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Abstract. Cryptosystems based on the knapsack problem were among
the first public key systems to be invented and for a while were con-
sidered quite promising. Basically all knapsack cryptosystems that have
been proposed so far have been broken, mainly by means of lattice re-
duction techniques. However, a few knapsack-like cryptosystems have
withstood cryptanalysis, among which the Chor-Rivest scheme [2] even
if this is debatable (see [16]), and the Qu-Vanstone scheme proposed at
the Dagstuhl’93 workshop [13] and published in [14]. The Qu-Vanstone
scheme is a public key scheme based on group factorizations in the ad-
ditive group of integers modulo n that generalizes Merkle-Hellman cryp-
tosystems. In this paper, we present a novel use of lattice reduction,
which is of independent interest, exploiting in a systematic manner the
notion of an orthogonal lattice. Using the new technique, we successfully
attack the Qu-Vanstone cryptosystem. Namely, we show how to recover
the private key from the public key. The attack is based on a careful
study of the so-called Merkle-Hellman transformation.

1 Introduction

The knapsack problem is as follows : given a set {ai1,a2,...,a,} of positive
integers and a sum s = )., %;a,, where each z, € {0,1}, recover the z;. It is
well known that this problem is NP-complete, and accordingly it is considered to
be quite hard in the worst case. However some knapsacks are very easy to solve :

if the set S = {ay,a2,...,a,} of positive integers is a superincreasing sequence,
e.g.
1—1
Vi>2 a,>) a,
=1

then the corresponding knapsack can easily be solved in linear time. Most of the
public key schemes based on knapsacks are of the following form :
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The Public Key: a set of positive integers {a1,az,...,a.}.

The Private Key: a method to transform the presumed hard public knap-
snack into an easy knapsack.

The Message Space: all 0 — 1 vectors of length n.
Encryption: amessage M = (71,13, ...,%,) is enciphered into C = Y-, z;a..

In 1978, Merkle and Hellman [10] devised a method to convert superincreasing
sequences into what they believed were hard knapsacks. If S = {a1,a2,...,ax,}
is a superincreasing sequence and ¢ = Z:‘zl a,, select two coprime integers m
and w such that m > a. The Merkle-Hellman transformation associated with
the pair (m,w) is the function f that maps any z € {0,1,...,m — 1} to the
least positive residue of wz modulo m. This function is a permutation, and its
reciprocal f~! maps any y € {0,1,...,m — 1} to the least positive residue of
w™ 'y modulo m, where w™! is an inverse of w modulo m. Merkle and Hellman
applied such a transformation f to form a new knapsack S = {b1,ba,...,bn}
where b, = f(a;). To decrypt a ciphertext ¢ = 3., z,b;, one computes f~!(c).
Since

e = Z:Jvzbzw_1 = z,a; (mod m),
=1

with 3", z.a, < a < m, wehave f~(c) = 3, zia;. By solving the easy knap-
sack S = {a1,as,...,a,}, one recovers the z;. Applying a sequence of Merkle-
Hellman transformations is not equivalent to a single application, and hence,
should enhance the security of the system. Unfortunately, these systems were
both shown to be insecure (see [17, 1]). Despite the failure of Merkle-Hellman
cryptosystems, researchers continued to search for knapsack-like cryptosystems
because such systems are very easy to implement and can attain very high en-
cryption/decryption rates. But most of the proposed knapsack-like cryptosys-
tems have been broken (for a survey, see [12]), either by specific attacks or by
the so-called low-density attacks.

The density of a knapsack S = {a1,a2,...,a,} is defined to be d = §; where
N = maxi<,<n l0g; a;. When the density is small (namely, less than 0.94...), one
can prove the knapsack problem can be solved using lattice reduction with high
probability (see [4]). Such attacks are called low-density attacks. The attack has
recently been improved by [16}, but is still uneffective against high-density knap-
sacks. The few knapsack cryptosystems that have so far withstood all attacks use
knapsacks of high density. In [13], Qu and Vanstone showed that Merkle-Hellman
knapsack cryptosystems could be viewed as special cases of knapsack-like cryp-
tosystems arising from subset factorizations in finite groups. They proposed a
generalization of these knapsack cryptosystems by constructing a supposedly
hard factorization of finite group, using Merkle-Hellman-like transformations
and superincreasing sequences. This hard factorization problem can be restated
as a knapsack problem of density higher than 3. We will attack the Qu-Vanstone
system by showing how to recover the hidden easy factorization (the private key)
from the presumed hard factorization (the public key), in a reasonable time.
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2 The orthogonal lattice

We will use the word lattice for any integer lattice, that is any additive subgroup
of Z™. Background on lattices can be found in [5, 3]. We denote vectors by
bold-face lowercase letters. Let A be a lattice in Z™.

Let by,...,bg be vectors of A. These d vectors form a basis of A if they are
linearly independent over Z, and if any element of A can be expressed as a linear
combination of the b,’s with integral coefficients. There exists at least one basis
of A. The bases of A all have the same cardinality, called the dimension of A. We
say that A is a sublattice of a lattice 2 in Z™ if Q2 contains A and if both have
the same dimension. All bases of A span the same Q-vector subspace of Q*,
which we denote by Es. The dimension of E, over Q is equal to the dimension
of A. Define the lattice A = Ex NZ™. A is a sublattice of A. We say that A is a
complete lattice if A = A. In particular, A is a complete lattice.

Let (x,y) — x.y be the usual euclidian inner product, and ||.|| be its corre-
sponding norm. Let F = (Ex)' be the orthogonal vector subspace with respect
to this inner product. We define the orthogonal lattice to be A+ = FNZ". Thus,
A+ is a complete lattice in Z", with dimension n — d if d is the dimension of
A. This implies that (A1)+ is equal to A. Let B = (by,...,bg) be a basis of A.
Decompose each b; over the canonical basis of Z™ as :

Define the n X d integral matrix B = (b; ,)1<i<n,1<j<d- The lattice A is spanned
by the columns of B : we say that A is spanned by B. Let Q = ‘BB be the dx d
symmetric Gram matrix. The determinant of @ is a positive integer independent
of B. The determinant of A is defined as det(A) = \/det(B).

Theorem 1. Let A be a complete lattice in Z™. Then det(Al) = det(A).
Proof. We have A = E5 NZ™ and A+ = Ef N Z"™. We know from [9] that :

det(Ep NZ™)
") = ,
4et(Z") = S EL N (@)
where (Z")* denotes the polar lattice of Z*. But det(Z") =1 and (Z")* = Z™,
therefore det(A1) = det(A). ]

Corollary 2. Let A be a lattice in Z". Then det((A+)*) = det(AL) = det(A).

In 1982, Lenstra, Lenstra and Lovasz introduced the famous LLL-algorithm [8],
a polynomial time algorithm that computes a so-called LLL-reduced basis of any
given lattice. For definitions and proofs regarding LLL-reduced bases, we refer
to [8, 3] In this paper, we only need the following properties of LLL-reduced
bases :
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Theorem 3. Let (by,...,by) be an LLL-reduced basis of a lattice A in Z™.
Then :

1. det(A) < TTiy IIbsll < 244-1/4 det(A).
2. For any linearly independent vectors xX3,...,xt €A, and1 <3<t :

Ibj | < 247072 max(lfxcy |, - ., llxell)-

We now describe a basic algorithm to compute an LLL-reduced basis of an
orthogonal lattice. Let B = (by,...,by) be a basis of A, and B = (b; ;) be its
corresponding n x d matrix. Let ¢ be a positive integer constant. Define 2 to be
the lattice in Z"*9 spanned by the following (n + d) x n matrix :

c X b1,1 c X b2,1 c X bn,l
c X b1,2 cX b2’2 c X bn,2
n c X bl,d C X bgyd cX bn,d
B* = 1 0 0
0 1
: : .. 0
0 0 e 1

A similar matrix is used in [7]. The matrix Bt is divided in two blocks : the
upper d x n block is ¢'B and the lower n X n block is the identity matrix. Let py
and p, be the two projections that map any vector of Z"*¢ to respectively the
vector of Z% made of its first d coordinates, and the vector of Z" of its last n
coordinates, all with respect to the canonical basis. Let x be a vector of  and
denote y = p,(x). Then

y-by
pr(x)=c|
y.-b4
Hence, y € AL if and only if p1(x) = 0. Furthermore, if ||x|| < c, then p;(x) = 0.
Theorem j. Let (x1,X2,...,X%,) be an LLL-reduced basis of Q. If

c> 9(n—1)/2+(n—d)(n—d-1)/4 det(X),
then (py(x1),py(X2), - .,Py(Xn—a)) s an LLL-reduced basis of A™*.

Using Hadamard’s inequality, we derive the following algorithm :

Algorithm 5. Given a basis (b1, bs,...,ba) of a lattice A in Z™, this algorithm
computes an LLL-reduced basis of A+.

1. Select ¢ = [2(n=D/2+(n=d)n=d=D/4 TL_ |[b,|].
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2. Compute the (n + d) x n integral matriz B+ from c and the n X d matriz
B = (bi ;) corresponding to by, ba,... by.

3. Compute an LLL-reduced basis (X3,Xz,...,Xn) of the lattice spanned by B*.

4. Output (p(x1),p)(X2), - .-, Py (Xn—a)).

One can prove that this is a deterministic polynomial time algorithm with respect
to the space dimension n, the lattice dimension d and any upper bound of the
bit-length of the ||b;||’s. In practice, one does not need to select such a large
constant ¢ because the theoretical bounds of the LLL algorithm (theorem 3) are
quite pessimistic. We will use this algorithm throughout the attack.

3 The cryptanalysis of the Qu-Vanstone scheme

3.1 High level description of the Qu-Vanstone scheme

Since the Qu-Vanstone scheme is quite complicated, we give a simplified expo-
sure. Additional information can be found in appendix and in {13, 14].

Let n be a positive integer of the form n = d;dadsdsds, where 2°7! < d; <
2% (for £ = 1,2,3,4), ds < 16, and s is some fixed even positive integer. Let
G = Z, be the additive group of integers modulo n. Qu and Vanstone found
a way to build an efficient subset factorization in G. Namely, with help of 4
superincreasing sequences and 4 Merkle-Hellman transformations, they construct
s blocks C; = {c[i,j] : 0 < j < 15} of 16 integers of G where 1 < ¢ < s such
that : for any g € G of form g = ¥;_, ¢l¢, ji] (mod n), one can quickly recover the
ji’s from g and a trapdoor. This construction is intricate, a detailed description
can be found in the appendix.

Qu and Vanstone further use k additional Merkle-Hellman-like transforma-
tions and s permutations to hide the subset factorization. The process consists of
k iterations, starting with m® =n and i, 5] = ci,j], 1 <i<s,0< 5 < 15.
Consider the eth iteration (1 < e <k):

— select s positive integers age_l), ...,V such that 0 < aEe‘l) < mle-D),
and define &) [3, 5] = ¢l V[4, 5] + afe_l) (mod m=1).

— select m(®) strictly greater than "°_, maxo<;<1s &®[i, j]. Choosing w(®) co-
prime to m{®), define ¢(®)[i, j] = w® &[4, j] (mod m ®)).

These Merkle-Hellman-like transformations differ from the original Merkle-Hell-
man transformations by the use of a modular addition which is performed before
the modular multiplication. Now that the c(*)[i, j]’s are defined, select s permu-
tations m1,...,%s acting on {0,1,...,15}. Let

dfi, 3] = cli, 772 (3)] = cli, 771 (0)] (mod m(®)).

Notice that d[i,0] = 0. Let C = 35, c®[i, 771(0)] (modm®).
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The public key consists of the s blocks D, = {d[¢, 5] : 0 < j < 15}, that is 15s
non-zero positive integers. The private key is : C, m,’s, w(®)’s, m(®)’s, 3°7_ age) s
and the trapdoor corresponding to the subset factorization.

The message space is Zygs, and the numbers in each D, are roughly around
s*n. Qu and Vanstone suggested s > 32 and k > 3. In the smallest case, the
message space is Zj2g, and the maximum element in the public key is less than
2151 The keys are quite large but encryption/decryption rates are high.

To encode a message m, write m in its base 16 expansion as m = p; + 16ps +
...+ 16°1p,, where 0 < p, < 15. Then the ciphertext associated with m is

c=d[l,p] +d[2,pe] + ... +d[s,ps]

To decrypt ¢, compute c® = ¢+C (mod m(k)). Then invert Merkle-Hellman-like
transformations by applying the following process with e =k, k—1,...,1:

&le) = (w®) 1cl® (mod m(®)),

ce=t) = gy al*™ (mod m(e-V).
At this point, ¢® = Y°7_ c[i,5,) (modn) where each j, = 7 '(p,) is still
unknown. From the subset factorization trapdoor, the j,’s can be recovered.
This technical step is described in the appendix. From the j,’s, one computes
p, = m;(j;) and the message m = p; + 16py + ... + 1657 1p,.

This public key system has features similar to the original knapsack scheme.
The security rests on the Merkle-Hellman-like transformations that hide the 4
superincreasing sequences and the coset structure. The knapsack based on the
blocks D, has density higher than 3, so it looks immune to the usual low-density
attacks. Qu and Vanstone discuss several attacks on this system in their paper
[13]. We now describe our attack which mainly consists of two steps : we first
attack Merkle-Hellman-like transformations by reducing several orthogonal lat-
tices, then we compute successive orthogonal lattices to reveal the secret key. The
first step is quite general but the second step is based on the particular struc-
ture of the hidden subset factorization. We advise to read the further description

of the Qu-Vanstone scheme given in appendix in order to fully understand the
second step.

3.2 Peeling off Merkle-Hellman transformations

Let N be an integer and ¢ ,¢c(M), ... ¢*) be vectors of ZV such that :
) < VNm©, 0<e<k (1)
c® = @l (modm(®), 1<e<k (2)

Note that in equation (2), we mean component-wise operations and that we only
assume congruences, not necessarily equalitities. Under these hypotheses (1) and
(2), we will see that ¢(® and c(*) almost share the same orthogonal lattice.
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Heuristic 6. Let A be the lattice spanned by c®). Let (ey,...,en—1) be an LLL-
reduced basis of AL. If we denote by T the lattice spanned by (ey,...,en—k—1),
then ¢(® e L,

This heuristic confines ¢(® in a low-dimensional lattice that we can determine
just by knowing ¢®. When m©® « m1) « ... « m®, this heuristic works
well in practice. Namely, if we define

m® Mm@ m®)
ooy () L ¢y KRS gty 'y } ’

mzmin{

experiments show that the heuristic is verified as soon as m > 8 and N > 50.
We are unable to prove this heuristic, but we can offer some explanations.

Lemma 7. Let x be a vector of ZV such that xLc® and ||x|| < m/VN. Then
X is orthogonal to ¢~V c(k=2) c(0),

Proof. We have x.c*!) = 0 (modm*)) since c*) = w® k1) (modm®)
and x.c(®) = 0. If we assume that x is not orthogonal to ¢(*~%), then |x.c(*~1| >
m(*¥), Therefore, by Cauchy-Schwarz and inequality (1) :

m® < x|l )lc® V|| < |Ix|jm*DV/N.

This contradicts the fact that {|x|| < m/v/N. Thus xLc(*~1). Iterating this
process, we find that x is orthogonal to ¢(*=2) ... ¢(®), n]

This means that if x € A is short enough, then x is orthogonal to c(®). Now
we will see that there exist N — k — 1 independent vectors of A+ that are short,
and hopefully short enough.

Lemma 8. Let Q2 be the lattice spanned by

® Lw(l)C(O) w®@c® w® k1)
> m ) m@ yerey ————m(k)

Then (c@,cM,...,c®) is a sublattice of R, and

det(Q) < ||c@||N*/2 < M@ N(+1D)/2,

() gle=1)

Proof. We have ¢(&) = w(®¢le=1) _ m(e)["’ o | for 1 < e < k. Therefore
(€@, MW, . ¢®)) is a sublattice of 2. Furthermore :

(Le® (k) (k—1)
— {[~(0) wr/c w\®/c
det(®) =[|cO A [ ——g=] A~ A =
— 1 A wWe® 1O N wF kD w®k-D |
= “C ( m(l) - m(l) ‘e m(k) m(k) R
Since || w(e:,f((:x_l) - Lw(e,),f((:” < VN, this proves that :

det(Q) < |[c@||N*/? < m@ N(E+)/2,
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Since det(21) = det(f2), we can thus hope that there exists a basis of 2+ whose
vectors have norm less than m’ = (m(®) N(k+1)/2)1/(N=k=1) Byt these N —k—1
vectors also belong to A+, so the first N —k — 1 vectors of any LLL-reduced basis
of A+ are likely to have norm less than m’. Since m/ is very small (smaller than
m/v/N most of the time), it is not surprising that by lemma 7 e;, es, . ..,en_k—1
are orthogonal to ¢(%), which implies that ¢(® e I't.

Although the Qu-Vanstone scheme uses Merkle-Hellman-like transformations
instead of Merkle-Hellman transformations, there are particular vectors related
to the scheme that satisfy conditions (1) and (2).

Let N = 15s. We index the coordinates of any vector of ZV by «(i,5) =
15(63—1)+j—1, where 1 €1 < 3,1 < j < 15. From the public key, we construct
the vector c(¥) whose 7(4,) entry is dé,j]. Fore =k — 1,k —2,...,0, let c®
be the (unknown) vector whose (4, ) entry is & [i, 71 (j)] — &©[i, 77 1(0)].

Lemma 9. The vectors ¢, ¢, ... ¢ satisfy conditions (1) and (2).

Proof. Since the coordinates of each c(®) are less than m(®) in absolute value,
we have (1). Write the Merkle-Hellman-like equations defining d[z, j]’s starting
with ¢(*)[i, j]’s, ending with ¢(®[4, j’s. Collecting additions and multiplications

that use the same modulus, age)’s disappear by subtraction, proving (2). a

From the description of the scheme, we know that m = s > 32, therefore heuris-
tic 6 is likely to be satisfied. Hence, applying algorithm 5 twice, we can construct
k+1 vectors ey, . .., exs1 of ZY such that there exist Aq, ..., Ax4+1 € Z satisfying

@ = Arer + Agea + ...+ Apy1€p,-

In the second step of the attack, we determine these unknown integers A;. The
knowledge of ¢(© then reveals the trapdoor and the rest of the secret key : this
is sketched in the appendix because it is based on the structure of the subset
factorization. We emphasize that the difficult part of the attack is to determine
c(® | not to obtain the secret key from c() which is rather easy.

3.3 Breaking the kernel of the system

We say that C, = {ci,j] : 0 <j < 15} is a weak block if f(i) is of form (4,7').
For the definition of f, we refer to the description of the scheme in appendix.
Clearly, half of the s blocks C; are weak blocks. We call these blocks weak due
to the following :

Lemma 10. Let C; = {c[i,j] : 0 <j <15} be a weak block.
1. For j € {0,4,8,12}, we have
i, j + 1] +cfi, 5 + 2] = i, 5] + cli, § + 3] (moddidadsds).
2. There exist distinct j;(¢), j2(¢) and js(i) computable from m; such that
i, 51(3)] + é[i, 72(3)] — €[s, 73(3)) = 0 (moddd2dsds),
where &, j] denotes the v(i,3) entry of c(©.
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Proof. From the definition of the c[i, j's, if |j/4| = |j'/4] then
cli, 51 — cfi, §1 = a” T2 [£ (i), w] — a*+24[f(3),w'] (mod n),

where j = w + 4v + 8u and j' = w' + 4v + 8u. Since f(i) is of form (4,1'),
we obtain 1 by definition of a*[4,4’, w]. To prove 2, write 7, *(0) as j + £ where
j = |=71(0)/4). Apply 1 to find distinct j}, 53, j3 such that

cli, ji] + cfi, j3] = cfi, 33] + cli, j + £] (mod d1dad3dy).

Conclude with j;(¢) = m(j7), j2 = m:(j3) and jz = m.(53). O

To simplify the exposition of the attack, we now assume that f and the m;’s are
known to the attacker. We will show how to adapt the attack to the general case

at the end of the section. We define a transformation ¢ that maps any x of ZV
to

xfiz, j1(41)] + 2fi1, Jo (61)] — z(i1, 43 (01)]

o(@) = z[i2, j1(i2)] + x['l:g,].'z(iz)] — aliz, j3(iz)]

x[is/27j1 (is/Z)] + x[is/2aj2 (is/2)] - x[is/2aj3(1:s/2)]

where C;,,Cy,,...,C;,,, denote the s/2 weak blocks, and z[i,j] denotes the
(i, 7) entry of x. One sees that ¢ is linear, which implies that

$(c@) = Mgler) + ... + Aer19(ersa).

By lemma 10, the vector %15% has integral entries, so it must belong to
where () denotes the lattice spanned by ¢(e;), d(es),. .., ¢(ext1), which we can

determine. But this vector is unusually short : indeed, each coordinate of -2 I.ds d: n
is less than 3(ds — 1) < 45 in absolute value, which makes a norm less than
45,/5/2 (note that this is a very pessimistic bound). Therefore it must have small
coordinates with respect to any LLL-reduced basis because an LLL-reduced basis

is almost orthogonal :

Lemma 11. Let (by,be,...,by) be an LLL-reduced basis of a lattice A. If x =
E‘;l z;b, where z; € R then, for 1 < j <d,

9-1 (9/2)¢7 +6

251, | < ] -

(this statement can be found in an unpublished draft [11] by P. Montgomery)

Proof. Denote by (bj,...,b}) the corresponding orthogonal Gram-Schmidt Q-
basis. Decompose x as x = 2'; 1 Z;b}. By orthogonality, one finds that
d
b;.b}
T, = 1] T;
’ -2 @ [Ib, 12 I|2

=541
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It follows by induction on d — j that :

d

* 1 T—F | ¥
|21 < |25] + 3 > @/2) .

i=3+1

Since (by,...,by) is an LLL-reduced basis, if j < ¢ then ||b;|| < 20-1D/2||b¥||.
From this and Cauchy-Schwarz, we obtain

d
|2i[?1Ib, 1> < 2271 Q|2 PIb %) (1 + 515((9/2) +oee o+ (9/2)879),

=3
and the result follows. O

Hence, we compute an LLL-reduced basis (by, ..., bg) of @ = (Q+)+ by applying

algorithm 5 twice. The unknown vector %12(7203):1: has integral coordinates «, with
respect to (by,...,bgs). We make an exhaustive search on the z;’s within the
bounds given by lemma 11. Since we are in low dimension (d < k + 1), these
bounds are very small, making exhaustive search possible.

Assume that one wants to check whether x = Z‘;:l
©
f«%‘d&%' Decompose each b; as a linear combinatior of ¢(e;)’s with rational
coefficients. Derive an integral linear dependence relation of form

z;b, is the expected

px = prg(er) + -+ + prr16(ery1),

where p > 0 and ged(p, pa, . - ., pix+1) = 1. Since

drdydsda 2D _ A
1dadada g = 1(e1) + - + Aer10(er1),
it is likely that didadsdy = p and A\, = p; if x is the expected vector. Since
dydadsdys has bit-length 4s, we can quickly check whether p is consistent. Fur-
thermore, we obtain d;dadsds and the A;’s, which gives ¢(® . But we can easily
check whether this is a consistent ¢(?), because ¢(?) reveals the trapdoor corre-
sponding to the subset factorization (see the appendix). Hence, the exhaustive
search is really feasible and provides the secret key.

Now if we do not know the permutations m,’s and the bijection f, we con-
struct the linear transformation ¢ by choosing randomly 2 distinct integers 4,
iz between 1 and s : for each of these 2 integers, we select randomly 3 distinct
J1, j2, j3 between 1 and 15 such that j; < jo. The probability that both i; and
12 correspond to weak blocks is 1/4. For each of these 2 integers, we have to test
at most 15 x 14X13 — 1365 triplets (j1, j2,j3) to find one that satisfies lemma 10.
This means that we have to check at most 4 x 13652 = 7452900 choices of ¢.

But such a check can be done very quickly : if ¢ is correct, then Q has a very
© . .
small vector (at least as short as %11:71;)11)’ and otherwise, there is no reason

that such a situation happens. Since computing Q can be done in less than a
second (involved lattices have very small dimension), we can check all choices
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of ¢ in a reasonable time (namely, less than one week with 10 workstations).

Once a suitable ¢ has been found, we perform an exhaustive search on d‘f dz;oa) o’
as before. If one wants to improve success probabilities, one can increase the
number of components of ¢ by adding new integers 4, once a suitable ¢ with two
components has been found. Each additional integer i costs at most 1365 tests
and we can determine them successively, therefore we can easily determine the
8/2 weak blocks, which reveals f. Then we apply the previous strategy in order
to obtain the rest of the secret key.

3.4 Experiments

The attack has been successfully implemented using blockwise Korkine-Zolotarev
lattice reductions [15] instead of LLL reductions to improve the reduced basis
for heuristic 6. We used the package previously developped by A. Joux [6] in our
lab. Timings are given for a 50Mhz Sparc 4, with parameters s = 32 and k = 3.
It takes about 9 hours to obtain the k + 1-dimensional lattice from the 32 blocks
of 16 integers that form the public key. In our implementation, we assumed that
the permutations #;’s and the bijection f were known, which gave the secret

key almost immediately : both the computation of  and the exhaustive search

© ] . ) (©
of ﬁiZTat% are performed in a few minutes. In practice, the vector d‘f d‘; Toda

happens to be a very small linear combination of the LLL-reduced basis vectors
(coefficients less than 10 in absolute value). In the case where we do not know

the permutations #;’s and the bijection f, initial experiments confirm the above
discussion.

4 Conclusion

We introduced the basic notion of an orthogonal lattice. This concept first leads
to an efficient attack against both Merkle-Hellman and Merkle-Hellman-like
transformations. This attack differs from Shamir’s and Brickell’s attacks against
original Merkle-Hellman cryptosystems. It points out that one should be cau-
tious with the cryptographic use of Merkle-Hellman transformations. The notion
of an orthogonal lattice also enables us to exploit weaknesses in the subset fac-
torization (the trapdoor). These two applications of lattice reduction form an
attack against the Qu-Vanstone scheme that works for any choice of the param-
eters. The attack has been successfully implemented and reveals the secret key
from the public key in a reasonable time.
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A Appendix

In this appendix, we describe the subset factorization used in the Qu-Vanstone
scheme and we provide the missing proofs of sections 2 and 3.

A.1 Further description of the Qu-Vanstone scheme
A.1.1 Construction of the s blocks C,

Recall that n is a positive integer of the form n = dydsdzdsds, where 2571 <
dy < 2° (for £ = 1,2,3,4), ds < 16, and s is some fixed even positive integer.
In the additive group G = Z,, we distinguish the subgroups G;,G2,G3 and G4
where Gy is generated by dids, ... d,.

For each d;, 1 < £ < 4, select a superincreasing sequence h[f,1],...,h[¢, s]
such that Y ;_; h{¢,:] < dq. Choose integers qi, g2, g3 and g4 such that ¢,
and d, are coprime. Apply a Merkle-Hellman transformation to get A[f,i] =
h[¢,4]g, (mod d;) where 0 < h[£,i] < dp.

Select a permutation & on {1,2,...,s}. For 1 < ¢ < s, select two positive
integers z(1,4,0}, 2[1,4,1] < dadzdsds and define two elements in distinct cosets

of Gy in G by :
a[1,3,0] = z[1,4,0]d;,
all,4,1] = A[1,&(5)] +2[1,4,1]d1 (modn).
Select a permutation & on {1,2,...,s}. For 1 < ¢ < s and u = 0,1, select
two positive integers £*[2,1,0],2%[2,¢,1] < d3dsds and define two elements in
distinct cosets of G2 in Gy by :
a“[2,i,0] = fu[2,i,0]d1d2,
a*(2,i,1] = h[2,&(9)]ds + 1%[2,4,1]d1d2 (modn).
Select a bijection ¢g; from {1,2,...,s/2} to {s/2+1,s/2+2,...,s}. For &,l =
0,1,2,3 and ¢ = 1,2,...,5/2, select a positive integer z*[3,4,1] < dsds. Define
four elements in distinct cosets of G3 in G3 by :
a'(3,i,0] = 1%[3,4,0]ddads,
a'(3,i,1] h[3,ild1d2 + x*[3,1,1]d1d2ds (modn),
at[3, 1, 2] 5[3, gl(t)]dldQ + zt [3, i, 2]d1d2d3 (mod n),
(lt[3,’l;, 3] = (77,[3,7,] + ’_1[3, gl(l)])dldz + $t[3,i, 3]d1d2d3 (mod n)
Select a bijection g from {1,2,...,s/2} to {s/2+1,s/2+2,...,s}. For ¢,l =
0,1,2,3and i =1,2,...,5/2, select a positive integer z*[4,%,l] < ds. Define four
elements in distinct cosets of G4 in G3 by :
at[4,i,0] = :Et[4,i,0]d1d2d3d4,
at[4,i, 1] = E[4,i]d1d2d3 + Zt[4,i, 1]d1d2d3d4 (mod n),
at[4, 1, 2] ’_7,[4, gz(i)]d1d2d3 + .’L‘t[4, 1, 2]d1d2d3d4 (mod n),
a'[4,4,3] (h[4,7] + h[4, g2(4)])drd2ds + z°[4,1, 3]d1dad3ds (modn).
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Let f be a bijection from {1,2,...,s} to {3,4} x {1,2,...,8/2}. For 1 <i<s
and 0 < j < 15, define c[t, j] = a[l,4,u] + a¥[2,1,v] + a*+2*[f(?),w] (modn),
where j is uniquely decomposed as j = w+4v+8u with 0 € ©u < 1,0 <
v £ 1and 0 £ w < 3. Qu and Vanstone proved in [13] that the s blocks
C; = {c[i,5] : 0 <j <15} form a direct sum in G. The trapdoor consists of
the dy’s, h[¢,]’s, a[1,3,1]’s, a*[2,4,1]’s, a'[3,1,1]’s, a'[4,1,1]’s, the bijections f, g,
g2; the permutations &, &;.

A.1.2 Factoring with the trapdoor

We now describe how, given any g € G of form g = }°;_, c[i, ;] (modn), one
can quickly recover j;’s just by knowing g and the trapdoor.
Let g1 =g =Y _;_, c[t,s.] (modn). Recall that in G, we have :

cli, ji) = a[l,i,u] + a*[2,4,v] + a"**[f(3),w] (modn), j, = w + 4v + 8u.

We recover the values of u, v, w for each j; value by solving 4 sub-knapsack
problems based on appropriate superincreasing sequence :

Step 1. Compute 51 = g7 141 (mod dy), and solve the superincreasing knapsack
S uih[1,£&()] = S1, ui € {0,1}. Compute go = g1 — >, a[l,4,u,].

Step 2. Compute Sy = ¢ o1 -‘Z— {(mod ds), and solve the superincreasing knapsack
S v:h[2,&(1)] = S,, vz € {0,1}. Compute gs = g2 — >_;_; a“[2,4,v,).

Step 3. Compute S3 = ¢3! PR +2- (mod d3), and solve the superincreasing knap-
sack Y i_; ,h[3,4) = S3, z, € {0,1}. Compute

(3,5/2)

g4 = g3 — Z av.+2u. [f(’l),£1 + 2:391(1)]'
f(i)=(3,1)

Step 4. Compute S; = ¢, ZTZ'ZT (mod dy), and solve the superincreasing knap-
sack >0, y.h[4,i] = Sy, where y; € {0,1}. For i = 1,2,...,5/2 define
Wi = T, + 224, (5) and Wype/2 = Yi + 2Ygy(0)-

Finally, we recover j; = w; + 4v; + 8u; for i =1,2,...,s.

A.2 Proof of theorem 4

Assume ¢ > 2(n~1)/2+(n—d)(n—=d—1)/4 det(R) and let (x1,Xs,...,Xs) be an LLL-
reduced basis of . Let (by,ba,...,b,_4) be an LLL-reduced basis of A*. Define
¥Y1,¥2,---,¥Yn—d in © by p4(y,) = 0 and p,(y;) = bj. These n — d vectors are
linearly independent, therefore by theorem 3 (2),for 1 <j<n—d:

2(n—1)/2 max(llyﬂl’ teey ”y"—d")
20972 max(|[by |, .. ., Ibrall)-

li;1]

INIA
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But theorem 3 (1) ensures us that ||b,|| < 2(*=#(n=4-1)/4 det(AL). Thus :
llx;]| < 2(v=1)/29(n—d)(n—d-1)/4 get(AL) < c.

This implies that p+(x,) = 0 and py(x;) € AL for 1 < j < n — d. Therefore
py(x1),...,p (Xn—q) are linearly independent and they form a Q-basis of Ey .
Now, let y € AL. There exist Ay, A2, ..., An—g € Q such that :

Y = Apy(x1) + Aopy(x2) + -+ + An—aPy(Xn—d)-
Defining x € Q by py(x) = 0 and p,(x) =y, we have :
X = MX1 + AoXo + - + Ap_dXn—d.

But there also exist p1, s, -, tin € Z such that x = pyx; + poXa + -+ + tinXn.
Therefore :

(,ul - )\l)xl +- 4+ (Nn—d - /\n—d)xn—d + bn—d41Xn—d+1 + 00+ PnXy = 0.

Since x1,...,Xy are linearly independent, we deduce that A\; = u; € Z. Hence
(py(X1), - -.,py(Xn—a)) is a Z-basis of the lattice AL.

Furthermore, for 1 < i <n-—-dand 1 < j <n-d |lp(x;)l| = |Ix;]| and
py(xi).py (%) = X,.x,. Since (x1,...,X,) is an LLL-reduced basis, this proves
that (py(x1),...,P(Xn-aq)) is an LLL-reduced basis too.

A.3 Recovering the secret key from c(©

Notice that &fs, j] = cfi, 7, ' (§)] — c[i, 7, }(0)] (mod n). Since we know d;dadsda,
we recover n = didydzdyds from the size of each é[i,j]. But the form of each
cli, 77 (§)] is very particular :

cli, j] = a[l,4,ul + a¥[2,4,v] + a"***[£(i), w] (mod n).

By enumerating all possible cases, one notices that the knowledge of cfs, 7; 1 (j)]—
cli, 771 (0)] (modn) reveals di, didz, dyda2ds by particular ged’s, hence the ;s
by looking at the order in each block of 15 integers. By subtractions, we then
obtain the h[l,i]’s, h[2,1]’s, h[3,i]’s and the h[4,i]’s. Since we now know the
de’s, we derive the go’s and the h[¢,]’s. This reveals the a[l,1,1]’s, a*[2,14,]’s,
a'[3,1,1]’s, a’[4,1,1]’s, the bijections g;, g and the permutations £;, & (looking
at the order of superincreasing sequences). We now know the complete trapdoor.
The coordinates A;’s are actually closely related to the w(®)’s and the m(®)’s :
one can derive equivalent w(®)’s and m()’s so that ¢*) is obtained by Merkle-
Hellman-like transformations from c(®). Since we now know the [z, j]’s from
the trapdoor, we also find out equivalent Y _;_, aSe) ’s. Hence, we recovered the
complete secret key.
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