-negligible success probability. The sketch of the 

proof is as follows: M executes, with 79", the set-up procedure for parameters 
(N, bo,bl,b2) given by ABe, in which M should convince 7 9* that  he knows 
c~, c~ -1, ~, and ~-1 such that  bl -- bo a mod N, and b2 = bo ~ mod N. Instead 
of using the values, c~, a -1, f~, and/~-1,  M can execute the set-up procedure 
using the resetable simulation technique for 79* because the set-up procedure is a 
zero-knowledge system of (M, 79*). After M completes the set-up procedure, 79* 
sends to M, 11, .., It, and It+l to start a WI protocol. Note that  this protocol has 
(knowledge) soundness over the relation ((I1,.., It, It+ 1 ),  (Xl, rl,--, xt, rt, O, rt+l )) 
such that  /i  = BC(x i , r i )  (i = 1,.. , t) ,  It+l = BC(O, rt+l), and f ( x l , . . , x t )  =- 
0 mod n. Therfore M can extract from 79* desirable witnesses, (Xl, rl,  . . . ,  xt, 
rt, O, rt+l).  [] 

Theorem 19. (Zero Knowledge) Let m = O(InJ). There exists a probabilistic 
algorithm M which runs in expected polynomial time such that, for any 1;*, and 
for any common input (f ,  n) E S,  the view of 1)* is statistically indistinguishable 
from the output of M with 1)* as an oracle. 

Sketch of  Proof: 
Let M be an expected poly-time algorithm allowed to use V* as an ora- 

cle. M can extract a and c~ -1 from 1)* in the set-up procedure. Let L := 
a a  -1 - 1. Note that  the order of b0, bl, and b2 divides L. Next, M chooses 
x~,r l ,  ' ' . . . ,  ' �9 . ,x t , r t , r t+l  ER [ 0, 2raN) and sets If ,  I~ a n d / t + l  := BC(O, rt+l). 
M computes y := f(x~, . . ,x~t)mod n and r~+ 1 :-- rt+l - a - l y  mod L. Note 
that  It+l = BC(O, rt+l) = BC(y,r~+l).  M executes with 1)* a (statistical) 
WI protocol over the relation ((/~, .., I f , / t+ l ) ,  (x~, r~, .., x~, r~, y, r~+l) ) such that  
If = BC(x:,r~) (i = 1 , . . , t ) , / t+ l  = BC(y,r~+I), and y - f (X l , . . , x t )  (mod n). 
Finally, M sends rt+l to 1)*. 

Here the distribution of (I1, ---, /t ,  / t+l)  such that  / ,  = BC(x i , r , )  (i = 
1 , . . , t ) , / t+ l  = BC(O, rt+l) and f(Xl, . . ,xt) = 0 (mod n) and that  of (/~, . . . ,  
g ,  / t+l)  such that  Ii = BC(x:,r~) (i = 1,.. ,t),  It+l = BC(y,r't+l) and y = 
f(Xl,  .., xt) (mod n) are statistically indistinguishable. In addition, for common 
input (I~, . . . ,  If, / t+l)  the protocols with witness (Xl, rl,  . . . ,  xt, rt, O, rt+l)  
and with witness (x~, r~, . . . ,  x~, r~, y, r~+l) are statistically indistinguishable. 
Therefore the view of 1;* is also statistically indistinguishable from the output 
o f M  v*. [] 

Example 1. Suppose that  f ( X )  -- X ~ - m (mod n). :P can prove, in the statis- 
tical zero knowledge manner, that  he knows s such that  f ( s )  -- 0 (rood n) and 
BC(s) .  

Remark. Although the set-up procedure is described in the first step of the 
proposed SZK protocol, the procedure can be executed in an off-line manner 
before the remaining protocol begins. In addition, the set-up procedure can be 
shared by repeated execution of the main protocol. The zero-knowledgeness is 
still guranteed even if the set-up procedure is shared by repeated execution of 
the main protocol between 79 and 1). 
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5 A p p l i c a t i o n  t o  Fair Exchange and Contract  Signing 

We propose a gradual release protocol to realize fair exchange and contract 
signing. We modify our commitments into bit releascable commitments like 
those of [Dam93, Dam95] for our gradual release protocol. The protocol is as 
follows: 

V executes with 7 ) a set-up procedure and they hold parameters ( N, b0, bl, b2) 
in common. P a n d  Vse t  I such that  Is t < I and compute b~ : -  b 2 ~ mo d N 
( V should prove that  he knows (21) -1 mod pq in the ZK manner to show that  bl 
and b~ have the same order) ( se t -up  phase) .  P sends to V ,  (m, BCbo,b,~(s, rl), 
BCbo,b,~ (0, r2)). For parameters (N, b0, b~, b2), 7 ~ executes, with V ,  the protocol 
to confirm that  BCb,e~ (s, rl) and BCb,b,~ (0, r2) satisfy the relation s ~ - m -= 0 
(mod n), where (e, n) are RSA (or Rabin) public-key. P then open the commit- 
ment BCb,b,~ ( 0, r) ( conf i rming  phase) .  7 ) releases the secret s bit by bit from 
the least-significant bit (LSB). Let sk be the remaining secret of s after k bit re- 

lease. :P opens the LSB of sk by revealing X~+x -- bo~=~b~ 2~-k-~ mod N. V can 
know the LSB of sk by checking Xk -= X~+lbo i (mod N) (bit  by  b i t  re lease  
phase). 

6 E f f i c i e n c y  

We compare our protocols with those in [Dam95] from the view points of compu- 
tational and communication complexity. In [Dam95], the commitment is defined 
by the form BC(s,r)  = gSr2~ mod N. As our comparing and rood-multi proto- 
cols are constructed in a similar manner to those in [Dam95], it is enough to 
compare our basic protocol with that  in [Dam95]. Our comparing protocol is 
composed of at most two basic protocols and our mod-multi protocol consists of 
three basic, a comparing, and a checking protocols. Therefore those in [Dam95] 
have nearly the same construction. We assume below that  m = INI = Inl = Ic[. 

We estimate the computational complexity of the both basic protocols from 
the number of modular multiplications. In our basic protocol, P needs to com- 

pute four auxiliary parameters, t i j 's  (tij = boW~ and ]) needs to check 

the verification t i jI  c = boXb~b2 '~, where Iw~ = Iw~l = IXI = ]R I = 122mY[ = 
3m and Iwi~l = [2mNI = 2m./~ and V both need O(m) modular multiplications 
of N (about 32m, 9m respectively). In Damgs basic protocol, 7 ~ needs to 

compute 2m auxiliary parameters, ti's (ti = gW~ and V needs to check 
m verifications, t i I =  gXR2', where Iw~ = Iwll = IXt = 3m and l = 2m. 
P and V both need O(m 2) modular multiplications of N (about 6m 2, 3m 2 re- 
spectively). Accordingly, our protocol is about O(m) times more efficient than 
Darags 

The amount of communication in our basic protocol is O(m) bits since 4]tijl+ 
Icl + IXI + IRI + Iw2jI = 8m while that  of [Dam95] is O(m 2) bits since m .  (21ti I + 
IX] + IRI) = 4m 2. Hence, the communication complexity of ours is also Oim ) 
times less than that  of Damg~rd's. 

Comparing our protocols with those in [Oka95], the modulus size of Okamoto's 
bit commitment, BC(s, r) = g~G r mod p, should be at least twice ours. Hence, 
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our protocol is about O(m 3) times more efficient than [Oka95]. The communi- 
cation complexity of ours is also O(m)  times less than that of [Oka95]. 

7 Conclusions 

We have proposed a bit commitment scheme, BC(-), and related statistical 
zero knowledge (SZK) protocols in which, for any given multi-variable poly- 
nomial f ( X 1 ,  .., X t )  and any given modulus n, prover P gives (h ,  .-, It) to ver- 
ifier l )and can convince l ) tha t  :P knows (Xl , . . , x t )  satisfying f (x l ,  . . ,xt)  = 0 
(mod n) and Ii = B C ( x i ) ,  (i = 1, .., t). The proposed protocols are O(Inl) times 
more efficient than the corresponding previous ones [Dam93, Dam95, Oka95]. 
The (knowledge) soundness of our protocols holds under a computational as- 
sumption, the intractability of the modified RSA problem, while the (statistical) 
zero-knowledgeness of the protocols needs no computational assumption. We 
have also shown the applications of fair exchange and contract signing by using 
the proposed protocol. 
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A P r o o f  o f  L e m m a  10  

Sketch of  Proof:  
The top level strategy of knowledge extractor M is as follows: 

P r o t o c o l :  
S tep  1 M inputs llnl to A B e  and gets parameter (N, b0, bl,b2). 
S tep  2 M executes, with P*, the set-up procedure for parameters (N, b0, bl, b2), 

in which M should convince P* that he knows a, a -1, /3, and/3-1 
such that bl = b0 ~ mod N, and b2 -- b0 ~ mod N. Instead of using 
the values, a, a -I , /3,  and/3 -1, M can execute the set-up procedure 
using the resetable simulation technique for 7 ~* because the set-up 
procedure is a zero-knowledge system of (M, P*). 

S tep  3 M can extract (ti,3, c, X, R, w~,j) and (rid, c', X',  R~, w2i,p ~ for the same 
ti ,j ,  by using P* as an oracle. 

AX AX ) Step  4 M outputs ( ~ ,  zxc as a witness of I, where Ac := c - c', AX := 
X - X ' a n d A R : = R - R  I. 

We explain Step 3 and Step 4. 
Consider Step 3. Let ei,z be the success probability of (P*,V) with the con- 

versation, (ti,j, c, X , R ,  w~5 ). Note that at least one of e,,j's is non-negligible if 
(7~*,V) accepts with non-negligible probability. Then M can find two different 
pairs for a ti,j in expected polynomial time in INI. Indeed, the following strategy 
succeeds with overwhelming probability (See also [FFS88]): 

1. For any (i , j) ,  do the following steps. 
2. Probe O(1/e) random entries in Hi,j (Here Hi,j's are boolean matrices and 

each Hi,j 's  rows corresponds to all possible states a of R P  and its columns 
correspond to all possible choices c of R V ,  where the R P  is 7~*'s random 
tape, and the R V  is V ' s  random tape. ). 

3. If find the first (ti,j, 2 c, X, R, w,,~) which (P*,V) accepts, then probe O(1/e) 
R' w 2 random entries along the same row in order to find (tis, ca, X '  . . . .  j j  which 

(:P*,V) accepts. 

X '  R' w 2 ~ satisfy that X - cx + In Step 4, ( t ~ 5 , c , X , R ,  wi2,j) and (t , , j ,c ' ,  , , ~,j, 
w~~ X '  - c'x + w i~  R - cr + w~ modpq ,  and R ~ :- e~R + 
w~ mod pq. Therefore, 

A X _ = A c . x  (modpq) and A R = A c . r  (modpq). (3) 

M can obtain x and r only A X  and A R  dividing by Ac respectively, with 
overwhelming probability in IN[ under Assumption 4. 
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Let a0 E Zpq such that  bl = b~ ~ mod N. Let d := gcd(Ac, A X  + ARao). 
From (3), the following relation holds 

/ i X  +/iRt~o - / i c ( x  + rao) (mod pq). (4) 

Here we replace, without loss of generality, P* with the poly-time bounded ma- 
chine which, on input (N, b0, bl, b~) given by ABe, outputs (I, A c , / i X , / i R )  with 
overwhelming probability in INI. We consider a poly-time bounded algorithm M'  
using :P* as an oracle in the following: 

A l g o r i t h m  M t 

1. inputs (N, C) generated b y / i 2  to M t. 
2. M * picks b2 ER ZN, a ER ( O, 2kN) ( k is a constant. ), then computes 

bl = C a mod N. 
3. M t inputs (N,C, bl,b2) to P*. 
4. If :P* returns ( I , / i c , / i X , / i R ) ,  go to the next step, otherwise M halts. 
5. M ~ outputs ( IYC z mod N, _~_e) and halts, where Y and Z are integers such 

that  
/ i X  + / i R a y  / ic 

d + - - - ~ Z = I .  

,~x+.,R. ,~cy ,~c z ( iYcZ )  ~- (mod N). Note that  C - C d Y +-4~--Z = I-Z- C-~ = 
If d ~ /ic, M ~ is a machine, with :P* as an oracle, which can solve the 

modified RSA problem with non-negligible probability. It contradicts Assump- 
tion 4. Therefore d = /ic, n a m e l y / i c l ( / i X  + Alia).  Moreover, ( / i c , / i X , / i R )  
must satisfy t h a t / i c l / i X  and Acl / iR to hold d - - / i c .  Let a = a0 + ~pq. From 
d = / i c ,  

/ i X  + / i P ~  / i X  +/ iRao  +/iP~, 
/ic /ic 

As even an infinite power 7 ~* can never know ~, The condition o f / i c l / i X  and 
/ ic l / iR has to be held to satisfy that  of d = / i c .  

Thus, M can extract (x, r) with overwhelming probability in INI. 
[] 


