
RSA-Based Undeniable Signatures*

Rosario Gennaro**, Hugo Krawczyk*** and Tal Rabin**

Abstract. We present the first undeniable signatures scheme based on RSA.
Since their introduction in 1989 a significant amount of work has been devoted
to the investigation of undeniable signatures. So far, this work has been based
on discrete log systems. In contrast, our scheme uses regular RSA signatures
to generate undeniable signatures. In this new setting, both the signature and
verification exponents of RSA are kept secret by the signer, while the public key
consists of a composite modulus and a sample RSA signature on a single public
message.

Our scheme possesses several attractive properties. First of all, provable security,
as forging the undeniable signatures is as hard as forging regular RSA signatures.
Second, both the confirmation and denial protocols are zero-knowledge. In addi-
tion, these protocols are efficient (particularly, the confirmation protocol involves
only two rounds of communication and a small number of exponentiations). Fur-
thermore the RSA-based structure of our scheme provides with simple and elegant
solutions to add several of the more advanced properties of undeniable signatures
found in the literature, including convertibility of the undeniable signatures (into
publicly verifiable ones), the possibility to delegate the ability to confirm and deny
signatures to a third party without giving up the power to sign, and the existence
of distributed (threshold) versions of the signing and confirmation operations.

Due to the above properties and the fact that our undeniable signatures are identical
in form to standard RSA signatures, the scheme we present becomes a very
attractive candidate for practical implementations.

1 Introduction

The central role of digital signatures in the commercial and legal aspects of the
evolving electronic commerce world is well recognized. Digital signatures bind
signers to the contents of the documents they sign. The ability for any third party
to verify the validity of a signature is usually seen as the basis for the "'non-
repudiation" aspect of digital signatures, and their main source of attractiveness.
However, this universal verifiability (or self-authenticating) property of digital
signatures is not always a desirable property. Such is the case of a signature binding

* Extended Abstract. A complete version of the paper is available from
http : //www. research, ibm. com/secur i ty/paper s 19 9 7. html

** IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, New York 10598, USA
Emaih rosario,talr@watson.ibm.com.

*** IBM T.J. Watson Research Center and Department of Electrical Engineering, Technion, Haifa
32000, Israel. Emaih hugo@ee.technion.ac.il.

133

parties to a confidentialagreement, or of a signature on documents carrying private
or personal information. In these cases limiting the ability of third parties to verify
the validity of a signature is an important goal. However, if we limit the verification
to such an extent that it cannot be verified by, say, a judge in case of a dispute then
the whole value of such signatures is seriously questioned. Thus, the question is
how to generate signatures which limit the verification capabilities yet without
giving up on the central property of non-repudiation.
An answer to this problem was provided by Chaum and van Antwerpen [CA90]
who introduced undeniable signatures. Such signatures are characterized by the
property that verification can only be achieved by interacting with the legitimate
signer (through a confirmation protocol). On the other hand, the signer can prove
that a fo~ery is such by engaging in a denial protocol It is required that the
following property be satisfied: if on a specific message and signature the con-
firmation protocol outputs that it is a valid signature then on the same input the
denial protocol would not output that it is a forgery. The combination of these two
protocols, confirmation and denial, protects both the recipient of the signature and
the signer, and preserves the non-repudiation property found in traditional digi-
tal signatures. The protection of the recipient is established through the required
property. Indeed, the ability of a signer to confirm a signature means that at no
later point will the signer be able to deny the signature. For example, in the case
of an eventual dispute, the recipient of the signature can resort to a designated
authority (e.g., a judge) in order to demonstrate the signature's validity. In this
case the signer will be required to confirm or deny the signature. If the signer
does not succeed in denying (in particular, if it refuses to cooperate) then the
signer remains legally bound to the signature (such will be the case if the alleged
signature was a correct one). On the other hand the signer is protected by the fact
that his signatures cannot be verified by unauthorized third parties without his
own cooperation and the denial protocol protects him from false claims.
The protection of signatures from universal verifiability is not only justified by
confidentiality and privacy concerns but it also opens a wide range of applications
where verifying a signature is a valuable operation by itself. A typical example
presented in the undeniable signatures literature is the case of a software company
(or for this matter any other form of electronic publisher) that uses signature
confirmation as a means to provides a proof of authenticity of their software
to authorized (e.g., paying) customers only. This example illustrates the core
observation on which the notion of undeniable signatures stands: verification of
signatures, and not only their generation, is a valuable resource to be protected.

1.1 Components and security of undeniable signatures schemes

There are three main components to undeniable signature schemes. The signature
generation algorithm (including the details of private and public information), the
confirmation protocol, and the denial protocol. Signature generation is much like a

134

regular signature generation, namely, an operation performed by the signer on the
message which results in a string that is provided to the requester of the signature.
The confirmation protocol is usually modeled after an interactive proof where the
signer acts as the prover and the holder of the signature as the verifier. The input
to the protocol is a message and its alleged signature (as well as the public key
information associated with the signer). In case that the input pair is formed by a
message and its legitimate signature then the prover can convince the verifier that
this is the case, while if the signature does not correspond to the message then
the probability of the prover to convince the verifier is negligible. Similarly, the
denial protocol is an interactive proof designed to prove that a given input pair
does not correspond to a message and its signature. In particular, if the alleged
input signature does correspond to the input message then the probability of the
prover to convince the verifier of the contrary is negligible. Note, that engaging in
the confirmation protocol and having it fail is not an indication that the signature
is invalid, this can only be established through the denial protocol. That is the
confirmation protocol only establishes validity, and the denial - invalidity.
In addition to the above properties required from the confirmation and denial
protocol, there are two basic security requirements on undeniable signatures. The
first is unforgeability, namely, without access to the private key of the signer no
one should be able to produce legitimate signatures by himself. This is similar to
the unforgeability requirement in the case of regular digital signatures, but here the
modeling of the attacker is somewhatmore complex. In addition to having access
to chosen messages signed by the legitimate signer, the attacker may also get to
interact with the signer on different instances of the above protocols, possibly on
input pairs of his own choice. The second requirement is non-transferability of the
signature, namely, no attacker (under the above model) should be able to convince
any other party, without the cooperation of the legitimate signer, of the validity
or invalidity of a given message and signature. Both of these requirements induce
necessary properties on the components of an undeniable signature scheme. In
particular, the confirmation and denial protocols should not leak any information
that can be used by an attacker to forge or transfer a signature. As a consequence it
is desirable that these protocols be zero-knowledge. As for the strings representing
signatures, they should provide no information that could help a party to get
convinced of the validity (or invalidity) of signatures. Somewhat more formally,
it is required that the legitimate signature(s) corresponding to a given message
be simulatable, namely, they should be indistinguishable from strings that can be
efficiently generated without knowledge of the secret signing key.
1.2 Advanced properties of undeniable signatures
Much of the work on undeniable signatures has been motivated by the search
for schemes that provide all of the above properties but that, in addition, enjoy
some additional attractive properties. These include convertibility (the possibility
to transform undeniable signatures into regular, i.e. self-authenticating, signatures

135

by just publishing a short piece of information, [BCDP91]), delegation (enabling
selected third parties to confirm/deny signatures but not to sign), distribution of
power (threshold version of the signature and confirmation protocols, [Ped91]),
designated confirmer schemes (in which the recipient of the signature is assured
that a specific third party will be able to confirm the signature at a later time,
[Cha94]), and designated verifier schemes (in which the prover can make sure
that only a specified verifier benefits from interacting with the prover on the
confirmation of a signature, [JSI96]). More details are provided in Section 5.

1 3 Previous work on undeniable signatures
Since their introduction in 1989, undeniable signatures have received a signifi-
cant attention in the cryptographic research community [CA90, Cha90, BCDP91,
DY91, FOO91, Ped91, CHP92, Cha94, Jak94, Oka94, M96, DP96, JSI96, JY96].
These works have provided a variety of different schemes for undeniable sig-
natures with variable degrees of security, provabiliry, and additional features.
Interestingly, all these works are discrete logarithm based. In [BCDP91] the prob-
lem of constructing schemes based on different assumptions, in particular RSA,
was suggested as a possible research direction.
Most influential are the works of Chaum and van Antwerpen [CA90] and Chaum
[Cha90]. The first work introduces the notion of undeniable signatures and pro-
vides protocols which are the basis for many of the subsequent works. The second
improves significantly on the initial solution by providing zero-knowledge ver-
sions of these protocols. The formalization of the basic notions behind undeniable
signatures was mainly carried out in the works by Boyar, Chaum, Damgard and
Pedersen [BCDP91] and by Damgard and Pedersen [DP96]. In [BCDP91] the
notion of convertible schemes was introduced. In such schemes the signer can
publish a short string that converts the scheme into a regular signature scheme.
However the scheme presented in [BCDP91] was recently broken in [M96]. The
repaired solution presented therein however does not come with a proof of secu-
rity. [DP96] present the first convertible schemes with proven security (based on
cryptographic assumptions).

1.4 Our contribution

Our work is the first to present undeniable schemes based on RSA 1 Our undeniable
signature scheme produces signatures that are identical inform to RSA signatures.
The essential difference from traditional RSA signatures is that in our case both the
signature and verification exponents of RSA are kept secret by the signer, while
the public key consists of a composite modulus and a sample RSA signature on a
single public message.

1 Chaum in [Cha94] uses RSA signatures on top of regular undeniable signatures to provide
"designated confirmer signatures"; however the underlying undeniable signatures are still
discrete log-based.

136

Not only does our solution expand the list of available number-theoretic assump-
tions that suffice to build undeniable signatures, but it achieves and improves, as
we show below, in a simple and elegant way several o f the desirable properties of
undeniable signatures.
Unforgeability: Our construction allows us to prove in a simple way that security
of these signatures against forging is equivalent to the unforgeability of RSA
signatures 2. Provable unforgeability of undeniable signatures was presented for
the first time in the recent paper by [DP96] where forgery of the proposed scheme
is proven equivalent to forgery of the ElGamal scheme.
Simulatability: Non-transferability of an RSA signature is a non-standard re-
quirement in the context of traditional RSA. We prove this property under the
assumption that deciding on the equality of discrete logarithms under different
bases is intractable. This assumption is required in previous works as well ~ al-
though by itself is not always sufficient to prove simulatability o f the undeniable
signatures. For example in [DP96] the simulatability property is only conjectured
to follow from such assumptions.
Zero-Knowledge: Our confirmation and denial protocols have the interactive
proof properties as explained above and are also zero-knowledge. Therefore they
do not leak any information that could otherwise be used for forging signatures.
The soundness of our protocols (i.e. the guarantee that the prover/signer cannot

�9 cheat) relies on the use of composite numbers of a special form (specifically, with
"safe prime" factors), which are secure moduli for RSA. A signer who chooses
a modulus of a different form may have some way to cheat in our protocols.
To force the signer to choose a "proper" modulus we require that he prove the
correct choice &primes at the time he registers his public key with a certification
authority, A discussion of this issue is presented in Section 4.
Efficiency: Our protocols are efficient (comparable to the most efficient alter-
natives found in the undeniable signatures literature). The confirmation protocol
takes two rounds of communication (which is minimal for zero-knowledge pro-
tocols) and involves a small number of exponentiations. The denial protocol is
somewhat more expensive as it consists of a basic two-round protocol with small,
but not negligible, probability of error (e.g., 1/I 000) which needs to be repeated

2 As with regular RSA, the use of a strong one-way hash function is assumed to provide unforge-
ability against chosen message attacks.

8 However, in our case the discrete logarithms are computed modulo a composite number while
in previous works they are modulo a prime. In both cases, the problem is related to the problem
of computing discrete logarithms which is considered to be hard (in the case of a composite
modulus that difficulty is implied by the hardness of factoring and also directly by the assumed
security of RSA). However, while the feasibility of computing discrete logarithm implies the
feasibility of the above decision problem, the reverse direction is not known to hold.

137

sequentially in order to further reduce the error probability. Its performance is still
significantly better (by a factor of 10) than alternative protocols that only achieve
probability 1/2 in each execution. We also note that in typical uses of undeniable
signature schemes one expects to apply more frequently confirmation than denial.
The latter is mainly needed to settle legal disputes.
Advanced Properties: In addition to the above security and efficiency properties,
our solution naturally achieves several of the advanced features of undeniable sig-
natures mentioned above. Once again it is the structure of RSA, in particular the
presence of a secret verification exponent, that allows to achieve such properties
very elegantly. Convertibility is achieved by publishing the verification expo-
nent, thus converting the signatures into regular RSA signatures; delegation is
achieved by providing the verification exponent to the delegated party which can
then run the confirmation and denial protocols but cannot sign messages or forge
signatures; distribution of the signature operation builds on the existing threshold
solutions for RSA signatures; distribution of confirmation can be also achieved by
an adaptation of the regular threshold RSA solutions. We can also adapt existing
techniques for the construction of designated confirmer and designated verifier
undeniable signatures, thus obtaining these variants also for our scheme. More
details are provided in Section 5.
Standard RSA compatibility: An important practical advantage of our RSA-
based undeniable scheme is that the signatures themselves are identical in form
to standard RSA signatures. In particular, this means that they fit directly into ex-
isting standardized communication protocols that use (regular) RSA signatures.
Technically, our work builds on previous ideas and protocols which we adapt
to the RSA case. These previous solutions are designed to exploit the algebraic
properties of cyclic groups like Z~ (and its subgroups). This is probably the main
reason that subsequent work concentrated on these structures as well. Here we
show that many of these ideas can be used in the context of RSA, thus answering
in the affirmative a question suggested in [BCDP91]. In doing so we use ideas
from the work of Gennaro et al. [GJKR96-].

2 Preliminaries

Notation. Throughout the paper we use the following notations:

For a positive integer k we denote [k] dej {1 , . . . , k}. Z,~ denotes the multiplica-
five group of integers modulo r~, and ~(n) = (p - 1)(q - 1) the order of this
group. For an element w E Z~* we denote by ord(w) the order o fw in Z~. The
subgroup generated by an element w E Z~, is denoted by < w > .
The following lemmas are needed in our proofs in Section 3.

138

L e m m a l . Let n = pq, where p < q, p = 2p' + 1, q = 2q' + 1, and
p ,q ,p ' , q ' are all prime numbers. The order o f elements in Z~, is one o f the
set.J1, 2, p', q', 2p', 2q', p'q', 2p'q '}. Given an element w E Z,~ \ - [-1 , 1}, such
that o~'d(w) < p'q' then ged(w - 1, n) is a prime fac tor o f n.

As a consequence of the above lemma we can assume in our protocols that any
value found by a party that does not know the factorization o f n must be o f order
at least p'q' in Z,~ (except for 1,-l).

Lemm a 2. Let n be as in Lemma 1. Given an element w such that ord(w) E
{p' q', 2p'q'} then for everym E Z~ it holds that m 4 E < w > .

3 Our Undeniable Signature Scheme
In this section we give the details of our scheme. We start by defining the following
set:

A/" = -[n l n = pq, p < q, p = 2 p ' + l , q = 2 q ' + l ,

and p, q, p', q' are all prime numbers}

The system is set up by the signer in the following manner, chooses an element
n EAf; selects elements e, d E ~b(n) such that ed = 1 rood ~b(n); chooses a pair
(w, S,~) with w 6 Z~, w r 1, S~ = w d rood n; sets the public key parameters
to the tuple (n, w, S,~); sets the private key to (e, d).
We shall denote by ~o/C the set of all tuples (n, w, S , ,) generated as above. We
refer the reader to Section 4.3 for a discussion on the form of the public key and
how to verify its correctness. In particular, we state that the value o f w can always
be set to a fixed number, e.g. w = 2. This simplifies the public key system and
adds to the efficiency of computing exponentiations with base w.

3.1 Generating a Signature
To generate a signature on a message m the signer carries out a regular RSA sign-
ing operation, i.e. he computes S ~ = m a rood n, outputting the pair (m, S,,~).
More precisely, the message m is first processed through a suitable encoding (e.g.,
via one-way hashing) before applying the exponentiation such that the resultant
signature scheme can be assumed to be unforgeable even against chosen message
attacks (plain RSA does not have this property). Given a message m we will de-
note by ~ the output of such an encoding of m (we do not specify any encoding

in particular) 4 . Thus, the resultant signature o f m will be S ~ a~_~_~ r~" rood n.
In the case of the pair (w, S,~) we will slightly abuse the notation and write
~q~ = w a rood n (without applying the encoding ~) .

-~ For simplicity we will assume a deterministic encoding; however randomized encodings, e.g.
[BR96], can be used as well but then, in our case, the random bits used for the encoding need
to be attached to the signature.

139

3.2 Confirmation Protocol
In Figure 1 we present a protocol for confirming a signature. It is carried out by
two players a prover and a verifier. The public input to the protocol are the public
key parameters, namely (n, w, S,~) E "PK:, and a pair (m, S,,~). For the case that
S,,~ is a valid signature of m, then P will be able to convince V of this fact, while
if the signature is invalid then no prover (even a computationally unbounded one)
will be able to convince V to the contrary except for a negligible probability.
This protocol is basically the same as the protocol of Gennaro et al. [GJKR96]
(based on [Cha90]) where it is used in a different application, namely, threshold
RSA. Our variation on this protocol uses the verification key e rather than the
signature key d as originally used in [GJKR96] (in their case, the signer knows
only d but not e). Still the basic proof given in that paper applies to our case due
to the symmetry that exists between d and e when both exponents are kept secret.
This modification allows us to provide solutions where the ability to confirm
signatures can be delegated to third parties while keeping the ability to sign
new messages only for the original signer (it also allows for a distributed prover
solution). See Section 5 for the details.
An interesting aspect of this protocol is that a prover could succeed in convincing
the verifier to accept a signature on m even when this signature is not rh a rood n
but c ~ a rood n where ~, is an element of order 2 (in g~). [GJKR96] solve this
problem through the assumption (valid in their case) that the prover cannot factor
n and thus cannot find such an element o~. In our case, this assumption does
not hold. We deal with this problem by accepting as valid signatures also these
multiples of ~'~. On the other hand, when designing the denial protocol we make
sure that the signer cannot deny a signature of this extended form. That is, we

define the set of valid signatures for a message m as SZG(ra) ~ {ST, : S,.,., =

Signature Confirmation Protocol

Input: Prover: Secret key (d, e) E [r 2
Common: Public key (n, w, S~) E PK,

m E Z* and alleged .~,~

1. V chooses i, j ER [n] and computes Q ~ t S~S~ j rood n
V----~ P : Q

2. P computes A a__~f Qe mod n
P-----*V:A

3. V verifies that A = rh~w j mod n.
If equality holds then V accepts S,~ as the signature on m, otherwise "undeter-
mined".

Fig. 1. Proving that S,,~ E sLr~(m) (ZK steps omitted)

140

For ease of exposition the protocol in Figure 1 appears in a non zero-knowledge
format. However, there are well-known techniques [GMW86, BCC88, Go195]
to add the zero-knowledge property to the above protocol using the notion of a
commitment function: Instead of P sending A in Step 2, he sends a commilment
commit(A), after which V reveals to P the values of i and j . After checking that

Q ~-~-~ ,g~S~ j mad n, P sends A to V . The verifier checks that A corresponds
to the value committed by t9 and then performs the test of Step 3 above.
The zero-knowledge condition is achieved through the properties of the commit-
ment function, namely, (I) commit(z) reveals no information on z, and (II) P
cannot find z' such that commit(z) = commit(z'). Cornmimaent functions can
be implemented in many ways. For example, in the above protocol commit(A)
can be implemented as a probabilistic (semantically secure) RSA encryption of
A using a public key for which the private key is not known to V (and possibly,
not even known to P). To open the commitment, P reveals both A and the string
r used for the probabilistic encryption. This implementation of a commitment
function is very efficient as it does not involve long exponentiations (and is secure
since we assume our adversary, the verifier in this case, is unable to break RSA).
A proof of the theorem below can be found in [GJKR96].

Theorem 3. Confirmation Theorem. Let (n, w, S,o) 6 T'IC.
Completeness. If P and V follow the Signature Confirmation protocol then V

always accepts.
Soundness. A cheating prover P*, even computationally unbounded, cannot con-

vince V to accept S,~ ~. SZ~(m) with probability greater than 0(1)
Zero-knowledge. The protocol is zero-knowledge, namely, on input a message

and its valid signature, any (possibly cheating) verifier V* interacting with
prover P does not learn any information aside from the validity of the
signature.

3.3 Denial Protocol

Figure 2 exhibits the Denial Protocol. The public input to the protocol are the
public key parameters, namely (n, w, S,~) E ~/C, and a pair (m, S~). In the
case that ,g,~ ~ S2;G(m), then P will be able to convince V of this fact, while if
S,~ E SIG(m) then no prover (even a computationally unbounded one) will be
able to convince V that the signature is invalid except with negligible probability.
Our solution is based on a protocol due to Chaum [Cha90], designed to prove in
zero-knowledge the inequality of the discrete logarithms of two elements over a
prime field Zp relative to two different bases. The protocol and proof presented
in the above paper do not work over g~, for a composite n as required here,
in particular, since they strongly rely on the existence of a generator for the
multiplicative group Z~. However, a careful adaptation of that protocol and a
more involved proof can be shown to solve our problem over g~.

141

The protocol has probability of error -~, where k = O(log n) is a parameter
chosenby the system. Due to an elegant observation o fChaum [Cha90] the desired
probability of error can be achieved while incurring only a constant number of
exponentiations. He notes that while carrying out k consecutive multiplications,
which is equivalent in computation to a single exponentiation, we can compute
all the powers in a the range [k]. If we take k = 1024 we can repeat the protocol
ten times in order to achieve a security of ~ - ~ . As stated in the introduction this
allows for a ten fold increase in efficency relative to alternative protocols.
The protocol as presented in Figure 2 omits the steps that make it zero-knowledge.
This is similar to the case of the confirmation protocol. Yet, in this protocol special
care needs to be taken in Step 2. If the (honest) prover does not find a value i that
satisfies the equation, which means that V is cheating, _P aborts the execution of

the protocol. Though aborting the protocol does not reveal much information it
does reveal some, and in the zero-knowledge version we do not want even this
much information to leak. Thus, P should continue the execution of the protocol
by committing to the value 0, in a "dummy commitment" this will conceal the
information of whether a value i was found or not. Note that in the case where no
i was found, the verifier will be exposed later as a cheater and the commitment of
0 will never be revealed.

Denial Protocol

Input: Prover: Secret key (d, e) E [r 2
Common: Public key (n, w, ,.q~,) E 7 ~ ,

ra E g*,~ and alleged non-signature ,~,,~

1. V choosesi = 4b, b ER [k] andj E~ [n].
Sets Q1 = ~ w 5 mod n and Q2 = ~'~S~ j rood n
V - - * P : (QI, Q2)

2. P computes Qx/Q~ = (~_) i and computes i by testing all possible values of

i ~ [k].
If such a value was found then P sets A = i, otherwise abort.
P---, V : A

3. V verities that A - i. If equality holds then V rejects S,~ as a signature of m,
otherwise, undetermined.

Fig. 2. Proving that ,~,~ r S I C (m) (ZK steps omitted)

Theorem 4. Denial Protocol Let (r~, w, S,~) E 7:']C.
Completeness. Assuming that S,,~ ~, S I ~ (rn), and ifl:' and V follow the protocol

then V always accepts that S,,~ is not a valid signature o f re.
Soundness. Assuming that S,n E S I~(rn) then a cheating prover t 7 . even

computationally unbounded, cannot convince V to reject the signature with
lity gre 1 t probabi ater than ~ + ~.

142

Zero-knowledge. The protocol is zero-knowledge, namely, on input a message
and a non-valid signature, any (possibly cheating) verifier V* interacting
with prover P does not learn any information aside from the fact that S,~ is
in fact not a valid signature for the message rrt.

4 Security Analysis
We do not present here a formal treatment of the notion of undeniable signatures
and its security requirements. For such a formal and complete treatment we refer
the reader to the paper by Damgard and Pedersen [DP96-]; an outline of these
notions can be found above in our Introduction (in particular, in Section 1.1).
Here we argue the security properties of our solution in an informal way based on
this outline.

4.1 Unforgeability of signatures
We consider an attacker that cannot forge regular RSA signatures. When attacking
our undeniable signatures scheme this attacker may request signatures (and their
confirmation) on any messages of its choice. The attacker can also choose pairs of
messages and alleged signatures and engage in confirmation or denial protocols
with the signer on these inputs (whether it engages in a confirmation or denial
protocol depends on the validity or invalidity, respectively, of the input pair). The
goal of the attacker is to forge a signature, namely, to generate a valid signature
on a message not previously signed by the legitimate signer.
We first note that since both confirmation and denial protocols are zero-knowledge
then the information provided to the attacker by these protocols is useless for
attacking the signatures (in the sense that the same information can be generated by
the attacker alone). Therefore, an attacker could essentially try to forge signatures
based on the public keys and a (possibly chosen) list of messages and their valid
signatures. However, since our signatures are equivalent to regular RSA signatures
(except for the fact that the verification exponent is secret which can only make it
harder for the attacker) then the ability to forge our undeniable signatures would
translate into forging regular RSA signatures which we assume infeasible. (As
noted before, RSA is not directly immune against chosen message attacks but we
assume this to be countered by additional means, e.g. by the appropriate encoding
of the message prior to the exponentiation- see Section 3.1 .)
Formalizing the above arguments is quite straightforward and standard. Such a
formal proof would show how to transform any given forging attacker against
our undeniable signatures into a forging attacker against regular RSA signatures;
the transformation would make use of the simulators for our zero-knowledge
protocols (both confirmation and denial). We summarize this discussion in the
following theorem.

143

Theorem 5. Assuming that the underlying RSA signatures are unforgeable (against
known and~or chosen message attacks) then our undeniable signatures are un-
forgeable (against the same attacks).

4.2 Indistinguishability of signatures
A basic goal of undeniable signatures is that no one should be able to verify the
validity (or invalidity) of a message and its (alleged) signature without interacting
with the legitimate signer in a confirmation (or denial) protocol. Following [DP96]
we need to show that given the public key information and any message ra (but
not the signature exponent d) one can efficiently generate a simulated signature
s(m) of ra, in the sense that the distribution of simulated signatures cannot
be distinguished (efficiently) from the distribution of true signatures on ra. We
achieve this property in the following way. Given any message m, we apply to it
the encoding r~ as determined by the underlying RSA scheme and then raise the
result ~ to a random exponentmodulo n (i.e., s(rn) = ~ " rood n, for r ER [n]).
Notice that distinguishing s(m) from the signature r~ a rood n on rn is equivalent
to deciding whether

*t

log . . (s (m)) = (l)

where the discrete logarithm operation is taken in Z~. This problem has no
known efficient solution, though its equivalence to RSA, factoring, or the discrete
logarithm problems has not been established. We thus require the following in-
tractability assumption in order to claim the hardness of distinguishing between
valid and simulated signatures.
Assumption EDL: For values n, w, S~,, ~ , and s(w) as defined above it is
infeasible to decide the validity of equation 1 over Z,~.
We stress that the analogous assumption modulo a prime number is necessary
for claiming the security of previous undeniable signature schemes as well (see
[DP96]). However in the case of [DP96] the EDL assumption is not sufficient to
prove simulatability, which in that paper is indeed simply conjectured.

Theorem 6. Under the above EDL assumption, our signatures are simulatable
and hence cannot be verified without the signer's (or its delegated confirmers)
cooperation.

Remark: The above theorem does not concern itself with a general problem
of undeniable signatures pointed out first by Desmedt and Yung [DY91]. It is
possible that the signer is fooled into proving a signature to several (mutually
distrustful) verifiers while he is convinced of proving the signature to only one of
them. We will address this problem in Section 5.

144

4.3 Choosing the signer's keys
In Section 3 we defined what the public and private parameters for the signer
should be. Our analysis of the (soundness of the) confirmation and denial protocols
depends on these parameters being selected correctly. Typically, the verification
of this public key will be done whenever the signer registers it with a trusted
party (e.g., a certification authority). Here we outline protocols to check the right
composition of the modulus n, the sample element w, and the fact that S,, is
chosen as a power of w (the latter serves as the "commitment" of the signer to
the signature exponent d). Notice that these protocols are executed only once at
registration time and not during the more common signing/verification operations.
We denote by V the entity that acts as the verifier of these parameters, and by P
the signer that proves its correct choices.
VERIFICATION THAT ~v IS OF HIGH ORDER. Specifically, we use in our analysis the
assumption that w is an element of order at least p'q'. By virtue o f Lemma 1 all
that V needs to verify is that w ~ . [-1, 1} and that ged(w - 1, n) is not a factor
of n. Actually, the value w can be chosen as a constant, e.g. w = 2, for all the
undeniable signatures public keys. Such a value must always pass the verification
(or otherwise factoring is trivial).
VERIFICATION THAT ,.,qto E <'to>. The following protocol is essentially the protocol
for proving possession of discrete logarithms as presented in [CEG87], once again
modified in order to work with composite moduli. The signer P chooses a value
r ER [r and sends to V the value w' = w". The verifier V answers with
a random bit b. If b = 0, P returns the value r, otherwise it returns the value
d + r rood r In the first case, V checks whether w" = w', and in the second,
whether w C'+a) = w'S~. If w ~ < w > then the probability that P passes this
test is 1/2. By repeating this procedure k times the probability that the dealer can
cheat reduces to 2 -~'. The protocol is statistical zero-knowledge as the simulator
does not know r but can use the uniform distribution on [1..n] to statistically
approximate the one on [1..r As a practical matter, we observe that this
protocol can be performed non-interactively if one assumes the existence of an
ideal hash function (a la Fiat-Shamir [FS86-]).
VERIFICATION OF THE PRIME FACTORS. We need to check that the signer chooses
the modulus re of the right form, i.e. n = pq with t9 = 2:p' + 1 and q = 2q' + 1
and p, q, p', q' are all prime numbers. We have three alternative solutions for this
problem. The first is to use a generic zero-knowledge proof of the above property
using the general results of [GMW86]; although the resultant solution would be
highly inefficient this task is performed only once at system initialization. A more
efficient (but less secure) solution to this problem is to let the signer generate a
large set ofmoduli rex, n2 , - - . , nk from which V chooses a random element, say
m. Next, P shows the factorization into primes of all the other moduli in the
set. If all are of the right form then nl is chosen as the modulus n, otherwise P

145

is disqualified. The drawback of this solution is that the probability of cheating,
i.e. 1/k, reduces only linearly with the amount of work in the protocol. Yet once
again, the protocol needs to be performed only at initialization of the modulus and
thus a relatively large number k ofmoduli can be produced. (Although this gives
only "linear security" we stress that under the appropriate legal circumstances a
probability of, say 999/1000, to be caught cheating can be a significant deterrent
for anyone to register an invalid key.)
Finally, there is a solution [Dam] that allows for a trade-off between the error
probability at the key registration stage and the performance cost of the undeniable
signature scheme. Initially, we let P generate 2k moduli. V chooses at random k
of them of which the signer must reveal the factorizations. If the factorization of
those moduli was of the correct form, we run our basic scheme in parallel for all
the remaining k moduli. A confirmation or denial is accepted only if it works for
all k moduli. The signer can only cheat if all the opened moduli were good, and
all the remaining bad, but for any given set of moduli, this will only happen with
exponentially small probability in k. In practice, one can choose parameters more
appropriately. For example it doesn't have to be 2k and k moduli since with a
total of 100 moduli, V choosing 95 of them and keeping only 5 to do the scheme
in parallel, the error probability is close to 10 -~ .

5 Extensions

Our protocols lend themselves to many of the existing extensions in the literature
for undeniable signatures.
Convertible Undeniable Signatures, This variation appeared first in [BCDP91],
and secure schemes based on E1Gamal signatures have been recently presented
in [DP96]. Convertible undeniable signatures enable the signer to publish a value
which transforms the undeniable signature into a regular (i.e., self-authenticating)
digital signature. In our scheme conversion can be easily achieved by simply
publishing the value e = d -1 rood r Doing so the signer will transform
the undeniable signatures into regular RSA signatures with public key (n, e).
Notice that this will automatically imply the security (i.e., unforgeability) of the
converted scheme, based on the security o f regular RSA signatures, s

5 Notice that this holds if the signer issued for the message m its intended signature S,~ =
~d rood n. If, instead, the signer generated a signature of the form S,~ = ar~ d, where a is an
element of order 2, then when e is made public it is easy to recover a (and then the factorization
of n) from a triple (m, S,~ = a n d, e) since e is odd. We stress that although we consider
as valid also signatures of that form (see Section 3.2), it is in the interest of the prover not to
generate them in that way.

146

In some applications it may be desirable to convert only a subset of the past
signatures (selective conversion [BCDP91]). For this scenario we can make use
of a non-interactive zero-knowledge confirmation proof for those messages. Such
an efficient scheme is described in the final paper.
Delegation. The idea is for the signer to delegate the ability to confirm and deny to
a third party without providing that party the capabilities to generate signatures.
In the literature this notion is usually treated in the context of convertibility
of signatures. However the two notions are conceptually different. Clearly the
information used in order to delegate confirmation/denial authority to a third party
if made public would basically convert undeniable signatures into universally
verifiable ones. However the converse is not necessarily true. It may be that the
information used to convert signatures, if given secretly to a third party, would
still not allow that party to prove in a non--transferable way the validity/invalidity
of a signature.In our setting the signer can simply give the third part), the key e
which is the only needed information in order to carry out successfully the denial
and confirmation protocols. Clearly, the recipient of e cannot sign by itself as this
is the basic assumption behind regular RSA signatures.
Distributed Provers (and signers). Distributed Provers for undeniable signatures
were introduced by Pedersen [Ped91]. With distributed provers the signer can
delegate the capability to confirm/deny signatures, without needing to trust a
single party. This is obtained by sharing the key, used to verify signatures, using
a (verifiable) secret sharing scheme among the provers. This way only if * out of
the n provers cooperate it is possible to verify or deny a signature. The existing
solutions for threshold RSA signatures [DDFY94, GJKR96] can then be used
to obtain an efficient distributed scheme as the only operation needed during
confirmation or denial protocols is RSA exponentiations. The fault-tolerance of
the protocol in [GJKR96] guarantees the security of the scheme even in the
presence of* (out of n) maliciously behaving provers.
As Pedersen pointed out in [Ped91], undeniable signatures with distributed provers
present some difficulties. Indeed when the provers are presented with a message
and its alleged signature, they have to decide which protocol (either the denial
or the confirmation) to use. They can do this by first distributively checking for
themselves if the claimed signature is correct or not. But this in turn means that
a dishonest prover can use the other provers as an oracle to the verification key
at his will. The problem applies to our schemes as well. Several ways of dealing
with the problem have been suggested in the literature [Ped91, JY96] some of
which easily extend to our scenario.
Also solutions for threshold RSA allow to share the power to sign (in addition to
the power to verify/deny signatures) among several servers. Once again in case of
possibly maliciously behaving signers a fault-tolerant scheme as [GJKR96] must
be used.

147

Designated Verifier. The following problem of undeniable signatures has been
pointed out (see [DY9 l, Jak94]): in general a mutually suspicious ~oup of veri-
fiers can get simultaneously convinced of the validity of a signature by interacting
with the signer in a single execution of the confirmation protocol (in other words,
the signer may believe that it is providing the signature confirmation to a single
verifier while in actuality several of them are getting convinced at once). This is
possible by having the "official" verifier act as the intermediary (or man in the
middle) between the prover and the larger set of verifiers. While this is not always
a problem, in some cases this may defeat the purpose of undeniable signatures
(e.g., if the signer wants to receive payment from each verifier that gets a signature
confirmation).
Jakobsson et al. [JSI96] present a solution to this problem through the notion of
designated verifiers proofs that is readily applicable to our scheme. All that is
required is for the verifier to have a public key. Then when the prover commits
to his answer during the zero-knowledge steps of our protocols he will use a
trapdoor commitment scheme (as in [BCC88]) which the verifier can open in any
way. This will prevent the verifier from "'transferring" the proof (see [JSI96] for
the details).
Designated Confirmer. Designated confirmer undeniable signatures were intro-
duced by Chaum in [Cha94] and further studied by Okamoto in [Oka94]. This
variant of undeniable signature is used to provide the recipient of a signature with
a guarantee that a specified third party (called a "'designated confirmer") will later
be able to confirm that signature. Notice the difference between this variant and
the delegation property described above. Indeed in the present case the signature
is specifically bound at time of generation to a particular confirmer.
The techniques of [Cha94, Oka94] easily extend to our scheme.

Acknowledgments.We would like to thank Ivan Damg~ird for useful suggestions.

References

[Bcc88]

[BCDP91]

[BR96]

G. Brassard, D. Chaum, and C. Cr6peau. Minimum disclosure proofs
of knowledge. JCSS, 37(2): 156-189, 1988.
J. Boyar, D. Chaum, I. Damg~rd, and T. Pedersen. Convertible un-

deniable signatures. In A.J. Menezes and S. A. Vanstone, editors,
Proc. CRYPTO 90, pages 189---205. Springer-Verlag, 1991. Lecture
Notes in Computer Science No. 537.
M. Bellare and P. Rogaway. The exact security of digital signatures,
how to sign with RSA and Rabin. In U. Maurer, editor, Advances
in Cryptology: EUROCRYPT'96, volume 1070 of Lecture Notes in
Computer Science, pages 399-416. Springer-Verlag, 1996.

148

[CA90] David Chaum and Hans Van Anrwerpen. Undeniable signatures. In
G. Brassard, editor, Proc. CRYPTO 89, pages 212-217. Springer-
Verlag, 1990. Lecture Notes in Computer Science No. 435.

[CEG87] D. Chaum, J.-H. Evertse, and J. van der Graaf. An improved pro-
tocol for demonstrating possession of a discrete logarithm and some
generalizations. In EUROCRYPT'87, pages 127-141, 1987.

[Cha90] D. Chaum. Zero-knowledge undeniable signatures. In Proc. EURO-
CRYPT90, pages 458-464. Springer-Verlag, 1990. Lecture Notes in
Computer Science No. 473.

[Cha94] David Chaum. Designated confirmer signatures. In EUROCRYPT'94,
pages 86-91, 1994.

[CP93] D. Chaum and T. Pedersen. Wallet databases with observers. In
CRYPTO'92, pages 89-105. Springer-Verlag, 1993. Lecture Notes
in Computer Science No. 740.

[CHP92] D. Chaum, E. van Heijst, and B. Pfitzmann. Cry. ptographically strong
undeniable signatures, unconditionally secure for the signer. In
J. Feigenbaum, editor, Proc. CRYPTO 91, pages 470-484. Springer,
1992. Lecture Notes in Computer Science No. 576.

[Dam] I. Damg~rd. Personal communication. November, ! 996.
[DDFY94] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How

to share a function securely. In Proc. 26th ACM Symp. on Theory of
Computing, pages 522-533, Santa Fe, 1994. IEEE.

[DP96] I. Damgard and T. Pedersen. New convertible undeniable signature
schemes. In Eurocrypt'96, pages 372-386. Springer-Verlag, 1996.
Lecture Notes in Computer Science No. 1070.

[DY91] Y Desmedt and M. Yung. Weaknesses of undeniable signature
schemes. In Eurocrypt'91, pages 205-220, 1991.

[FOO91] A. Fujioka, T. Okamoto, and K. Ohta. Interactive bi-proof systems
and undeniable signature schemes. In Eurocrypt'91, pages 243-256,
1991.

[FS86] Fiat, A. and Shamir, A. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems.. In Crypto "86, pages 186--194.
Springer-Verlag, 1986. Lecture Notes in Computer Science No. 263.

[GJKILO6] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust
and efficient sharing of RSA functions. In Crypto '96, pages
157-172. Springer-Verlag, 1996. Lecture Notes in Com-
puter Science No. 1109. Complete version available from
http : //www. research, ibm. com/securi ty/papers 19 9 7. html

[GMW86] O. Ooldreich, S. Micali, and A. Wigderson. Proofs that Yield Noth-
ing but the Validity of the Assertion, and a Methodology of Crypto-
graphic Protocol Design. In Proceeding 2 7th Annual Symposium on
the Foundations of Computer Science, pages 174--187. ACM, 1986.

149

[Go195]

[Jak94]

[JSI96]

[JY96]

[M96]

[Oka94]

[Ped91]

Oded Goldreich. Foundation of Cryptography-Fragments of a Book.
Electronic Colloquium on Computational Complexity, February 1995.
Available online from htrp://www.eccc.uni-trier.de/eccc/.
M. Jakobsson. Blackmailing using undeniable signatures. In EURO-
CRYPT'94, pages 425-427, 1994.
M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier
proofs and their applications. In U. Maurer, editor, Advances in Cryp-
tology: EUROCRYPT'96, volume 1070 of Lecture Notes in Computer
Science, pages 143--154. Springer-Verlag, 1996.
M. Jakobsson and M. Yung. Proving without knowing: On oblivi-
ous, agnostic and blindfolded provers. In Crypto '96, pages 201-215.
Springer-Verlag, 1996. Lecture Notes in Computer Science No. 1109.
M. Michels. Breaking and Repairing a Convertible Undeniable Sig-
nature Scheme. In Proceedings of the 1996 ACM Conference on
Computer and Communications Security, 1996.
Tatsuaki Okamoto. Designated confirmer signatures and public-key
encryption are equivalent. In Yvo G. Desmedt, editor, Advances in
Cryptology: CRYPTO "94, volume 839 of Lecture Notes in Computer
Science, pages 61-74. Springer-Verlag, ! 994.
T. Pedersen. Distributed provers with applications to undeniable sig-
natures. In Eurocrypt'91, pages 221---_942, 1991.

