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Abstract: The McEliece public-key cr3~tosystem fails to protect any message 
which is sent to a recipient more than once using different random error vectors. In 
general, it fails to protect any messages sent to a recipient which have a known 
linear relation to one another. Under these conditions, which are easily detectable, 
the cryptosystem is subject to a devastating attack which reveals plaintext with a 
work factor which is 1015 times better than the best general attack. 
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1 Introduction 

The McEliece public-key cryptosystem was proposed nearly 20 years ago [14]. The 
system is simple to explain and is very fast in execution. It is based on an NP-hard problem 
in coding theory, and features the ability o f  a hidden error-correcting code to recover 
plaintext from ciphertexts which the sender intentionally garbles with random errors. 
Although it has received much attention from the cryptologic community, the system 
remains unbroken to this day. 

Despite these advantages, the McEliece public-key cryptosystem it is not widely used. 
Perhaps this is because it has a large public key and a low information rate. But changes in 
technology and economics, for example the plummeting cost of  storage, keep it on the list 
o f  candidates for some applications. 

In this paper we analyze and exploit the failure o f  the McEliece public-key cryptosystem to 
protect plaintext when any message is sent to a recipient more than once using different 
random error vectors. Our message-resend attack succeeds in flk 3 time, wherefl is a small 
constant, and k is the message size of  the underlying code. We then generalize our attack 
to a related-message attack, which recovers any messages sent to a recipient when a linear 
relation between the messages is known, again in flk 3 time. 
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2 The McEiiece Public-Key Cryptosystem 

Without loss of  generality we will describe the McEliece public-key cryptosystem system 
using the code and parameter sizes proposed originally by McEliece. 

The private key consists of  three matrices: 

a generator matrix for a (n = 50, k = 524, t = 50) Goppa code G e F2 su'~~ (Goppa 

codes are a large class of  error-correcting codes which have efficient decoding 
algorithms); 

�9 an invertible scrambler matrix S e F,. TM's-', and; 

�9 a permutation P ~F21024xl024 . 

The public key is the matrix product S G P .  Note that S and P disguise G as a general linear 
code. 

Now suppose a message m e ~su is to be sent. The parameters of  the Goppa code (an 

irreducible polynomial g(x) e F 2 [X] of  degree 50 and an ordering of F2,, ) allow for the 

fast error correction of up to 50 errors. So a random error vector e eF,  x~ is chosen where 

the Hamming weight wt(e )  = 50, and the cryptogram 

c = m S G P  + e 

is sent. 

The intended recipient then computes 

c P  -~ = m S G  + e P  -~ . 

Since P is a permutation, w t ( e P  -~) = 50. So decoding the Goppa code recovers mS, from 

which, finally, the intended recipient recovers m = ( m S ) S  -~ . 

R e m a r ~  

A great many workers, starting with Adams and Meijer [1,2], Hin [9], and .lorissen [10], 
have explored the relationship between the parameters of  the underlying code, the security 
of  the cryptosystem, and the data rate. For a description of this line of research see van 
Tilburg [17]. Optimizations have been suggested where n = 1024, k ranges from 524 to 
654, and t ranges from 37 to 50. Our attack is not blunted by such adjustments. 

Other workers have explored replacing the Goppa code with other types of  error- 
correcting code. For example, Gabidulin et al. [5] tried using maximum-rank-distance 
codes. These schemes were shown to be insecure by Gibson [6,7]. In any event, such code 
replacements would not prevent our attack, which does not depend on the structure of the 
code. 
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3 Cryptanalytic Background 

McEliece stated that the most promising line o f  attack on his public-key cryptosystem 
consists of  decoding an arbitrary linear code containing correctable errors. Therefore, the 
security of  the cryptosystem seems to be based on solving the corresponding the BHDD ~ 
problem. 

The obvious [14,1] attack is this: if a cryptanalyst could guess 524 coordinates of  c that 
are not garbled by e, then the restriction to those 524 columns of  the cryptogram and the 
public key 

c = m S G P  

relates m to c by a known S G P  ~ F2 s~'~'~ . I f  S G P  is invertible, then m can be recovered. 

Notice that this is a per-message attack; the secret key o f  the system remains unknown to 
the cryptanalyst. 

What is the work factor for this attack? The cryptanalyst must correctly guess 524 
ungarbled columns out o f  the possible 974 = 1024-50. So we can calculate that it will 
require 

( 1024") 

524 ) 

( 974] 
524J 

~, 1.37 x 10~rguesses to succeed. 

So the work factor is 

w = a .  1.37 x 1016, 

w he rea  is the cost o f  inverting a 524-square matrix, roughly 5243 . 

Notice that the relatively low-weight error vector  is crucial to the success of  the Goppa 
decoding algorithm, and that it also impacts the work necessary for the cryptanalyst. 

Remarks 

The attack described above can be, and has been, improved slightly by taking partial 
information into account. See Lee and Brickell [12], Li, Deng and Wang [13], and van 
Tilburg [ 16]. 

I BHDD (Binary Hamming Distance Decoding) is the name given to the problem of decoding an 
arbitrary binary word to the nearest eodeword in an arbitrary linear code under the restriction that 
the "arbitrary" binary word be at distance at most ( d - 1 ) / 2  from a codeword. Bedekamp, 
MeEliece and van Tilborg [4] showed that BHDD is NP-hard. 
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There was some excitement and confusion about the cryptanalysis o f  the McEliece public- 
key cryptosystem a few years ago. Korzhik and Turkin, announced that they had broken 
the cryptosystem. They gave a "demonstration" of  their "attack" at Eurocrypt '91 [11]. 
However, the demonstration was only a toy: in place of  the Goppa code it used a BCH 
code o f  dimension 36 in F_, 63 = GF(2) 63, with minimum distance 11, and an error vector o f  

weight 5. Even with this simplification, their attack achieved only a five-fold speedup over 
exhaustion. The details have never appeared. More generally, Korzhik and Turkin claimed 
to have found a polynomial time algorithm for BHDD, which is known to be NP-hard. But 
the published description and analysis o f  their algorithm are not precise, and its correct 
functioning within the claimed time bound has never been confirmed. In summary, their 
attack oft the McEtiece public-key cryptosystem is not believed to be effective. 

4 Failure Under Message-Resend Conditions 

Suppose now that, through some accident, or as a result o f  action in the part o f  the 
cryptanalyst, both 

c 1 = m S G P  + e l 

and e~ ;e e,_ 

Ca = m S G P  + e,. 

are sent. We call this a m e s s a g e - r e s e n d  condition. In this case it is easy for the cryptanalyst 
to recover m from the system of  c,. (We will examine only the ease where the number of  
different cryptograms of the same message, which we call the r e s e n d  depth ,  is 2. The 
attack is even easier at greater resend depths.) 

Notice that c~ + c: = e~ + e, (rood 2). 

The cryptanalyst can easily detect a message-resend condition by observing the Hamming 
weight o f  the sum of  any two cryptograms. When the underlying messages are different, 
the expected weight o f  the sum is about 512. When the underlying messages are identical, 
the weight o f  the sum cannot exceed 100. Heiman [8] showed that a message-resend 
condition can be detected; we will show how to exploit it. 

4.1 Method of Attack 

We will compute two sets from (c~ + c,_). The set L o will be the locations where (c~ + c 2) 

contains zeroes. The set L~ will be the locations where (c t + c,.) contains ones. 

Let 

and 
Lo = { t .  {1.2.---.~024}: 4 t ) ,  + r (0  = r (0 + r  = O} 

L, = {I ~{1 ,2 , . . . ,1024}:c , (1)+cz( I  ) = e , ( l ) + e : ( l )  = I}. 
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We aim to take advantage of  the fact (and to quantify the claim) that 

�9 1 ~ L 0 ~ most probably neither c~ (/) nor c_. (/) is garbled by an error vector, while 

�9 l ~ L~ => certainly precisely one o f  c~ (/) or c= (/) is garbled by an error vector. 

Every l ~ L 0 means that either e~ (/) = 0 = e._ (/) or e t (/) = 1 = e: (/). Assuming the error 

vectors e~ and e,_ are chosen independently, then for any 1 

p r ( . , ( O = l = e ~ ( O ) _ (  50 ~;  -~0.0024. 
- ~. 1024J 

In other words, most 1 ~ L o signify e~ (/) = 0 = e,_ (/). Thus the cryptanalyst should try to 

guess 524 ungarbled columns from those indexed by L 0 . 

How good is this strat%w? Let p, be the probability that precisely i coordinates are 

simultaneously garbled by e I and e_,. Then 

( 50~( 974"] 

i ) L 5 0 - U  
p, = Pr(l {l: e, (/) = 1}f ' l { l :e,(/) = ]}1 = ') = (1024"~ 

1 l 
k 5 0 )  

since, say, e 2 must choose i error locations from those 50 of  e~ and the remaining 504 

" "(1024] possible error vectors. from those ungarbled by el, this out o f  a total o f  k 50 ) 

Therefore the expected cardinality o f  L~ is 

5O 

E(IL, I) = Z 0 0 0 -  20p, = 95a 
i=0 

since every l for which e, (1) = 1 = ,z (/) reduces tL, [ by two. 

For example, suppose IL, I-- 94. Then ILol = 930,  o f  which only 3 are garbled. We see 

that the probability of  guessing 524 ungarbled columns from those indexed by L0 is 

( 927~ 

524) 
~ 0.0828 

524) 

so the cryptanalyst expects to succeed in this case with only 12 guesses, at a cost o f  12a .  
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When IL~I = 96 only about 5 guesses are required! 

These results are a factor of l0 ts better than the exhaustive attack analyzed in Section 3. 

Note that this attack does not recover the private key. We do not claim to have broken the 
McEliece public-key cryptosystem But we have shown how a cryptanalyst may recover 
the plaintext of a resent message with very little work. 

5 Failure Under Related-Message Conditions 

We will now generalize the message-resend attack. 
cryptograms 

c I = m I S G P  +e t 

and m t ~ m : ,  e t * e .  
c:  = m 2 S G P  + e,  

Suppose that there are two 

and that the cryptanalyst knows a linear relation, for example m~ + mz, between the 

messages. We call this a r e l a t e d - m e s s a g e  condition. In this case the cryptanalyst may 
recover them, from the set of  c, by doing one encoding and by then following the attack 

method of Section 4.1. Here are the details. 

Combining the two cryptograms we get 

e~ + c  2 = m t S G P + m z S G P + e  ~ +e,_. 

Notice that m t S P G  + m , . S G P  = (rot + m z ) S G P ,  a value the cryptanalyst may calculate in a 

related-message condition from the known relationship and the public key. 

The cryptanalyst solves 

c 1 + c 2 + (m~ + m:  ) S G P  = e~ + e ,  

and proceeds with the attack as in Section 4. I, using (ct + c z + (m~ + m , . ) S G P )  in place of  
(c, +c:).  

Remark 

The message-resend attack is that special case of  the related-message attack where 
m 1 --~/'/12 = 0 .  
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6 Conclusions 

The McEliece public-key cryptosystem fails to protect any message which is sent to a 
recipient more than once using different random error vectors. 

The McEliece public-key cryptosystem fails to protect messages sent to a recipient which 
are have a known linear relation to one another. 

Our attack is a general attack on the class o f  public-key cryptosystems which use an error- 
correcting code and the introduction o f  random errors by the sender. 

Our attack under these conditions is a factor o f  10~Sbetter than the best attack under 
general conditions. 

Users of  the McEliece public-key cryptosystem, and of  cryptosystems with similar 
structure, should guard against sending related messages. One countermeasure which 
comes to mind is to introduce an element o f  local randomness into any message before it is 
encrypted. But note that the obvious c = (mI~')SGP falls quickly to a synthesized related- 

message attack. A scheme is required which spreads randomness through the plaintext in 
some complicated fashion. Bellare and Rogaway 's  OAEP [3] et seq. are instructive. Of  
course, any such scheme extracts a penalty in data rate. 

Cryptosystems which are based on the use o f  linear codes but without per-message error 
vectors, for example Neiderreiter [15], are not directly threatened by our attack. However, 
prudence dictates that all such systems now be reexamined for vulnerability to message- 
resend or related-message attack. 
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