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A b s t r a c t .  Cryptosystems based on the knapsack problem were among 
the first public key systems to be invented and for a while were con- 
sidered quite promising. Basically all knapsack cryptosystems that  have 
been proposed so far have been broken, mainly by means of lattice re- 
duction techniques. However, a few knapsack-like cryptosystems have 
withstood cryptanalysis, among which the Chor-Rivest scheme [2] even 
if this is debatable (see [16]), and the Qu-Vanstone scheme proposed at 
the Dagstuhl'93 workshop [13] and published in [14]. The Qu-Vanstone 
scheme is a public key scheme based on group factorizations in the ad- 
ditive group of integers modulo n that  generalizes Merkle-Hellman cryp- 
tosystems. In this paper, we present a novel use of lattice reduction, 
which is of independent interest, exploiting in a systematic manner the 
notion of an orthogonal lattice. Using the new technique, we successfully 
attack the Qu-Vanstone cryptosystem. Namely, we show how to recover 
the private key from the public key. The attack is based on a careful 
study of the so-called Merkle-Hellman transformation. 

1 Introduct ion  

The  knapsack  problem is as fol lows:  given a set { a l , a 2 , . . . , a , ~ }  of posit ive 
n integers and a sum s = ~ = 1  xia,, where each x, E {0, 1}, recover the  xi. I t  is 

well known t h a t  this problem is NP-complete ,  and accordingly it is considered to  
be quite hard  in the  worst  case. However some knapsacks are very easy to  solve : 
if the  set S = {al ,  a 2 , . . . ,  an} of  positive integers is a superincreasing sequence, 
e.g. 

V i > 2  a~> Z a 3 ,  
j----1 

then  the  corresponding knapsack can easily be solved in linear time. Most  of  the  
public key schemes based on knapsacks are of  the  following form : 
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T h e  P ub l i c  K e y :  a set of positive integers {al, a 2 , . . . ,  am}. 

T h e  P r i v a t e  K e y :  a method to transform the presumed hard public knap- 
snack into an easy knapsack. 

T h e  M e s s a g e  Space:  all 0 - 1 vectors of length n. 

E n c r y p t i o n :  a message M = (xi, x 2 , . . . ,  xn) is enciphered into C = ~in=i x~al. 

In 1978, Merkle and Hellman [10] devised a method to convert superincreasing 
sequences into what they believed were hard knapsacks. If S = {ai, a 2 , . . . ,  a,~} 
is a superincreasing sequence and a = ~ 1  a~, select two coprime integers m 
and w such that  m > a. The Merkle-Hellman transformation associated with 
the pair (re, w) is the function f that  maps any x E { 0 , 1 , . . . , m -  1} to the 
least positive residue of wx modulo m. This function is a permutation, and its 
reciprocal f - i  maps any y E { 0 , 1 , . . . , m -  1} to the least positive residue of 
w - i y  modulo m, where w - i  is an inverse of w modulo m. Merkle and Hellman 
applied such a transformation f to form a new knapsack S = {bi, b2 , . . . ,  bn} 

n where b~ = f(al). To decrypt a ciphertext c = ~ i = l  x~b~, one computes f - i ( c ) .  
Since 

n 

1 - '  (c) = x,b,w -1 = x,a  (mod m), 
i----1 

n n with ~i=i  x~a~ < a < m, we have f - i  (c) = ~i=1 x~ai. By solving the easy knap- 
sack S -- {ai, a s , . . . ,  am}, one recovers the xi. Applying a sequence of Merkle- 
Hellman transformations is not equivalent to a single application, and hence, 
should enhance the security of the system. Unfortunately, these systems were 
both shown to be insecure (see [17, 1]). Despite the failure of Merkle-Hellman 
cryptosystems, researchers continued to search for knapsack-like cryptosystems 
because such systems are very easy to implement and can attain very high en- 
cryption/decryption rates. But most of the proposed knapsack-like cryptosys- 
tems have been broken (for a survey, see [12]), either by specific attacks or by 
the so-called low-density attacks. 

The density of a knapsack S = {al, a s , . . . ,  an} is defined to be d = ~ where 
N = maxl<~<~ log 2 ai. When the density is small (namely, less than 0.94...), one 
can prove the knapsack problem can be solved using lattice reduction with high 
probability (see [4]). Such attacks are called low-density attacks. The attack has 
recently been improved by [16], but is still uneffective against high-density knap- 
sacks. The few knapsack cryptosystems that  have so far withstood all attacks use 
knapsacks of high density. In [13], Qu and Vanstone showed tha t  Merkle-Hellman 
knapsack cryptosystems could be viewed as special cases of knapsack-like cryp- 
tosystems arising from subset factorizations in finite groups. They proposed a 
generalization of these knapsack cryptosystems by constructing a supposedly 
hard factorization of finite group, using Merkle-Hellman-like transformations 
and superincreasing sequences. This hard factorization problem can be restated 
as a knapsack problem of density higher than 3. We will attack the Qu-Vanstone 
system by showing how to recover the hidden easy factorization (the private key) 
from the presumed hard factorization (the public key), in a reasonable time. 
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2 The orthogonal lattice 

We will use the word lattice for any integer lattice, that  is any additive subgroup 
of Z ~. Background on lattices can be found in [5, 3]. We denote vectors by 
bold-face lowercase letters. Let A be a lattice in Z n. 

Let b l , . . . ,  bd be vectors of A. These d vectors form a basis of A if they are 
linearly independent over Z, and if any element of A can be expressed as a linear 
combination of the b~'s with integral coefficients. There exists at least one basis 
of A. The bases of A all have the same cardinality, called the dimension of A. We 
say that  A is a sublattice of a lattice 12 in Z ~ if ~ contains A and if both have 
the same dimension. All bases of A span the same Q-vector subspace of Q~, 
which we denote by EA. The dimension of EA over Q is equal to the dimension 
of A. Define the lattice -A = Eh n Z ~. A is a sublattice of A. We say that  A is a 
complete lattice if A -- A. In particular, A is a complete lattice. 

Let (x ,y )  ~ x .y  be the usual euclidian inner product, and ]l.]l be its corre- 
sponding norm. Let F = (EA) • be the orthogonal vector subspace with respect 
to this inner product.  We define the orthogonal lattice to be A • = F n Z ~. Thus, 
A • is a complete lattice in Z n, with dimension n - d if d is the dimension of 
A. This implies tha t  (h•  l is equal to A. Let Y = ( b l , . . .  ,bd) be a basis of A. 
Decompose each bj  over the canonical basis of Z n as : 

b2,j 
b~ = 

bi,j 

Define the n x d integral matr ix B = (bi ~)l<_i<_n,l<_j<_d. The lattice A is spanned 
by the columns of B : we say that  A is spanned by B. Let Q = tBB be the d x d 
symmetric Gram matrix. The determinant of Q is a positive integer independent 
of B. The determinant of A is defined as det(A) = ~ .  

T h e o r e m  1. Let A be a complete lattice in Z n. Then det(A • = det(A). 

P r o o f .  We have A = EArl  Z '~ and A • = E~  Cl Z n. We know from [9] that  : 

det(Z,~) = det(Eh N Z n) 
det((EA) • n (Z'~)*) ' 

where (Z~) * denotes the polar lattice of Z ~. But det(Z '~) = 1 and (Z~) * = Z ~, 
therefore det(A • = det(A). [:] 

Coro l la ry  2. Let A be a lattice in Z n. Then det((A• • = det(A • ---- det(A). 

In 1982, Lenstra, Lenstra and L o v ~ z  introduced the famous LLL-algorithm [8], 
a polynomial time algorithm that  computes a so-called LLLoreduced basis of any 
given lattice. For definitions and proofs regarding LLL-reduced bases, we refer 
to [8, 3]. In this paper, we only need the following properties of LLL-reduced 
bases : 
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T h e o r e m  3. Let  ( b l , . . . , b d )  be an LLL-reduced basis of  a lattice A 
T h e n  : 

d 2 d ( d _ l ) / 4  1. det(A) < I'-L=I IlbiH < det(A). 

2. For any linearly independent  vectors X l , . . . ,  xt E A, and 1 < j < t : 

IIbJll < 2(4-1)/2 max( l lXl l l , . . . ,  Ilxtll) �9 

in Z n. 

We now describe a basic algorithm to compute an LLL-reduced basis of an 
orthogonal lattice. Let B = ( b l , . . . ,  bd) be a basis of A, and B = (bid) be its 
corresponding n x d matrix�9 Let c be a positive integer constant.  Define ~ to be 
the lattice in Z '~+d spanned by the following (n + d) x n matr ix  : 

B • 

c x b l , 1  cxb2,1  �9149149 cxb,~, l  
c x b1,2 c x b2,2 . . .  c x b,~,2 

c x bl,d c x b2,d . . .  c x bn,d 
1 0 . . .  0 

�9 �9 
0 1 ". 

". O 

0 0 . . .  1 

A similar matr ix  is used in [7]�9 The matr ix  B -L is divided in two blocks : the 
upper  d x n block is c tB and the lower n x n block is the identity matrix�9 Let Pt 
and p$ be the two projections tha t  map any vector of Z n+d to respectively the 
vector of Z d made of its first d coordinates, and the vector of Z n of its last n 
coordinates, all with respect to the canonical basis. Let x be a vector of fl and 
denote y = p~(x). Then (y l) 

p t ( x )  = c " 

y.bd 

Hence, y E A • if and only i f p t ( x  ) = 0. Furthermore,  if [[x[[ < c, then p t (x )  = 0. 

T h e o r e m  4. Let  (Xl, x 2 , . . . ,  x,~) be an LLL-reduced basis of ~ .  I f  

c > 2 ( '~-l) /2+(n-d)(n-d-1)/4 det(A), 

then (p$(xl) ,p$(x2),  �9 ,P$(Xn-d)) is an LLL-reduced basis of A • 

Using Hadamard ' s  inequality, we derive the following algorithm : 

A l g o r i t h m  5. Given a basis ( b l , b 2 , . . .  ,bd) of a lattice A in Z n, this algorithm 
computes  an LLL-reduced basis of  A • 

1. Select c = r2 ( n - 1 ) / 2 + ( n - d ) ( n - d - 1 ) / 4  H3=ld [[bj [[]. 
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2. Compute  the (n + d) x n integral matr ix  B • f rom c and the n x d matr ix  
B = (bi,j) corresponding to b i , b 2 , . . . ,  bd. 

3. Compute  an LLL-reduced basis (xl,  x 2 , . . . ,  x,~) of the lattice spanned by B • 

4. Output  (P$(Xi),p~(x2), . . . ,p~(xn-d)).  

One can prove that  this is a deterministic polynomial time algorithm with respect 
to the space dimension n, the lattice dimension d and any upper bound of the 
bit-length of the Ilbjll's. In practice, one does not need to select such a large 
constant c because the theoretical bounds of the LLL algorithm (theorem 3) are 
quite pessimistic. We will use this algorithm throughout the attack. 

3 The cryptanalysis of the Qu-Vanstone scheme 

3 . 1  H i g h  l e v e l  d e s c r i p t i o n  o f  t h e  Q u - V a n s t o n e  s c h e m e  

Since the Qu-Vanstone scheme is quite complicated, we give a simplified expo- 
sure. Additional information can be found in appendix and in [13, 14]. 

Let n be a positive integer of the form n -= did2d3dadh, where 2 s - i  < dt < 
2 s (for g = 1,2,3,4),  d5 <_ 16, and s is some fixed even positive integer. Let 
G - Z~ be the additive group of integers modulo n. Qu and Vanstone found 
a way to build an efficient subset factorization in G. Namely, with help of 4 
superincreasing sequences and 4 Merkle-Hellman transformations, they construct 
sb locksC~ = { c [ i , j ]  : O<_j  <_ 15} of 16 integers o f G w h e r e l < i <  s s u c h  
that  : for any g E G of form g = ~-]~:'=i c[i, j~] (mod n), one can quickly recover the 
j~'s from g and a trapdoor. This construction is intricate, a detailed description 
can be found in the appendix. 

Qu and Vanstone further use k additional Merkle-Hellman-like transforma- 
tions and s permutations to hide the subset factorization. The process consists of 
k iterations, starting with m (~ = n and c(~ = c[i,j], 1 < i < s, 0 <_ j < 15. 
Consider the eth iteration (1 < e < k) : 

- select s positive integers a~ e - i ) , . .  . , a! e-i) such that  0 _< al e-i) < m (e-i), 
^(e-l) (mod m(e_i)). and define ~(r = c(~-i)[i , j] + % 

- select m (~) strictly greater than ~-~-i maxo<j<15 ~(e) [i, j]. Choosing w (e) co- 
prime to m (r , define c (~) [i, j] = w(~J)~ (~) [i, j ]  (~nod m(~)). 

These Merkle-Hellman-like transformations differ from the original Merkle-Hell- 
man transformations by the use of a modular addition which is performed before 
the modular multiplication. Now that  the c(k)[i, j] 's are defined, select s permu- 
tations r i , . . .  ,us acting on (0, 1 , . . . ,  15}. Let 

d[i, j] = c[i, ~r~ -1 (j)] - c[i, ~r~ 1 (0)] (mod re(k)). 

Notice that  d[i, 0] -- 0. Let C =- )-~:=i c(k) [i, ~r~-i(0)] (mod re(a)). 
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The public key consists of the s blocks D ,  = {d[ i , j ]  : 0 <_ j < 15}, that  is 15s 

non-zero positive integers. The private key is : C, 7r,'s, w (~) 's, m (~)'s, ~ = 1  ^(~) TM t t  i 

and the trapdoor corresponding to the subset factorization. 
The message space is Z16~, and the numbers in each D~ axe roughly around 

skn .  Qu and Vanstone suggested s > 32 and k _> 3. In the smallest case, the 
message space is Z12s, and the maximum element in the public key is less than 
2151. The keys are quite large but encryption/decryption rates are high. 

To encode a message m, write m in its base 16 expansion as m : pl + 16p2 + 
. . .  + 16~-1p~, where 0 < p, _< 15. Then the ciphertext associated with m is 

c = d[1,pl] + d[2,P21 + . . .  + d[s,ps].  

To decrypt c, compute c (k) = c +  C (mod m (k)). Then invert Merkle-Hellman-like 
transformations by applying the following process with e : k, k - 1 , . . . ,  1 : 

~(~) = (w(~))-lc(e) (modm(~)), 
^(~-1) (mod m(e_l)). 

At this point, c (~ = ~ 1  c[i,j~] (modn) where each j ,  = 7r~-l(p~) is still 
unknown. From the subset factorization trapdoor, the j , ' s  can be recovered. 
This technical step is described in the appendix. From the j~'s, one computes 
p~ = ~ri(ji) and the message m = pl + 16p2 + . . .  + 16s-lps. 

This public key system has features similar to the original knapsack scheme. 
The security rests on the Merkle-Hellman-like transformations that  hide the 4 
superincreasing sequences and the coset structure. The knapsack based on the 
blocks D~ has density higher than 3, so it looks immune to the usual low-density 
attacks. Qu and Vanstone discuss several attacks on this system in their paper 
[13]. We now describe our attack which mainly consists of two steps : we first 
attack Merkle-Hellman-like transformations by reducing several orthogonal lat- 
tices, then we compute successive orthogonal lattices to reveal the secret key. The 
first step is quite general but the second step is based on the particular struc- 
ture of the hidden subset factorization. We advise to read the further description 
of the Qu-Vanstone scheme given in appendix in order to fully understand the 
second step. 

3 . 2  P e e l i n g  o f f  M e r k l e - H e l l m a n  t r a n s f o r m a t i o n s  

Let N be an integer and c (~ c(1) , . . . ,  c (k) be vectors of Z N such that  : 

[Ic (~)[[ < x /Nm (~), O < e < k  (1) 

c (e) ---- w(e)c (~-1) (modm(e)), 1 < e < k (2) 

Note that  in equation (2), we mean component-wise operations and that  we only 
assume congruences, not necessarily equalitities. Under these hypotheses (1) and 
(2), we will see that  c (~ and c (k) almost share the same orthogonal lattice. 
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Heuris t ic  6. Let A be the lattice spanned by c (k). Let ( e l , . . . ,  eN--1) be an LLL- 
reduced basis of A • If  we denote by F the lattice spanned by ( e l , . . . ,  e N - k - 1 ) ,  
then e (~ E P•  

This  heurist ic  confines e (~ in a low-dimensional lat t ice tha t  we can de te rmine  
jus t  by knowing c (k). When  m (~ << m (1) << . . .  << m (k), this heurist ic works 
well in practice.  Namely,  if we define 

m 1) m (2) m(k) } 
m = mfn m(O-----~ ' r a G ) " ' "  m(k-D 

exper iments  show tha t  the heurist ic is verified as soon as m _> 8 and N > 50. 
We are unable  to  prove this heuristic,  but  we can offer some explanat ions.  

L e m m a  7. Let x be a vector of Z N such that x.Lc (k) and Ilxll < m/v/-~. Then 
x is orthogonal to c (k- l ) ,  c ( k - 2 ) , . . . ,  c(0). 

P r o o L  We have x .c  (k-l)  ~_ 0 ( m o d m  (k)) since c (k) --_ w(k)c (k-l) ( m o d m  (k)) 
and x .c  (k) = 0. If we assume tha t  x is not  or thogonal  to  e (k-l)  , then  Ix.c(k-01 > 
m (k). Therefore ,  by Cauchy-Schwarz and inequali ty (1) : 

m(k) _< Ilxll.lle(k- )ll _< Ilxllm(k-1)v' . 

This  contradicts  the fact t ha t  Ilxll <_ m/v . Thus  x / c  (k- l) .  I te ra t ing  this 
process,  we find tha t  x is or thogonal  to  c ( k - 2 ) , . . . ,  c (~ [] 

This  means  tha t  if x E A • is short  enough,  then  x is or thogonal  to  c (~ Now 
we will see t ha t  there  exist N - k - 1 independent  vectors of A • t ha t  are short ,  
and hopeful ly short  enough. 

L e m m a  8. Let f~ be the lattice spanned by 

(c(O), [w(1)c (~ w(2)c (1) [w(k)c(k-1) ~)  �9 �9 

Then ( c ( ~  ,e  (k)) is a sublattiee oil2, and 

det(12) < IIc(~ k/2 < m(~ (k+1)/2. 

P r o o f .  We have e (~) = w(~)c (~-1) - m (~)/w(~)c('-l) / t ~------~Tz3---J for 1 < e < k. Therefore  

( e ( O ) ,  c O ) , . . . ,  c(k)) is a sublat t ice  of  ~2. b-hrthermore : 

LW(1)c(o) det(f~) = IIc (~ A ~ - ~  

w(1)e (0) 
= lie(~ A ( 3-  

w(,~)c(~- 1) Since 

�9 w(k)c(k-l)  
~JA--.AL ~ Jlt 

w(1)c(O) (w(k) c(k-1) 
L-~-G~-J) h . . .  A m(k) 

L w(e)c(e-1) / ~ ]  II <- v ~ ,  this proves t ha t  : 

W(k)C(k--1) 
J)ll. 

det(f~) _< [Jc(~ k/2 < m(~ (~+1)/2. 
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Since det(12 • = det(~) ,  we can thus hope that  there exists a basis of 12 • whose 
vectors have norm less than m ~ = (m(~ 1 / (g-k-D.  But these N - k - 1 
vectors also belong to A • so the first N - k - 1 vectors of any LLL-reduced basis 
of A • are likely to have norm less than m'. Since m' is very small (smaller than 
m/v/-N most of the time), it is not surprising that  by lemma 7 el ,  e 2 , . . . ,  e y - k - I  

are orthogonal to c (~ which implies that  c (~ E F • 
Although the Qu-Vanstone scheme uses Merkle-Hellman-like transformations 

instead of Merkle-Hellman transformations, there are particular vectors related 
to the scheme that  satisfy conditions (1) and (2). 

Let N = 15s. We index the coordinates of any vector of Z N by "y(i, j )  = 
15(i - 1) + j  - 1, where 1 < i < s, 1 < j < 15. From the public key, we construct 
the vector c (k) whose "y(i,j) entry is d[i,j]. For e = k - 1, k - 2 , . . . ,  0, let c (e) 
be the (unknown) vector whose 7(i, j )  entry is ~(e)[i, 7r~ -1 (j)] - ~(~)[i, r ;  -1 (0)]. 

s  9. The vectors c (~ c ( D , . . . ,  c (k) satisfy conditions (1) and (2). 

P r o o f .  Since the coordinates of each c (~) are less than m (~) in absolute value, 
we have (1). Write the Merkle-Hellman-like equations defining d[i,j]'s starting 
with c (k) [i, if 's, ending with c (~ [i, j]'s. Collecting additions and multiplications 

that  use the same modulus, a~ e)'s disappear by subtraction, proving (2). [] 

From the description of the scheme, we know that  m ~ s _> 32, therefore heuris- 
tic 6 is likely to be satisfied. Hence, applying algorithm 5 twice, we can construct 
k + 1 vectors e l , . . . ,  ek+l of Z g such that  there exist ; h , . . . ,  Ak+l E Z satisfying 

c (~ = ~ 1 e l  + )~2e2 + . . .  -4- ) ~ k + l e k l .  

In the second step of the attack, we determine these unknown integers Aj. The 
knowledge of c (~ then reveals the t rapdoor  and the rest of the secret key : this 
is sketched in the appendix because it is based on the structure of the subset 
factorization. We emphasize that  the difficult part  of the attack is to determine 
c (~ not to obtain the secret key from c (~ which is rather easy. 

3 . 3  B r e a k i n g  t h e  k e r n e l  o f  t h e  s y s t e m  

We say that  C~ -- (c[i,j] : 0 <_ j <_ 15} is a weak block if f ( i )  is of form (4,i~). 
For the definition of f ,  we refer to the description of the scheme in appendix. 
Clearly, half of the s blocks Ci are weak blocks. We call these blocks weak due 
to the following : 

L e m m a 1 0 .  Le tCi  = {c[i,j] : O~_j ~_ 15} be a weak block. 

1. For j E {0, 4, 8, 12}, we have 

c[i,j + 1] + c[i,j + 2] = c[i,j] + c[i,j + 3] (moddld2d3dd). 

2. There exist distinct j l ( i ) ,  j2(i) and j3(i) computable from 7r~ such that 

5[i, j l  (i)] + ~[i, j2(i)] - ~[i, j3(i)] -- 0 (moddld2d3da), 

where ~[i, j] denotes the ~/(i, j )  entry of c (~ . 
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Proo f .  From the definition of the c[i,jrs, if Lj/4J = [j'/4J then 

c [ i , j ]  - ~[i, j '] = a '+2~[f ( i ) ,~]  - a ' + 2 ~ [ f ( 0 , ~ '  ] (mod~) ,  

where j = w + 4v + 8u and j '  = w' + 4v + 8u. Since f(i) is of form (4,i '),  
we obtain 1 by definition of at[4,i',w]. To prove 2, write Ir~-1(0) as j + g where 
j -- Lr~-l(o)/4J. Apply 1 to find distinct j~, j~,j;  such that  

c[i,j~] + c[i,j~] =_ c[i,j;] + c[i,j 4- ~] (moddld2d3d4). 

71- "* 71" ' *  7r  "* Conclude with j l ( i )  = i(31), j2 = i(32) and ja = ~(J3)- [] 

To simplify the exposition of the attack, we now assume that  f and the 7ri's are 
known to the attacker. We will show how to adapt the attack to the general case 
at the end of the section. We define a transformation r that  maps any x of Z g 
to 

x[il,jl(il)] 4- x[il,j2(il)] - x[il,j3(il)] ) 
�9 [i2, jx (i2)] + x[i2, J2 (i~)] - x[i~, j3 (i2)] 

r = . , 

x[is/2, j l  (i8/2)] 4 -  x[is/2, J2 (is~2)] - -  x[is/2, j3 (is~2)] 
where C~1,Ci2,... ,Ci./2 denote the s/2 weak blocks, and x[i,j] denotes the 
?(i ,  j )  entry of x. One sees that  r is linear, which implies that  

r (0)) -- Ale(el)  4- . . .  4- Ak+lr 

By lemma 10, the vector r176 has integral entries, so it must belong to 
d l d 2 d a d 4  

where fl denotes the lattice spanned by r r  r which we can 

determine. But this vector is unusually short : indeed, each coordinate of r176 dld2dad4 
is less than 3(d5 - 1) <_ 45 in absolute value, which makes a norm less than 
4 5 X / ~  (note that  this is a very pessimistic bound). Therefore it must have small 
coordinates with respect to any LLL-reduced basis because an LLL-reduced basis 
is almost orthogonal : 

I, emma 11. Let ( b l , b 2 , . . .  ,bd) be an LLL-reduced basis of a lattice A. If x = 
d ~3=1 xjb3 where xj E R then, for 1 < j < d, 

Ix,l.llb~ll <_ Ilxll~/2'-x (9/2)d-'7 + 6. 

(this statement can be found in an unpublished draft [11] by P. Montgomery) 

. .  b *  Proo f .  Denote by (b~,. , d) the corresponding orthogonal Gram-Schmidt Q- 
~-,d *b* basis. Decompose x as x = 2_,j=1 x3 j .  By orthogonality, one finds that  

d bi.b~ 
x,=x;- E: x ,  

~=j+l IIb~lP 
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It follows by induction on d - j tha t  : 

d 
1 

Ix l < Ix;I § 5 (3/2)'-Jlx~[. 
i = j + l  

Since ( b l , . . .  ,bd) is an LLL-reduced basis, if j < i then I[bjll <_ 2('-1)/2Hb* H. 
From this and Cauchy-Schwarz, we obtain 

d 

Ixjl21[b3112 < 23-1(2 Ix*[2Hb*H2)(1 + 3~((9/2) + - - .  + (9/2)d-J) ,  

and the result follows. [] 

Hence, we compute an LLL-reduced basis ( b l , . . . ,  bd) of ~ = (~J_)_L by applying 

algorithm 5 twice. The unknown vector r162 has integral coordinates x~ with 
d l d 2 d 3 d 4  

respect to ( b l , . . .  ,bd). We make an exhaustive search on the x j ' s  within the 
bounds given by lemma 11. Since we are in low dimension (d < k + 1), these 
bounds are very small, making exhaustive search possible. 

Assume that  one wants to check whether x = ~'~d=l x j b  3 is the expected 

r162 Decompose each bj  as a linear combination of r with rational 
d l d 2 d a d 4  " 

coefficients. Derive an integral linear dependence relation of form 

/~X = / ~ l r  + ' "  + / ~ k + l r  

where # > 0 and gcd(#, # 1 , . . . ,  #k+l) = 1. Since 

d -' r176  
l ~ 2 t L 3 t ~ 4 d ~  - - , ~ l ~ b ( e l ) - [ - ' * ' - [ - ~ k + l r  

1 2t~3 t~4 

it is likely that  dld2d3d4 = I~ and A3 -- #y if x is the expected vector. Since 
dld2d3d4 has bit-length 4s, we can quickly check whether # is consistent. Fur- 
thermore,  we obtain dld2d3d4 and the Aj's, which gives c (~ But we can easily 
check whether this is a consistent c(~ because c (~ reveals the t rapdoor  corre- 
sponding to the subset factorization (see the appendix). Hence, the exhaustive 
search is really feasible and provides the secret key. 

Now if we do not know the permutations r~'s and the bijection f ,  we con- 
struct the linear transformation r by choosing randomly 2 distinct integers il ,  
i2 between 1 and s : for each of these 2 integers, we select randomly 3 distinct 
j l ,  j2, j3 between 1 and 15 such that  j l  < j2. The probability that  bo th  il  and 
is correspond to weak blocks is 1/4. For each of these 2 integers, we have to test 
at most 15 x 14x13 1365 triplets ( j l , j2 , j3)  to find one that  satisfies lemma 10. 2 --  
This means that  we have to check at most 4 x 13652 = 7452900 choices of r 
But  such a check can be done very quickly : if r is correct, then ~ has a very 

~(r ~ and otherwise, there is no reason small vector (at least as short as dld2d3d4J, 

tha t  such a situation happens. Since computing ~ can be done in less than a 
second (involved lattices have very small dimension), we can check all choices 
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of r in a reasonable time (namely, less than one week with 10 workstations). 

Once a suitable r has been found, we perform an exhaustive search on r176 dld2d3d4 
as before. If one wants to improve success probabilities, one can increase the 
number of components of r by adding new integers i, once a suitable r with two 
components has been found. Each additional integer i costs at most 1365 tests 
and we can determine them successively, therefore we can easily determine the 
s/2 weak blocks, which reveals f .  Then we apply the previous strategy in order 
to obtain the rest of the secret key. 

3 . 4  E x p e r i m e n t s  

The attack has been successfully implemented using blockwise Korkine-Zolotarev 
lattice reductions [15] instead of LLL reductions to improve the reduced basis 
for heuristic 6. We used the package previously developped by A. Joux [6] in our 
lab. Timings are given for a 50Mhz Sparc 4, with parameters s = 32 and k -- 3. 
It takes about 9 hours to obtain the k + 1-dimensional lattice from the 32 blocks 
of 16 integers that form the public key. In our implementation, we assumed that 
the permutations ~i's and the bijection f were known, which gave the secret 
key almost immediately : both the computation of ~ and the exhaustive search 

r162 
of dld2d3d4r176 are performed in a few minutes. In practice, the vector dld2d3d4 
happens to be a very small linear combination of the LLL-reduced basis vectors 
(coefficients less than 10 in absolute value). In the case where we do not know 
the permutations ui's and the bijection f ,  initial experiments confirm the above 
discussion. 

4 C o n c l u s i o n  

We introduced the basic notion of an orthogonal lattice. This concept first leads 
to an efficient attack against both Merkle-Hellman and Merkle-Hellman-like 
transformations. This attack differs from Shamir's and Brickell's attacks against 
original Merkle-Hellman cryptosystems. It points out that one should be cau- 
tious with the cryptographic use of Merkle-Hellman transformations. The notion 
of an orthogonal lattice also enables us to exploit weaknesses in the subset fac- 
torization (the trapdoor). These two applications of lattice reduction form an 
attack against the Qu-Vanstone scheme that works for any choice of the param- 
eters. The attack has been successfully implemented and reveals the secret key 
from the public key in a reasonable time. 
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A A p p e n d i x  

In this appendix, we describe the subset factorization used in the Qu-Vanstone 
scheme and we provide the missing proofs of sections 2 and 3. 

A.1 Further description of the Qu-Vanstone scheme 
A . I . 1  C o n s t r u c t i o n  o f  t h e  s b locks  C, 

Recall that  n is a positive integer of the form n = dld2d3d4ds, where 2 s-1 < 
de < 2 s (for e = 1,2,3,4) ,  d5 < 16, and s is some fixed even positive integer. 
In the additive group G = Zn, we distinguish the subgroups G1, G2, G3 and Ga 
where G~ is generated by did2. . ,  de. 

For each de, 1 < g < 4, select a superincreasing sequence h[g, 1] , . . . ,  h[g, s] 
such that  ~ = 1  h[g,i] < de. Choose integers ql, q2, q3 and q4 such that  qe 
and de are coprime. Apply a Merkle-Hellman transformation to get h[g, i] = 
h[g, i]q~ (mod de) where 0 < h[g, i] < de. 

Select a permutation ~1 on {1, 2 , . . . ,  s}. For 1 < i < s, select two positive 
integers x[1, i, 0], x[1, i, 1] < d2d3d4d5 and define two elements in distinct cosets 
of G l i n G b y :  

a[1,i,0] = z[1,i ,0]dl,  

a[1,i,1] = h[1,~l(i)] +x[1,i ,1]di (modn). 

Select a permutation ~2 on {1 ,2 , . . . , s } .  For 1 < i < s and u = 0,1, select 
two positive integers x~[2, i, 0], x~[2, i, 1] < d3d4d5 and define two elements in 
distinct cosets of G2 in G1 by : 

a~[2,i,0] = x~[2, i,O]dld2, 
a'~[2,i, 1] = h[2,~2(i)]dl + x~[2,i,1]dld2 (modn) .  

Select a bijection gl from {1, 2 , . . . ,  s/2} to {s/2 + 1, s/2 + 2 , . . . ,  s}. For t, 1 = 
0, 1, 2, 3 and i = 1, 2 , . . . ,  s/2, select a positive integer xt[3,i, l] < d4ds. Define 
four elements in distinct cosets of G3 in G2 by : 

at[3,i,O] = xt[3,i,O]dld2d3, 
at[3,i, 1] = h[3,i]dld2 + xt[3,i, 1]dld2d3 (moan) ,  

at[3, i, 2] = h[3, gl(i)]dld2 + x t[3,i, 2]dld2d3 (mod n), 

at[3, i, 3] = (h[3, i] +/~[3, gl(i)])dld2 + xt[3, i, 3]dld2d3 (mod n). 

Select a bijection g2 from {1 ,2 , . . . ,  s/2} to {s/2 + 1, s/2 + 2 , . . . ,  s}. For t, l = 
0, 1, 2, 3 and i = 1, 2 , . . . ,  s/2, select a positive integer xt[4, i, l] < d5. Define four 
elements in distinct cosets of G4 in G3 by : 

a t [4,i, 0] = x t[4,i, O]dld2d3d4, 

at[4,i, 1] = h[4,i]dld2d3 + xt[4,i, 1]dld2d3d4 (modn) ,  

at[4,i ,2] = h[4,g2(i)]dld2d3 + xt[4,i, 2]dld2d3d4 (modn) ,  

a t [4, i, 3] = (h[4, i] +/t[4, g2 (i)])dld2d3 + x t [4, i, 3]dld2d344 (mod n). 
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Let f be a bijection from ( 1 , 2 , . . . ,  s) to {3, 4) • {1 ,2 , . . . ,  s/2).  For 1 < i < s 
and 0 < j < 15, define c[i,j] = a[1,i,u] + a~[2,i,v] + a'+2~[f(i),w] (modn),  
where j is uniquely decomposed as j = w + 4v + 8u with 0 < u < 1, 0 _< 
v < 1 and 0 < w < 3. Qu and Vanstone proved in [13] that  the s blocks 
Ci = {c[i,j] : 0 < j < 15} form a direct sum in G. The trapdoor consists of 
the dr's, h[g, i]'s, a[1,i,1]'s, aU[2,i,l]'s, at[3,i,l]'s, at[4,i,1]'s, the bijections f ,  gl, 
g2; the permutations ~l, ~2- 

A . 1 . 2  F a c t o r i n g  w i t h  t h e  t r a p d o o r  

We now describe how, given any g e a of form g = ~-'~iS__l c[i, jl] (mod n), one 
can quickly recover ji's just by knowing g and the trapdoor. 

Let gl = g = ~i~=l c[i, j~] (mod n). Recall that  in G, we have : 

c[i,ji] = a[1,i,u] + a~[2, i,v] + a'+2~[f (i),w] (modn),  j ,  = w + 4v + 8u. 

We recover the values of u, v, w for each ji value by solving 4 sub-knapsack 
problems based on appropriate superincreasing sequence : 

S t ep  1. Compute $1 = q~-lgl (mod dl), and solve the superincreasing knapsack 
~ = l  uih[1, E1 (i)] = S1, u i  e {0, 1). Compute g2 ---- gl -- E ~ = I  all ,  i, u~]. 

-1 ~ (mod d2), and solve the superincreasing knapsack S t ep  2. Compute $2 = q2 dl 
~ = l  vih[2,~2(i)] = $2, v~ e (0, 1). Compute g3 = g2 - ~-~i~1 a~'[2,i,v~] �9 

- ~ -  (modd3), and solve the superincreasing knap- S t ep  3. Compute $3 -= q31 did2 
sack ~ = 1  x~h[3, i] = $3, x~ E {0, 1). Compute 

g4 ---- g3 -- 

(3,s/2) 

E a~'+2~'[f(il'xi +2xgl(') ]" 
$(i)=(3,1) 

S t e p  4. Compute $4 = q-14 94dld2d3 (mod d4), and solve the superincreasing knap- 
sack ~ l Y ~ h [ 4 , i ]  = $4, where yl E {0,1}. For i = 1 , 2 , . . . , s / 2  define 
wi = x~ + 2xgl(i ) and w~+s/2 = yi + 2yg2(~). 

Finally, we recover j i  = wi + 4vi + 8ui for i = 1, 2 , . . . ,  s. 

A . 2  P r o o f  o f  t h e o r e m  4 

Assume c > 2 (n-1)/2+(n-d)(n-d-1)/4 det(A) and let (xl,  x 2 , . . . , x n )  be an LLL- 
reduced basis of ~. Let (bl,  b 2 , . . . ,  bn-d) be an LLL-reduced basis of A -L. Define 
Y l , y 2 , . . .  ,Y~-d in ~ by Pt(Y~) = 0 and p$(yj) = bj .  These n - d vectors axe 
linearly independent, therefore by theorem 3 (2), for 1 < j < n - d : 

Ilxjll <_ 2(n-1)/2max(llylll , . . . , l lYn-dll) 

_< 2(~- l ) /2max(l lbl l l , . . . ,  Ilbn-dll). 
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But theorem 3 (1) ensures us that  Ilbjll _< 2(~-d)( '~-d-1)/4 det(Al) .  Thus : 

IlXj II <-- 2(n-1)/22(n--d)(n--d-1)/4 det(A• < c. 

This implies that  pt(x~) = 0 and p~(xj) E A z for 1 < j _< n - d. Therefore 
p j . (x t ) , . . .  ,p$(xn-d) are linearly independent and they form a Q-basis of E~-. 

Now, let y E A • There exist A1,A2, . . - ,~ , -d  E Q such that  : 

y = Alp,(xl)  + )~2p$(x2) + ' - "  + ,~n-dp$(Xn-d) .  

Defining x E ~t by pt(x) = 0 and p,(x) = y, we have : 

X : / ~ I X 1  --~ )~2X2 -~- " ' "  "~- ~ n _ d X n _ d  . 

But there also exist t t l ,#2, ."  ",#,~ E Z such that  x = #lX~ +#2x2 + . . .  + tt=x=. 
Therefore : 

(P l  -- A1)X1 " J r ' ' '  "4- (gn--d -- ,~n--d)Xn-d + Pn--d+lXn--d+l "{-' '" + ll, nXn = O. 

Since Xl , . . .  , x ,  are linearly independent, we deduce that  A 3- =/~3" E Z. Hence 
( p , ( x l ) , . . .  ,p4(x=-d)) is a Z-basis of the lattice A • 

Furthermore, for 1 < i < n - d and 1 < j < n - d, IIP$(Xj)ll = Hxj][ and 
p , ( xd .p , ( x j )  = x=.x 3. Since ( x l , . . .  , x , )  is an LLL-reduced basis, this proves 
that  (p.L(Xl),... ,p4(X=-d)) is an LLL-reduced basis too. 

A . 3  R e c o v e r i n g  t h e  s e c r e t  k e y  f r o m  c (~ 

Notice that  5[i, j] = c[i, 7r~- 1 (j)] _ c[i, r (1  (0)] (mod n). Since we know did2 d3 d4, 
we recover n = dld2d3d4d5 from the size of each ~[i,j]. But the form of each 
c[i, r~-l(j)] is very particular : 

c[i, j] = a[1, i, u] + a~[2, i, v] + a V+ 2~[f ( i), w] (modn).  

By enumerating all possible cases, one notices that  the knowledge of c[i, r~ -1 ( j ) ] -  
c[i, 7r~ -1 (0)] (mod n) reveals dl, did2, dl d2d3 by particular gcd's, hence the r i ' s  
by looking at the order in each block of 15 integers. By subtractions, we then 
obtain the h[1, i]'s, h[2,i]'s, h[3, i]'s and the hi4, i]'s. Since we now know the 
dr's, we derive the qt's and the h[g,i]'s. This reveals the a[1, i,/] 's, a~[2, i,/]'s, 
at[3, i,/]'s, at[4, i,/]'s, the bijections gl, g2 and the permutations ~1, ~2 (looking 
at the order of superincreasing sequences). We now know the complete trapdoor. 
The coordinates Aj's are actually closely related to the w (e)'s and the m (e)'s : 
one can derive equivalent w (~)'s and m (~)'s so that  c (k) is obtained by Merkle- 
Hellman-like transformations from c(~ Since we now know the c[i,j]'s from 

s the trapdoor, we also find out equivalent )-~-i=1%-(~)'~" Hence, we recovered the 
complete secret key. 
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