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Abstract. We present the first undeniable signatures scheme based on RSA. 
Since their introduction in 1989 a significant amount of work has been devoted 
to the investigation of undeniable signatures. So far, this work has been based 
on discrete log systems. In contrast, our scheme uses regular RSA signatures 
to generate undeniable signatures. In this new setting, both the signature and 
verification exponents of RSA are kept secret by the signer, while the public key 
consists of a composite modulus and a sample RSA signature on a single public 
message. 

Our scheme possesses several attractive properties. First of all, provable security, 
as forging the undeniable signatures is as hard as forging regular RSA signatures. 
Second, both the confirmation and denial protocols are zero-knowledge. In addi- 
tion, these protocols are efficient (particularly, the confirmation protocol involves 
only two rounds of communication and a small number of exponentiations). Fur- 
thermore the RSA-based structure of our scheme provides with simple and elegant 
solutions to add several of the more advanced properties of undeniable signatures 
found in the literature, including convertibility of the undeniable signatures (into 
publicly verifiable ones), the possibility to delegate the ability to confirm and deny 
signatures to a third party without giving up the power to sign, and the existence 
of distributed (threshold) versions of the signing and confirmation operations. 

Due to the above properties and the fact that our undeniable signatures are identical 
in form to standard RSA signatures, the scheme we present becomes a very 
attractive candidate for practical implementations. 

1 Introduction 

The central role of digital signatures in the commercial and legal aspects of the 
evolving electronic commerce world is well recognized. Digital signatures bind 
signers to the contents of the documents they sign. The ability for any third party 
to verify the validity of a signature is usually seen as the basis for the "'non- 
repudiation" aspect of digital signatures, and their main source of attractiveness. 
However, this universal verifiability (or self-authenticating) property of  digital 
signatures is not always a desirable property. Such is the case of a signature binding 
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parties to a confidentialagreement, or of a signature on documents carrying private 
or personal information. In these cases limiting the ability of  third parties to verify 
the validity of a signature is an important goal. However, if we limit the verification 
to such an extent that it cannot be verified by, say, a judge in case of  a dispute then 
the whole value of such signatures is seriously questioned. Thus, the question is 
how to generate signatures which limit the verification capabilities yet without 
giving up on the central property of non-repudiation. 
An answer to this problem was provided by Chaum and van Antwerpen [CA90] 
who introduced undeniable signatures. Such signatures are characterized by the 
property that verification can only be achieved by interacting with the legitimate 
signer (through a confirmation protocol). On the other hand, the signer can prove 
that a fo~ery is such by engaging in a denial protocol It is required that the 
following property be satisfied: if on a specific message and signature the con- 
firmation protocol outputs that it is a valid signature then on the same input the 
denial protocol would not output that it is a forgery. The combination of these two 
protocols, confirmation and denial, protects both the recipient of  the signature and 
the signer, and preserves the non-repudiation property found in traditional digi- 
tal signatures. The protection of the recipient is established through the required 
property. Indeed, the ability of a signer to confirm a signature means that at no 
later point will the signer be able to deny the signature. For example, in the case 
of an eventual dispute, the recipient of the signature can resort to a designated 
authority (e.g., a judge) in order to demonstrate the signature's validity. In this 
case the signer will be required to confirm or deny the signature. If the signer 
does not succeed in denying (in particular, if it refuses to cooperate) then the 
signer remains legally bound to the signature (such will be the case if the alleged 
signature was a correct one). On the other hand the signer is protected by the fact 
that his signatures cannot be verified by unauthorized third parties without his 
own cooperation and the denial protocol protects him from false claims. 
The protection of signatures from universal verifiability is not only justified by 
confidentiality and privacy concerns but it also opens a wide range of  applications 
where verifying a signature is a valuable operation by itself. A typical example 
presented in the undeniable signatures literature is the case of  a software company 
(or for this matter any other form of electronic publisher) that uses signature 
confirmation as a means to provides a proof of  authenticity of  their software 
to authorized (e.g., paying) customers only. This example illustrates the core 
observation on which the notion of undeniable signatures stands: verification of 
signatures, and not only their generation, is a valuable resource to be protected. 

1.1 Components and security of undeniable signatures schemes 

There are three main components to undeniable signature schemes. The signature 
generation algorithm (including the details of  private and public information), the 
confirmation protocol, and the denial protocol. Signature generation is much like a 
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regular signature generation, namely, an operation performed by the signer on the 
message which results in a string that is provided to the requester of the signature. 
The confirmation protocol is usually modeled after an interactive proof where the 
signer acts as the prover and the holder of the signature as the verifier. The input 
to the protocol is a message and its alleged signature (as well as the public key 
information associated with the signer). In case that the input pair is formed by a 
message and its legitimate signature then the prover can convince the verifier that 
this is the case, while if the signature does not correspond to the message then 
the probability of the prover to convince the verifier is negligible. Similarly, the 
denial protocol is an interactive proof designed to prove that a given input pair 
does not correspond to a message and its signature. In particular, if the alleged 
input signature does correspond to the input message then the probability of the 
prover to convince the verifier of the contrary is negligible. Note, that engaging in 
the confirmation protocol and having it fail is not an indication that the signature 
is invalid, this can only be established through the denial protocol. That is the 
confirmation protocol only establishes validity, and the denial - invalidity. 
In addition to the above properties required from the confirmation and denial 
protocol, there are two basic security requirements on undeniable signatures. The 
first is unforgeability, namely, without access to the private key of the signer no 
one should be able to produce legitimate signatures by himself. This is similar to 
the unforgeability requirement in the case of regular digital signatures, but here the 
modeling of the attacker is somewhatmore complex. In addition to having access 
to chosen messages signed by the legitimate signer, the attacker may also get to 
interact with the signer on different instances of the above protocols, possibly on 
input pairs of his own choice. The second requirement is non-transferability of the 
signature, namely, no attacker (under the above model) should be able to convince 
any other party, without the cooperation of the legitimate signer, of the validity 
or invalidity of a given message and signature. Both of these requirements induce 
necessary properties on the components of an undeniable signature scheme. In 
particular, the confirmation and denial protocols should not leak any information 
that can be used by an attacker to forge or transfer a signature. As a consequence it 
is desirable that these protocols be zero-knowledge. As for the strings representing 
signatures, they should provide no information that could help a party to get 
convinced of the validity (or invalidity) of signatures. Somewhat more formally, 
it is required that the legitimate signature(s) corresponding to a given message 
be simulatable, namely, they should be indistinguishable from strings that can be 
efficiently generated without knowledge of the secret signing key. 
1.2 Advanced properties of undeniable signatures 
Much of the work on undeniable signatures has been motivated by the search 
for schemes that provide all of the above properties but that, in addition, enjoy 
some additional attractive properties. These include convertibility (the possibility 
to transform undeniable signatures into regular, i.e. self-authenticating, signatures 
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by just publishing a short piece of information, [BCDP91 ]), delegation (enabling 
selected third parties to confirm/deny signatures but not to sign), distribution of 
power (threshold version of the signature and confirmation protocols, [Ped91]), 
designated confirmer schemes (in which the recipient of the signature is assured 
that a specific third party will be able to confirm the signature at a later time, 
[Cha94]), and designated verifier schemes (in which the prover can make sure 
that only a specified verifier benefits from interacting with the prover on the 
confirmation of a signature, [JSI96]). More details are provided in Section 5. 

1 3  Previous work on undeniable signatures 
Since their introduction in 1989, undeniable signatures have received a signifi- 
cant attention in the cryptographic research community [CA90, Cha90, BCDP91, 
DY91, FOO91, Ped91, CHP92, Cha94, Jak94, Oka94, M96, DP96, JSI96, JY96]. 
These works have provided a variety of different schemes for undeniable sig- 
natures with variable degrees of security, provabiliry, and additional features. 
Interestingly, all these works are discrete logarithm based. In [BCDP91] the prob- 
lem of constructing schemes based on different assumptions, in particular RSA, 
was suggested as a possible research direction. 
Most influential are the works of Chaum and van Antwerpen [CA90] and Chaum 
[Cha90]. The first work introduces the notion of undeniable signatures and pro- 
vides protocols which are the basis for many of the subsequent works. The second 
improves significantly on the initial solution by providing zero-knowledge ver- 
sions of these protocols. The formalization of the basic notions behind undeniable 
signatures was mainly carried out in the works by Boyar, Chaum, Damgard and 
Pedersen [BCDP91] and by Damgard and Pedersen [DP96]. In [BCDP91] the 
notion of convertible schemes was introduced. In such schemes the signer can 
publish a short string that converts the scheme into a regular signature scheme. 
However the scheme presented in [BCDP91] was recently broken in [M96]. The 
repaired solution presented therein however does not come with a proof of secu- 
rity. [DP96] present the first convertible schemes with proven security (based on 
cryptographic assumptions). 

1.4 Our contribution 

Our work is the first to present undeniable schemes based on RSA 1 Our undeniable 
signature scheme produces signatures that are identical inform to RSA signatures. 
The essential difference from traditional RSA signatures is that in our case both the 
signature and verification exponents of RSA are kept secret by the signer, while 
the public key consists of a composite modulus and a sample RSA signature on a 
single public message. 

1 Chaum in [Cha94] uses RSA signatures on top of regular undeniable signatures to provide 
"designated confirmer signatures"; however the underlying undeniable signatures are still 
discrete log-based. 
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Not only does our solution expand the list of  available number-theoretic assump- 
tions that suffice to build undeniable signatures, but it achieves and improves, as 
we show below, in a simple and elegant way several o f  the desirable properties of 
undeniable signatures. 
Unforgeability: Our construction allows us to prove in a simple way that security 
of  these signatures against forging is equivalent to the unforgeability of  RSA 
signatures 2. Provable unforgeability of undeniable signatures was presented for 
the first time in the recent paper by [DP96] where forgery of  the proposed scheme 
is proven equivalent to forgery of the ElGamal scheme. 
Simulatability: Non-transferability of an RSA signature is a non-standard re- 
quirement in the context of  traditional RSA. We prove this property under the 
assumption that deciding on the equality of discrete logarithms under different 
bases is intractable. This assumption is required in previous works as well ~ al- 
though by itself is not always sufficient to prove simulatability o f  the undeniable 
signatures. For example in [DP96] the simulatability property is only conjectured 
to follow from such assumptions. 
Zero-Knowledge: Our confirmation and denial protocols have the interactive 
proof properties as explained above and are also zero-knowledge. Therefore they 
do not leak any information that could otherwise be used for forging signatures. 
The soundness of our protocols (i.e. the guarantee that the prover/signer cannot 

�9 cheat) relies on the use of composite numbers of  a special form (specifically, with 
"safe prime" factors), which are secure moduli for RSA. A signer who chooses 
a modulus of a different form may have some way to cheat in our protocols. 
To force the signer to choose a "proper" modulus we require that he prove the 
correct choice &primes at the time he registers his public key with a certification 
authority, A discussion of this issue is presented in Section 4. 
Efficiency: Our protocols are efficient (comparable to the most efficient alter- 
natives found in the undeniable signatures literature). The confirmation protocol 
takes two rounds of  communication (which is minimal for zero-knowledge pro- 
tocols) and involves a small number of exponentiations. The denial protocol is 
somewhat more expensive as it consists of  a basic two-round protocol with small, 
but not negligible, probability of error (e.g., 1/I 000) which needs to be repeated 

2 As with regular RSA, the use of a strong one-way hash function is assumed to provide unforge- 
ability against chosen message attacks. 

8 However, in our case the discrete logarithms are computed modulo a composite number while 
in previous works they are modulo a prime. In both cases, the problem is related to the problem 
of computing discrete logarithms which is considered to be hard (in the case of a composite 
modulus that difficulty is implied by the hardness of factoring and also directly by the assumed 
security of RSA). However, while the feasibility of computing discrete logarithm implies the 
feasibility of the above decision problem, the reverse direction is not known to hold. 
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sequentially in order to further reduce the error probability. Its performance is still 
significantly better (by a factor of 10) than alternative protocols that only achieve 
probability 1/2 in each execution. We also note that in typical uses of undeniable 
signature schemes one expects to apply more frequently confirmation than denial. 
The latter is mainly needed to settle legal disputes. 
Advanced Properties: In addition to the above security and efficiency properties, 
our solution naturally achieves several of the advanced features of undeniable sig- 
natures mentioned above. Once again it is the structure of RSA, in particular the 
presence of a secret verification exponent, that allows to achieve such properties 
very elegantly. Convertibility is achieved by publishing the verification expo- 
nent, thus converting the signatures into regular RSA signatures; delegation is 
achieved by providing the verification exponent to the delegated party which can 
then run the confirmation and denial protocols but cannot sign messages or forge 
signatures; distribution of the signature operation builds on the existing threshold 
solutions for RSA signatures; distribution of confirmation can be also achieved by 
an adaptation of the regular threshold RSA solutions. We can also adapt existing 
techniques for the construction of designated confirmer and designated verifier 
undeniable signatures, thus obtaining these variants also for our scheme. More 
details are provided in Section 5. 
Standard RSA compatibility: An important practical advantage of our RSA- 
based undeniable scheme is that the signatures themselves are identical in form 
to standard RSA signatures. In particular, this means that they fit directly into ex- 
isting standardized communication protocols that use (regular) RSA signatures. 
Technically, our work builds on previous ideas and protocols which we adapt 
to the RSA case. These previous solutions are designed to exploit the algebraic 
properties of cyclic groups like Z~ (and its subgroups). This is probably the main 
reason that subsequent work concentrated on these structures as well. Here we 
show that many of these ideas can be used in the context of RSA, thus answering 
in the affirmative a question suggested in [BCDP91]. In doing so we use ideas 
from the work of Gennaro et al. [GJKR96-]. 

2 Preliminaries 

Notation. Throughout the paper we use the following notations: 

For a positive integer k we denote [k] dej {1 , . . . ,  k}. Z,~ denotes the multiplica- 
five group of integers modulo r~, and ~(n) = (p - 1)(q - 1) the order of this 
group. For an element w E Z~* we denote by ord(w) the order o fw  in Z~. The 
subgroup generated by an element w E Z~, is denoted by < w > .  
The following lemmas are needed in our proofs in Section 3. 



138 

L e m m a l .  Let n = pq, where p < q, p = 2p' + 1, q = 2q' + 1, and 
p ,q ,p ' , q '  are all prime numbers. The order o f  elements in Z~, is one o f  the 
set.J1, 2, p', q', 2p', 2q', p'q', 2p'q '}. Given an element w E Z,~ \ - [ -1 ,  1}, such 
that o~'d(w) < p'q' then ged(w - 1, n) is a prime fac tor  o f  n. 

As a consequence of the above lemma we can assume in our protocols that any 
value found by a party that does not know the factorization o f n  must  be o f  order 
at least p'q' in Z,~ (except for 1,-l). 

Lemm a  2. Let n be as in Lemma 1. Given an element w such that ord(w)  E 
{p' q', 2p'q'} then for  everym E Z~ it holds that m 4 E < w > .  

3 Our Undeniable Signature Scheme 
In this section we give the details of  our scheme. We start by defining the following 
set: 

A/" = -[n l n = pq, p < q, p = 2 p ' + l ,  q = 2 q ' + l ,  

and p, q, p',  q' are all prime numbers} 

The system is set up by the signer in the following manner,  chooses an element 
n EAf;  selects elements e, d E ~b(n) such that ed = 1 rood ~b(n); chooses a pair 
(w, S,~) with w 6 Z~, w r 1, S~ = w d rood n;  sets the public key parameters 
to the tuple (n, w, S,~); sets the private key to (e, d). 
We shall denote by ~o/C the set of  all tuples (n,  w, S , , )  generated as above. We 
refer the reader to Section 4.3 for a discussion on the form of  the public key and 
how to verify its correctness. In particular, we state that the value o f w  can always 
be set to a fixed number, e.g. w = 2. This simplifies the public key system and 
adds to the efficiency of computing exponentiations with base w. 

3.1 Generating a Signature 
To generate a signature on a message m the signer carries out a regular RSA sign- 
ing operation, i.e. he computes S ~  = m a rood n,  outputting the pair (m,  S,,~). 
More precisely, the message m is first processed through a suitable encoding (e.g., 
via one-way hashing) before applying the exponentiation such that the resultant 
signature scheme can be assumed to be unforgeable even against chosen message 
attacks (plain RSA does not have this property). Given a message m we will de- 
note by ~ the output of such an encoding of  m (we do not specify any encoding 

in particular) 4 . Thus, the resultant signature o f  m will be S ~  a~_~_~ r~" rood n. 
In the case of  the pair (w, S,~) we will slightly abuse the notation and write 
~q~ = w a rood n (without applying the encoding ~) .  

-~ For simplicity we will assume a deterministic encoding; however randomized encodings, e.g. 
[BR96], can be used as well but then, in our case, the random bits used for the encoding need 
to be attached to the signature. 
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3.2 Confirmation Protocol 
In Figure 1 we present a protocol for confirming a signature. It is carried out by 
two players a prover and a verifier. The public input to the protocol are the public 
key parameters, namely (n, w, S,~) E "PK:, and a pair (m,  S,,~). For the case that 
S,,~ is a valid signature of m,  then P will be able to convince V of  this fact, while 
if the signature is invalid then no prover (even a computationally unbounded one) 
will be able to convince V to the contrary except for a negligible probability. 
This protocol is basically the same as the protocol of Gennaro et al. [GJKR96] 
(based on [Cha90]) where it is used in a different application, namely, threshold 
RSA. Our variation on this protocol uses the verification key e rather than the 
signature key d as originally used in [GJKR96] (in their case, the signer knows 
only d but not e). Still the basic proof given in that paper applies to our case due 
to the symmetry that exists between d and e when both exponents are kept  secret. 
This modification allows us to provide solutions where the ability to confirm 
signatures can be delegated to third parties while keeping the ability to sign 
new messages only for the original signer (it also allows for a distributed prover 
solution). See Section 5 for the details. 
An interesting aspect of this protocol is that a prover could succeed in convincing 
the verifier to accept a signature on m even when this signature is not rh a rood n 
but c ~  a rood n where ~, is an element of order 2 (in g~). [GJKR96] solve this 
problem through the assumption (valid in their case) that the prover cannot  factor 
n and thus cannot find such an element o~. In our case, this assumption does 
not hold. We deal with this problem by accepting as valid signatures also these 
multiples of  ~'~. On the other hand, when designing the denial protocol we make 
sure that the signer cannot deny a signature of this extended form. That  is, we 

define the set of  valid signatures for a message m as SZG(ra)  ~ {ST, : S,.,., = 

Signature Confirmation Protocol 

Input: Prover: Secret key (d, e) E [r 2 
Common: Public key (n, w, S~) E PK,  

m E Z* and alleged .~,~ 

1. V chooses i, j ER [n] and computes Q ~ t  S~S~ j rood n 
V----~ P : Q  

2. P computes A a__~f Qe mod n 
P-----*V:A 

3. V verifies that A = rh~w j mod n. 
If equality holds then V accepts S,~ as the signature on m, otherwise "undeter- 
mined". 

Fig. 1. Proving that S,,~ E sLr~(m) (ZK steps omitted) 
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For ease of exposition the protocol in Figure 1 appears in a non zero-knowledge 
format. However, there are well-known techniques [GMW86, BCC88, Go195] 
to add the zero-knowledge property to the above protocol using the notion of a 
commitment function: Instead of P sending A in Step 2, he sends a commilment 
commit(A), after which V reveals to P the values of i  and j .  After checking that 

Q ~-~-~ ,g~S~ j mad n, P sends A to V .  The verifier checks that A corresponds 
to the value committed by t9 and then performs the test of Step 3 above. 
The zero-knowledge condition is achieved through the properties of the commit- 
ment function, namely, (I) commit(z) reveals no information on z, and (II) P 
cannot find z'  such that commit(z) = commit(z').  Cornmimaent functions can 
be implemented in many ways. For example, in the above protocol commit(A) 
can be implemented as a probabilistic (semantically secure) RSA encryption of 
A using a public key for which the private key is not known to V (and possibly, 
not even known to P ). To open the commitment, P reveals both A and the string 
r used for the probabilistic encryption. This implementation of a commitment 
function is very efficient as it does not involve long exponentiations (and is secure 
since we assume our adversary, the verifier in this case, is unable to break RSA). 
A proof of the theorem below can be found in [GJKR96]. 

Theorem 3. Confirmation Theorem. Let (n, w, S,o ) 6 T'IC. 
Completeness. If P and V follow the Signature Confirmation protocol then V 

always accepts. 
Soundness. A cheating prover P*, even computationally unbounded, cannot con- 

vince V to accept S,~ ~. SZ~(m ) with probability greater than 0(1) 
Zero-knowledge. The protocol is zero-knowledge, namely, on input a message 

and its valid signature, any (possibly cheating) verifier V* interacting with 
prover P does not learn any information aside from the validity of the 
signature. 

3.3 Denial  Protocol 

Figure 2 exhibits the Denial Protocol. The public input to the protocol are the 
public key parameters, namely (n, w, S,~) E ~/C, and a pair (m, S~).  In the 
case that ,g,~ ~ S2;G(m), then P will be able to convince V of this fact, while if 
S,~ E SIG(m) then no prover (even a computationally unbounded one) will be 
able to convince V that the signature is invalid except with negligible probability. 
Our solution is based on a protocol due to Chaum [Cha90], designed to prove in 
zero-knowledge the inequality of the discrete logarithms of two elements over a 
prime field Zp relative to two different bases. The protocol and proof presented 
in the above paper do not work over g~, for a composite n as required here, 
in particular, since they strongly rely on the existence of a generator for the 
multiplicative group Z~. However, a careful adaptation of that protocol and a 
more involved proof can be shown to solve our problem over g~.  
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The protocol has probability of  error -~, where k = O(log n)  is a parameter 
chosenby the system. Due to an elegant observation o fChaum [Cha90] the desired 
probability of  error can be achieved while incurring only a constant number of  
exponentiations. He notes that while carrying out k consecutive multiplications, 
which is equivalent in computation to a single exponentiation, we can compute 
all the powers in a the range [k]. If we take k = 1024 we can repeat the protocol 
ten times in order to achieve a security of  ~ - ~ .  As stated in the introduction this 
allows for a ten fold increase in efficency relative to alternative protocols. 
The protocol as presented in Figure 2 omits the steps that make it zero-knowledge. 
This is similar to the case of  the confirmation protocol. Yet, in this protocol special 
care needs to be taken in Step 2. If the (honest) prover does not find a value i that 
satisfies the equation, which means that V is cheating, _P aborts the execution of  

the protocol. Though aborting the protocol does not reveal much information it 
does reveal some, and in the zero-knowledge version we do not want even this 
much information to leak. Thus, P should continue the execution of  the protocol 
by committing to the value 0, in a "dummy commitment" this will conceal the 
information of  whether a value i was found or not. Note that in the case where no 
i was found, the verifier will be exposed later as a cheater and the commitment of  
0 will never be revealed. 

Denial Protocol 

Input: Prover: Secret key (d, e) E [r 2 
Common: Public key (n, w, ,.q~,) E 7 ~ ,  

ra E g*,~ and alleged non-signature ,~,,~ 

1. V choosesi = 4b, b ER [k] andj  E~ [n]. 
Sets Q1 = ~ w  5 mod n and Q2 = ~'~S~ j rood n 
V - - *  P :  (QI,  Q2) 

2. P computes Qx/Q~ = (~_) i  and computes i by testing all possible values of 

i ~ [k]. 
If such a value was found then P sets A = i, otherwise abort. 
P---,  V : A  

3. V verities that A - i. If equality holds then V rejects S,~ as a signature of m, 
otherwise, undetermined. 

Fig. 2. Proving that ,~,~ r S I C ( m )  (ZK steps omitted) 

Theorem 4. Denial Protocol Let ( r~, w, S,~ ) E 7:']C. 
Completeness. Assuming that S,,~ ~, S I ~ (  rn ), and ifl:' and V follow the protocol 

then V always accepts that S,,~ is not a valid signature o f  re. 
Soundness. Assuming that S,n E S I~(rn)  then a cheating prover t 7 .  even 

computationally unbounded, cannot convince V to reject the signature with 
lity gre 1 t probabi ater than ~ + ~. 
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Zero-knowledge. The protocol is zero-knowledge, namely, on input a message 
and a non-valid signature, any (possibly cheating) verifier V* interacting 
with prover P does not learn any information aside from the fact that S,~ is 
in fact not a valid signature for the message rrt. 

4 Security Analysis 
We do not present here a formal treatment of the notion of  undeniable signatures 
and its security requirements. For such a formal and complete treatment we refer 
the reader to the paper by Damgard and Pedersen [DP96-]; an outline of these 
notions can be found above in our Introduction (in particular, in Section 1.1). 
Here we argue the security properties of our solution in an informal way based on 
this outline. 

4.1 Unforgeability of signatures 
We consider an attacker that cannot forge regular RSA signatures. When attacking 
our undeniable signatures scheme this attacker may request signatures (and their 
confirmation) on any messages of its choice. The attacker can also choose pairs of 
messages and alleged signatures and engage in confirmation or denial protocols 
with the signer on these inputs (whether it engages in a confirmation or denial 
protocol depends on the validity or invalidity, respectively, of  the input pair). The 
goal of the attacker is to forge a signature, namely, to generate a valid signature 
on a message not previously signed by the legitimate signer. 
We first note that since both confirmation and denial protocols are zero-knowledge 
then the information provided to the attacker by these protocols is useless for 
attacking the signatures (in the sense that the same information can be generated by 
the attacker alone). Therefore, an attacker could essentially try to forge signatures 
based on the public keys and a (possibly chosen) list of messages and their valid 
signatures. However, since our signatures are equivalent to regular RSA signatures 
(except for the fact that the verification exponent is secret which can only make it 
harder for the attacker) then the ability to forge our undeniable signatures would 
translate into forging regular RSA signatures which we assume infeasible. (As 
noted before, RSA is not directly immune against chosen message attacks but we 
assume this to be countered by additional means, e.g. by the appropriate encoding 
of the message prior to the exponentiation- see Section 3.1 .) 
Formalizing the above arguments is quite straightforward and standard. Such a 
formal proof would show how to transform any given forging attacker against 
our undeniable signatures into a forging attacker against regular RSA signatures; 
the transformation would make use of the simulators for our zero-knowledge 
protocols (both confirmation and denial). We summarize this discussion in the 
following theorem. 
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Theorem 5. Assuming that the underlying RSA signatures are unforgeable (against 
known and~or chosen message attacks) then our undeniable signatures are un- 
forgeable (against the same attacks). 

4.2 Indistinguishability of signatures 
A basic goal of undeniable signatures is that no one should be able to verify the 
validity (or invalidity) of a message and its (alleged) signature without interacting 
with the legitimate signer in a confirmation (or denial) protocol. Following [DP96] 
we need to show that given the public key information and any message ra (but 
not the signature exponent d) one can efficiently generate a simulated signature 
s(m) of ra, in the sense that the distribution of simulated signatures cannot 
be distinguished (efficiently) from the distribution of true signatures on ra. We 
achieve this property in the following way. Given any message m, we apply to it 
the encoding r~ as determined by the underlying RSA scheme and then raise the 
result ~ to a random exponentmodulo n (i.e., s(rn) = ~ "  rood n, for r ER [n]). 
Notice that distinguishing s(m) from the signature r~ a rood n on rn is equivalent 
to deciding whether 

*t 

log . . ( s (m))  = (l) 

where the discrete logarithm operation is taken in Z~. This problem has no 
known efficient solution, though its equivalence to RSA, factoring, or the discrete 
logarithm problems has not been established. We thus require the following in- 
tractability assumption in order to claim the hardness of distinguishing between 
valid and simulated signatures. 
Assumption EDL: For values n, w, S~,, ~ ,  and s(w) as defined above it is 
infeasible to decide the validity of equation 1 over Z,~. 
We stress that the analogous assumption modulo a prime number is necessary 
for claiming the security of previous undeniable signature schemes as well (see 
[DP96]). However in the case of [DP96] the EDL assumption is not sufficient to 
prove simulatability, which in that paper is indeed simply conjectured. 

Theorem 6. Under the above EDL assumption, our signatures are simulatable 
and hence cannot be verified without the signer's (or its delegated confirmers) 
cooperation. 

Remark: The above theorem does not concern itself with a general problem 
of undeniable signatures pointed out first by Desmedt and Yung [DY91 ]. It is 
possible that the signer is fooled into proving a signature to several (mutually 
distrustful) verifiers while he is convinced of proving the signature to only one of 
them. We will address this problem in Section 5. 
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4.3 Choosing the signer's keys 
In Section 3 we defined what the public and private parameters for the signer 
should be. Our analysis of  the (soundness of the) confirmation and denial protocols 
depends on these parameters being selected correctly. Typically, the verification 
of  this public key will be done whenever the signer registers it with a trusted 
party (e.g., a certification authority). Here we outline protocols to check the right 
composition of the modulus n, the sample element w, and the fact that S,, is 
chosen as a power of w (the latter serves as the "commitment" of  the signer to 
the signature exponent d). Notice that these protocols are executed only once at 
registration time and not during the more common signing/verification operations. 
We denote by V the entity that acts as the verifier of  these parameters, and by P 
the signer that proves its correct choices. 
VERIFICATION THAT ~v IS OF HIGH ORDER. Specifically, we use in our analysis the 
assumption that w is an element of order at least p'q'. By virtue o f  Lemma 1 all 
that V needs to verify is that w ~ . [-1,  1} and that ged(w - 1, n)  is not a factor 
of  n. Actually, the value w can be chosen as a constant, e.g. w = 2, for all the 
undeniable signatures public keys. Such a value must always pass the verification 
(or otherwise factoring is trivial). 
VERIFICATION THAT ,.,qto E <'to>. The following protocol is essentially the protocol 
for proving possession of discrete logarithms as presented in [CEG87], once again 
modified in order to work with composite moduli. The signer P chooses a value 
r ER [r and sends to V the value w'  = w". The verifier V answers with 
a random bit b. If b = 0, P returns the value r, otherwise it returns the value 
d + r rood r  In the first case, V checks whether w" = w',  and in the second, 
whether w C'+a) = w'S~. If w ~ < w >  then the probability that P passes this 
test is 1/2. By repeating this procedure k times the probability that the dealer can 
cheat reduces to 2 -~'. The protocol is statistical zero-knowledge as the simulator 
does not know r but can use the uniform distribution on [1..n] to statistically 
approximate the one on [1..r As a practical matter, we observe that this 
protocol can be performed non-interactively if one assumes the existence of  an 
ideal hash function (a la Fiat-Shamir [FS86-]). 
VERIFICATION OF THE PRIME FACTORS. We need to check that the signer chooses 
the modulus re of the right form, i.e. n = pq with t9 = 2:p' + 1 and q = 2q' + 1 
and p, q, p', q' are all prime numbers. We have three alternative solutions for this 
problem. The first is to use a generic zero-knowledge proof  of  the above property 
using the general results of  [GMW86]; although the resultant solution would be 
highly inefficient this task is performed only once at system initialization. A more 
efficient (but less secure) solution to this problem is to let the signer generate a 
large set ofmoduli rex, n2 , - - . ,  nk from which V chooses a random element, say 
m.  Next, P shows the factorization into primes of  all the other moduli in the 
set. If all are of the right form then nl is chosen as the modulus n, otherwise P 
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is disqualified. The drawback of this solution is that the probability of cheating, 
i.e. 1/k, reduces only linearly with the amount of  work in the protocol. Yet once 
again, the protocol needs to be performed only at initialization of  the modulus and 
thus a relatively large number k ofmoduli  can be produced. (Although this gives 
only "linear security" we stress that under the appropriate legal circumstances a 
probability of, say 999/1000, to be caught cheating can be a significant deterrent 
for anyone to register an invalid key.) 
Finally, there is a solution [Dam] that allows for a trade-off between the error 
probability at the key registration stage and the performance cost of  the undeniable 
signature scheme. Initially, we let P generate 2k moduli. V chooses at random k 
of them of which the signer must reveal the factorizations. If the factorization of 
those moduli was of the correct form, we run our basic scheme in parallel for all 
the remaining k moduli. A confirmation or denial is accepted only if it works for 
all k moduli. The signer can only cheat if  all the opened moduli were good, and 
all the remaining bad, but for any given set of  moduli, this will only happen with 
exponentially small probability in k. In practice, one can choose parameters more 
appropriately. For example it doesn't have to be 2k and k moduli since with a 
total of  100 moduli, V choosing 95 of them and keeping only 5 to do the scheme 
in parallel, the error probability is close to 10 -~ . 

5 Extensions 

Our protocols lend themselves to many of  the existing extensions in the literature 
for undeniable signatures. 
Convertible Undeniable Signatures, This variation appeared first in [BCDP91], 
and secure schemes based on E1Gamal signatures have been recently presented 
in [DP96]. Convertible undeniable signatures enable the signer to publish a value 
which transforms the undeniable signature into a regular (i.e., self-authenticating) 
digital signature. In our scheme conversion can be easily achieved by simply 
publishing the value e = d -1 rood r  Doing so the signer will transform 
the undeniable signatures into regular RSA signatures with public key (n, e). 
Notice that this will automatically imply the security (i.e., unforgeability) of  the 
converted scheme, based on the security o f  regular RSA signatures, s 

5 Notice that this holds if the signer issued for the message m its intended signature S,~ = 
~d rood n. If, instead, the signer generated a signature of the form S,~ = ar~ d, where a is an 
element of order 2, then when e is made public it is easy to recover a (and then the factorization 
of n) from a triple (m, S,~ = a n  d, e) since e is odd. We stress that although we consider 
as valid also signatures of that form (see Section 3.2), it is in the interest of the prover not to 
generate them in that way. 
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In some applications it may be desirable to convert only a subset of  the past 
signatures (selective conversion [BCDP91]). For this scenario we can make use 
of  a non-interactive zero-knowledge confirmation proof for those messages. Such 
an efficient scheme is described in the final paper. 
Delegation. The idea is for the signer to delegate the ability to confirm and deny to 
a third party without providing that party the capabilities to generate signatures. 
In the literature this notion is usually treated in the context of  convertibility 
of  signatures. However the two notions are conceptually different. Clearly the 
information used in order to delegate confirmation/denial authority to a third party 
if made public would basically convert undeniable signatures into universally 
verifiable ones. However the converse is not necessarily true. It may be that the 
information used to convert signatures, if given secretly to a third party, would 
still not allow that party to prove in a non--transferable way the validity/invalidity 
of  a signature.In our setting the signer can simply give the third part), the key e 
which is the only needed information in order to carry out successfully the denial 
and confirmation protocols. Clearly, the recipient of e cannot sign by itself as this 
is the basic assumption behind regular RSA signatures. 
Distributed Provers (and signers). Distributed Provers for undeniable signatures 
were introduced by Pedersen [Ped91]. With distributed provers the signer can 
delegate the capability to confirm/deny signatures, without needing to trust a 
single party. This is obtained by sharing the key, used to verify signatures, using 
a (verifiable) secret sharing scheme among the provers. This way only if * out of 
the n provers cooperate it is possible to verify or deny a signature. The existing 
solutions for threshold RSA signatures [DDFY94, GJKR96] can then be used 
to obtain an efficient distributed scheme as the only operation needed during 
confirmation or denial protocols is RSA exponentiations. The fault-tolerance of 
the protocol in [GJKR96] guarantees the security of  the scheme even in the 
presence of* (out of n) maliciously behaving provers. 
As Pedersen pointed out in [Ped91], undeniable signatures with distributed provers 
present some difficulties. Indeed when the provers are presented with a message 
and its alleged signature, they have to decide which protocol (either the denial 
or the confirmation) to use. They can do this by first distributively checking for 
themselves if the claimed signature is correct or not. But this in turn means that 
a dishonest prover can use the other provers as an oracle to the verification key 
at his will. The problem applies to our schemes as well. Several ways of  dealing 
with the problem have been suggested in the literature [Ped91, JY96] some of 
which easily extend to our scenario. 
Also solutions for threshold RSA allow to share the power to sign (in addition to 
the power to verify/deny signatures) among several servers. Once again in case of 
possibly maliciously behaving signers a fault-tolerant scheme as [GJKR96] must 
be used. 
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Designated Verifier. The following problem of undeniable signatures has been 
pointed out (see [DY9 l, Jak94]): in general a mutually suspicious ~oup  of veri- 
fiers can get simultaneously convinced of the validity of a signature by interacting 
with the signer in a single execution of the confirmation protocol (in other words, 
the signer may believe that it is providing the signature confirmation to a single 
verifier while in actuality several of them are getting convinced at once). This is 
possible by having the "official" verifier act as the intermediary (or man in the 
middle) between the prover and the larger set of verifiers. While this is not always 
a problem, in some cases this may defeat the purpose of undeniable signatures 
(e.g., if the signer wants to receive payment from each verifier that gets a signature 
confirmation). 
Jakobsson et al. [JSI96] present a solution to this problem through the notion of 
designated verifiers proofs that is readily applicable to our scheme. All that is 
required is for the verifier to have a public key. Then when the prover commits 
to his answer during the zero-knowledge steps of our protocols he will use a 
trapdoor commitment scheme (as in [BCC88]) which the verifier can open in any 
way. This will prevent the verifier from "'transferring" the proof (see [JSI96] for 
the details). 
Designated Confirmer. Designated confirmer undeniable signatures were intro- 
duced by Chaum in [Cha94] and further studied by Okamoto in [Oka94]. This 
variant of undeniable signature is used to provide the recipient of a signature with 
a guarantee that a specified third party (called a "'designated confirmer") will later 
be able to confirm that signature. Notice the difference between this variant and 
the delegation property described above. Indeed in the present case the signature 
is specifically bound at time of generation to a particular confirmer. 
The techniques of [Cha94, Oka94] easily extend to our scheme. 

Acknowledgments.We would like to thank Ivan Damg~ird for useful suggestions. 
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