
The Prevalence of Kleptographic Attacks on
Discrete-Log Based Cryptosystems

Adam Young* and Moti Yung**

Abs t rac t . The notion of a Secretly Embedded Trapdoor with Universal
Protection (SETUP) and its variations on attacking black-box cryptosys-
terns has been recently introduced. The basic definitions, issues, and ex-
amples of various setup attacks (called Kleptographic attacks) have also
been presented. The goal of this work is to describe a methodological
way of attacking cryptosystems which exploits certain relations between
cryptosystem instances which exist within cryptosystems. We call such
relations "kleptograms'. The identified kleptogram is used as the base
for searching for a setup.

In particular, we employ as a discrete log based kleptogram a basic setup
that was presented for the Diffie-I-Iellman key exchange. We show how it
can be embedded in a large number of systems: the E1Gamal encryption
algorithm, the EIGamal signature algorithm, DSA, the Schnorr signature
algorithm, and the Menezes-Vanstone PKCS. These embeddings can be
extended directly to the MTI two-pass protocol, the Girault key agree-
ment protocol, and many other cryptographic systems. These attacks
demonstrate a systematic way to mount kleptographic attacks. They also
show the vulnerability of systems based on the difficulty of computing
discrete logs.

The setup attack on DSA exhibits a large bandwidth channel capable
of leaking information which hardware black-box implementations (e.g.,
the Capstone chip) can use. We also show how to employ such channels
for what we call "device marking".

Finally, note that it has been perceived that the DSA signature scheme
was originally designed to be robust against its abuse as a public-key
channel- to distinguish it from RSA signatures (where the signing func-
tion is actually a decryption function). In this paper we refute this "per-
ceived advantage" and show how the DSA system (in hardware or soft-
ware) can be easily modified to securely leak private keys and secure
messages between two cooperating parties.

Key words: DSA signature, EIGamal encryption, EIGamal signature, Menezes-
Vanstone PKCS, Schnorr signature algorithm, setup, Discrete-Log, Diffie-Hellman,
subliminal channels, protocol abuse, kleptography, leakage-bandwidth, random-
ness, pseudorandomness, cryptographic system implementations.

* Dept. of Computer Science, Columbia University Email: ayoung@cs.columbia.edu.
** CertCo New York, NY, USA. Email: moti@certco.com, moti@cs.columbia.edu

265

1 I n t r o d u c t i o n

Recently, it has been shown that Black-Box cryptosystems can be designed so as
to conform to public specifications and be polynomially indistinguishable from
the known public specifications, and at the same time securely and sublimi-
nally leak secret key information to the implementor (either through keys at key
generation or during run-time).

Young and Yung laid the foundation for these attacks, defined the basic
notions, and demonstrated them [YY96, YY97]. These attacks imply that Black-
Box systems (whose internals cannot be scrutinized) should not be automatically
trusted (e.g., trust should be based on cryptosystems coming from a trustworthy
source and not from the technology of tamper-resistant black-boxes, say).

Typically a cryptosystem produces a ciphertext for a given message or a
signature for a given message. However, a cryptosystem with a setup produces a
ciphertext/signature for a given message that also contains an internal ciphertext
for a totally different message. We call such an output of a cryptosystem (with
an inner ciphertext) a kleptogram. Kleptograms are undetectable in poly-time by
the user, they are strong encryptions, and they coexist in the same ciphertext
bits as normal public key encryptions.

In this paper a methodology for finding setup attacks is given. The method-
ology has two steps:

1. First we find a relation within a cryptographic function between its applica-
tion and another inner encryption (this relation is called a kleptogram).

2. Then, given a cryptosystem and its workings, we identify how the kleptogram
of the underlying function is embeddable in the system (and what leakage
level is possible), which gives us a setup.

One of the setup attacks we present which is perhaps the main result of this
work, is a (1,2)-leakage bandwidth setup for DSA. That is, we present a setup
mechanism for DSA that is capable of leaking the user's private key through two
(wlog) consecutive digital signatures. We then extend the attack to allow the
user to send 160 subliminal bits of his choosing in addition to the private key.
Furthermore, the user is free to re-key at any time and the attack will still work.
The kleptographic attack therefore effectively leaks 80 key bits and 80 chosen
bits per signature. This contrasts with the channel described by Simmons which
leaks approximately 14 chosen bits per signature [Sim93]. Also, in the context
of tamper-proof devices we show how the SETUP can be employed for "device
marking", where the mark is added subliminally to the signature.

The above setup can be used to easily turn DSA into an effective public
key (key exchange or message exchange) system. This spoofing, motivated by
the potential of protocol abuse via kleptographic methods, shows that the claim
that DSA is inherently different from RSA in this respect (the RSA signing
function can obviously be used as a decryption function) is a myth! We refer the
reader to the NIST response on DSA which alluded to this fact [SB92].

266

In this paper we show that these kinds of setup attacks are possible in other
discrete log based cryptosystems such as the EIGamal encryption algorithm, E1-
Gamal and Schnorr digital signatures, and various authenticated key exchange
algorithms. Also, systems based on Elliptic Curves (Menezes-Vanstone) can be
attacked. The attack methodology based on the discrete log kleptogram is there-
fore widely applicable to discrete log based cryptosystems.

2 D e f i n i t i o n s a n d B a c k g r o u n d

A setup (Secretly Embedded Trapdoor with Universal Protection) is a mech-
anism that allows the secure leakage of private information within the output
of a cryptosystem. The notion of a setup is due to Young and Yung [YY96].
The definitions of weak, regular, and strong setups and (m,n)-leakage are from
IVY971.

Def in i t ion 1. Assume that C is a black-box cryptosystem with a publicly known
specification. A (regular) SETUP mechanism is an algorithmic modification
made to C to get C' such that:

1. The input of C ~ agrees with the public specifications of the input of C.
2. C ~ computes efficiently using the attacker's public encryption function E

(and possibly other functions as well), contained within C ~.
3. The attacker's private decryption function D is not contained within C ~ and

is known only by the attacker.
4. The output of C ~ agrees with the public specifications of the output of C.

At the same time, it contains published bits (of the user's secret key) which
are easily derivable by the attacker (the output can be generated during
key-generation or during system operation like message sending).

5. ~r thermore, the output of C and C' are polynomially indistinguishable (as
in [GM84]) to everyone except the attacker.

6. After the discovery of the specifics of the setup algorithm and after discover-
ing its presence in the implementation (e.g. reverse-engineering of hardware
tamper-proof device), users (except the attacker) cannot determine past (or
future) keys.

Def in i t ion2 . A weak setup is a regular setup except that the output of C and
C ' are polynomially indistinguishable to everyone except the attacker and the
owner of the device who is in control (knowledge) of his or her own private key
(i.e., requirement 5 above is changed).

Def in i t ion3. A strong setup is a regular setup, but in addition we assume that
the users are able to hold and fully reverse-engineer the device after its past usage
and before its future usage. They are able to analyze the actual implementation
of C' and deploy the device. However, the users still cannot steal previously
generated/future generated keys, and if the setup is not always applied to future
keys, then setup-free keys and setup keys remain polynomially indistinguishable.

267

Another important notion is that of (m,n)-leakage bandwidth. A setup that
has (m,n)-leakage bandwidth leaks m secret messages over the course of n mes-
sages that are output by the cryptographic device (or n of its executions).

Let us define a relation between a hidden encrypted value and another en-
c rypt ion/s ignature .

D e f i n i t i o n 4 . A kleptogram is an encryption of a value (hidden value) that is
displayed within the bits of an encryption/signature of a plaintext value (outer
value).

Note that we say that a kleptogram is an encryption of a value, not a plain-
text message. It is often the case in kleptography that the device is not free
to choose this value. The device may calculate this hidden value, and then use
it (for the 'randomness') in a subsequent computation, thus compromising that
computation.

Related W o r k

The notion of a subliminal channel is due to Gus Simmons [Sim85, Sim93].
SETUPs exploiting such channels and a SETUP in the RSA public keys (as well
as in other systems) were given in [YY96]. In [YY97] a SETUP was presented
for Diffie-Hellman that does not make use of explicit subliminal channels, but
rather exploits a number of executions of the system to "create a channel". This
paper makes extensive use of this SETUP, which is a basic relation based on an
underlying cryptographic problem. Due to its extensive applications as a relation
between encrypted values, we call it the "discrete log kleptogram". The following
section describes this relation in detail.

2.1 Discrete Log Kleptogram

Suppose that the only information that we are allowed to display is gr rood p for
some c < p - 1. The following is a way to leak a value c2, over the single message
m l = g~l rood p, such that the subsequent message m2 = gO2 mod p is compro-
mised. In this attack we assume that the device is free to choose the exponents
used. Let the attacker's E1Gamal private key be X, and let the corresponding
public key be Y. Let W be a fixed odd integer, and let H be a cryptographi-
cally strong pseudorandom function with a hidden seed. WLOG, assume that H
outputs values less than r The following algorithm is based on the operation
of a Diffie-Hellman device that is used two times in succession. Let a and b be
fixed constants.

1. For the first usage, Cl E Zp-1 is chosen uniformly at random
2. The device outputs rnl = g~1 rnod p.

3. cl is stored in non-volatile memory for the next t ime the device is used.
4. For the second usage, t E {0, 1} is chosen uniformly at random.

268

5. z = g C ~ - W t y - a c l - b rood p.

6. c2 = H (z)
7. The device outputs m2 = gO2 rood p.

The attacker need only passively tap the communications line, and obtain
rnl and rn2, in order to calculate c~. We call z a hidden field element. The value
for c2 is found as follows.

1. r = m l a g b rood p
2. zl = m l / r X rood p
3. if m2 = gH(zl) rood p then output H (z l)
4. z2 = z l / g W
5. if m2 = gH(z2) rood p then output H(z2)

The value c2 can be used by the attacker to determine the key from the second
DH key exchange. Note that only the attacker can perform these computations
since only the attacker knows X. In order for c2 to be able to take on any value
less p - 1 we assume that gl = g - X b - w , g2 = g-Xb, and g3 = g l - a x are genera-
tors mod p. This secure disclosure of an encrypted value inside the 'encryption'
of another value will be exploited to attack a number of cryptosystems. As a
side remark, note that technically nothing is encrypted in a DH key exchange.
However, we may regard the resulting shared key as having been conceptually
encrypted by both parties.

3 S e t u p s i n E 1 G a m a l S y s t e m s

Indeed, we are now ready to take the second step of our methodology, whereby
we apply the above discrete log kleptogram mechanism to discrete log based
cryptosystems. We start with applications to E1Gamal, and then explain the
more complicated setup attack on DSA in the next section.

3.1 S t r o n g S e t u p in t h e E 1 G a m a l E n c r y p t i o n S c h e m e

In E1Gamal [EIG85], the first part of the ciphertext of a message is a = gk m o d p .
Note that a from the ciphertext (a, b) displays an exponentiation mod p. We
can use this to implement a strong setup in E1Gamal. In fact, the discrete log
kleptogram is the strong setup for E1Gamal encryption. It is straightforward to
implement a (1,2)-leakage bandwidth scheme by leaking a hidden field element
in the a of the first encryption (a, b), and using the hash of this element as the k
for the second encryption. Note however that we are leaking messages m instead
of private keys in this case. There is no known way to efficiently recover k from
an E1Gamal encryption, even if the user's private key x is known. So, it can be
shown that this is a strong setup.

T h e o r e m 1 ElGamal encryption has a strong setup version.

269

Typically, when public key cryptography is needed to encrypt bulk data,
hybrid cryptosystems are used. Thus, in this mode of usage, the setup can leak
keys. It can leak the randomly generated symmetric keys used to encrypt the
data. We can implement a (1,1)-leakage scheme in an E1Gamal based hybrid
system as follows. We use the discrete log attack to setup up the gk mod p
portion of the ciphertext. We then choose the one way hash of the hidden field
element as all or part of the symmetric encryption key. It is therefore imperative
to verify the source code of hybrid systems based on E1Gamal.

3.2 R e g u l a r Se t up in E I G a m a l S i g n a t u r e Scheme

In [YY96] an attack on the E1Gamal signature scheme was proposed. This attack
is novel in that it allows Alice to securely give her private key to Bob through
signatures alone. However, the presence of the setup can be readily detected
without knowledge of the attacker's E1Gamal public key, and hence constitutes
a weak setup.

The problem is that a user can always recover the choices of k of his own
device using his own private key [SimS5]. Given the (wlog consecutive) ith and

(i+l) th signatures, the user can compute Y = (k~l) 1/k' rood p. After a few
such coincidences, the user will conclude that Y is in fact the public key of
the attacker. Note that the attack would still be very effective in hiding the
key exchange from a warden (overseeing the communication) as in the original
scenario of Gus Simmons. We can modify the attack to be a regular setup by
using the fixed private parameters a, b, and W in conjunction with Y in the
usual way, rather than simply setting k~-+11 = yk. .

This setup attack can also be carried out using the discrete log attack. For
concreteness, we will simply point out that the first E1Gamal signature value
g~ rood p is a exponentiation mod p. Thus we leak a hidden field element as
before, and this mechanism is a (1,2)-leakage setup. This kleptographic attack
constitutes a regular setup. The fact that the value k2 can't be compromised was
shown in [YY97]. This assumes that the DH problem is hard. There is also the
issue of detectability by the signer who knows kl and k2. It can be shown that
if H is a pseudorandom function whose seed is kept private by the implementor
and hidden in the black-box device, the signer can't even detect the presence of
the setup. The private values a and b are thus used as an extra precaution. This
is not a strong setup, since a user knowing his own private key can recover the
choices of k and detect the presence of the setup mechanism, given the seed, a,
and b. The existence of a strong setup for the E1Gamal digital signature scheme
is left as an open problem.

T h e o r e m 2 The ElGamal digital signature algorithm has a regular setup ver-
sion.

270

4 SETUPing and Spoofing DSA

It has been assumed that the DSA [DSS91] system was designed as a signature
system that is hard to "abuse". Namely, that it was designed so that it would
not be used directly as public-key system, a key exchange system, or any system
providing for confidential information exchange (see [SB92]). Therefore, it was
quite interesting that a low bandwidth (14-bit) subliminal channel was found
in it [Sim93]. Here we show a much larger leakage potential for black-box im-
plementations of the DSA; we note that such implementations exist (i.e., the
Capstone technology).

We will now briefly review DSA. q is a 160 bit prime which divides p - 1. p
is a prime that is at least 512 bits and at most 1024 bits in length, g is a qth
root of 1 mod p. All three of these parameters are public. Alice's private key is
x, where z < q. Alice's public key is y, where y = g= rood p. Let H denote the
Secure Hash Algorithm. To compute the signature (r, s) of a message m, Alice
does the following.

1. chooses a value k at random such that k < q.
2. computes r = (gk rood p) mod q.
3. computes s = k - l (H (m) + xr) rood q.
4. outputs the signature (r, s).

To verify that the signature is valid, Bob checks to make sure that r is equal
to (gs-lH(m)y s-lr mod p) rood q.

It is clear from the discrete log kleptogram that we need only find a modular
exponentiation (mod p) that is displayed in DSA to find a setup. Note that a
modular exponentiation mod q won't suffice since q is too small. We could setup
DSA keys, since y = g~: mod p, but this indicates that the user must generate new
keys (or a new signature) to be an effective setup attack for the attacker. The
existence of the modular exponentiation that constitutes the (1,2)-leakage setup
for signatures is indeed a bit more subtle. But, it turns out that the quanti ty
g~-~H(,~)yS-% rood p is in fact simply gk rood p, and can thus be used as a
kleptogram. It follows that over the course of two (wlog) consecutive signatures,
a DSA device can securely leak the second choice of k. The attacker, given the
value for k, can readily recover the user's private key x. This setup attack is
rather odd since the kleptogram is not overtly displayed. Instead, it is recovered
during the signature verification process.

The presence of the mechanism cannot be detected in a tamper-resistant
black-box implementation (i.e., Capstone which is a key escrow technology which
also employs the DSA system), for the same reasons as in the E1Gamal digital
signature setup. Note that this kleptographic attack assumes that the device was
implemented with a priori knowledge of the values for g, p, and q that the user
will use. One can envision a scenario in which the NIST invites several corpora-
tions to agree on a choice of parameters using the NIST designed prime number
generation method reiterated in [Schneier]. With this setup attack, "trapdoor
primes" (originally suspected in DSA) are not needed, any primes will do.

271

Theor e m 3 DSA has a regular setup version.

If we trust that the device is indeed tamper-proof, we can leak a private key
over two signatures while at the same t ime letting the user choose his own values
for p, q, and g. This can be done by including the attacker's private key X (say,
511 bits in length) within the device. The attack is clearly not a setup attack (it
includes the attacker's private key!), but leaks keys at a very high bandwidth,
and is very flexible. This attack obviously relies heavily on the tamper-proof
nature of the device in question.

4.1 General ized Information Leakage in D S A

We have shown how the private key x can be leaked over two DSA signatures.
Clearly, we can then use the Simmons channel and leak a message mod q in a
third signature by setting k equal to that message. But, we can do better. In
this section we will show how to leak a message mod q of our choosing over two
signatures, in addition to the private key x. But, before doing so we will point
out two weaknesses in the Simmons channel. Suppose Alice wants to send Bob
the subliminal message "160 bit long string." on two separate occasions. Since
the string is 160 bits long, it will occupy the entire value k (assuming we send
ASCII text). Hence, the two values for r, where r = (gk rood p) mod q will be
identical, and are easily noticed by the warden. Thus, we are forced to break
down the message in order to introduce randomness. But then we need more
bandwidth to send the message. Also note that without introducing randomness,
the warden can mount guessed plaintext attacks. The warden simply guesses
that Alice will send the string k = "160 bit long string." and then verifies that
r = (gk rood p) rood q.

The method we will now describe accomplishes this generalized (1,2)-leakage
and avoids these drawbacks. The method for accomplishing this is subtle, and
uses a 'Teed-back" like algorithm. Suppose that Alice is in prison and wants
to send a 160 bit message m < q to Bob, who is on the outside. To do so,
Alice takes the first message/141 to be signed, and computes gl based on M1
where gt is an element in Zp with order q. To compute gl, Alice finds the
smallest value w > 0 such that H~(M1) rood p generates Zp. Alice then sets

gl = HW(M1) (v-1)/q mod p. Alice computes the signatures (r l , sl) and (r2, s2)
using her private key x as follows:

1. kl = ((gl = rood p) rood q)rn mod q
2. rl = (gkl rood p) rood q
3. sl k l - I (H (M 1) + xr l) rood q
4. Calculate k2 using the regular setup in DSA
5. r2 = (gk2 mod p) rood q
6. s2 k2-1(H(M2) + xr2) rood q

Upon receiving the two signatures, Bob can recover m as follows:

1. Bob recovers x using the regular setup in DSA

272

2. kl = s l - I (H (M I) + xrl) mod q
3. Bob computes gl using M1 in the same way that Alice did
4. m -- kl((gl= rood p) rood q)-I rood q

In the above algorithm, Alice sends the subliminal message m and a klep-
togram in the first signature. The kleptogram is then used to securely compro-
mise the second signature. Bob then recovers k2, and thus x from the second
signature. Bob then takes z and goes back to the first signature, and recovers kl.
Using kl Bob recovers the message m. So, Bob takes z from the second signature
and "feeds it back" into the first signature to reveal the subliminal message.

Note that x is a shared secret between Alice and Bob. Thus (gl = modp) mod q
is a shared secret between Alice and Bob. It is this secret tha t is used to blind the
subliminal message m. The attack is therefore not subject to guessed plaintext
attacks, since the warden must guess (gl x mod p) mod q, in addition to m. Also,
since there is a one-to-one mapping between the shared secrets (gl ~ rood p) rood q
and the messages M1 being signed, and since there is no need to sign the same
message twice, Alice can send the same subliminal message twice and the values
for r will be different.

This whole attack has the drawback that the device will always choose the
same k for a given message M being signed. So, when designing black-box devices
like Capstone, we might want to randomize some of the upper order bits of m
so that it will look like the device is really choosing k randomly (joke). So, not
only is it possible to leak DSA private keys over two DSA signatures, but it is
also possible for devices to leak 160 bits of the devices own choosing at the same
time. This channel is ideal for leaking symmetric keys chosen by the user.

4.2 R o g u e Use of D S A Eas i ly Imp l i e s a " P u b l i c K e y C r y p t o s y s t e m "

Recall that gk rood p can be recovered from (r, s) by computing the expression
gs-lH(M)y 8-% mod p. So, Alice can send a DSA signed message to Bob that is
effectively public key encrypted as follows. Alice chooses k randomly and raises
Bob's DSA public key y to this k, thereby yielding a secret Diffie-Hellman key
z rood p. Alice then encrypts this message using z in a symmetric cipher. Alice
signs the resulting ciphertext file using her DSA private key and k. Using (r, s),
Bob can recover g~ mod p. By raising g~ rood p to his private key, Bob recovers
z. The only information that is sent is the encrypted file (which is 'plaintext')
and the signature (r, s). Note that z will be different each time a message is sent,
because k will be different.

In [NR94] it was shown "How to Securely Integrate the DSA to Key Distri-
bution" by sending the pair (r, s) with H (M) = 1. Here we are not fixing H (M)
which would have been quite noticeable. We are in fact spoofing normal DSA
signed messages to send (effectively) public key encrypted signed messages at
the same time. Thus we have shown that:

T h e o r e m 4 A DSA message/signature pair (m, (r, s)) signed by Alice and sent
to Bob can be abused to be a pair consisting of a probabilistic public key encrypted
message m ~ encrypted for Bob and signed by Alice.

273

Note that Alice and Bob can establish the secret key z, thus:

T h e o r e m 5 A DSA message signature pair (rn, (r, s)) signed by Alice and sent
to Bob can be abused to be a key exchange message establishing a secret key
between Alice and Bob.

Let us recall that one of the criticisms of the DSA was that DSA does not
provide for secret key distribution. In response, [SB92] stated "The DSA does
not provide for secret key distribution because DSA is not intended for secret key
distribution". Yet we have shown that DSA can be used essentially and quite
directly as a PKCS.

4.3 Device Marking

Note that the DSA setup requires that only 160 bits of the hidden field element
(which is at least 512 bits) be used for k in the subsequent signature. The
remaining 352 bits can be used to compromise other algorithms in a black-box
implementation. Furthermore, note that since the user's private key x can be
securely derived, the device can also leak information securely using k. This
makes for the following rather inviting facility.

Each device could have a unique 26-bit serial number. The device could take
160 bits of the hidden field element, and use 134 of them as the lower order bits of
the subsequent k. The other 26 bits can be XORed with the serial number. The
result can be used to form the upper order bits of the subsequent k. Note that
the attacker must now try 226 possibilities to derive the correct k. However, once
the user's private key is recovered, along with the 26 bit pad, the attacker knows
exactly which device was used to compute the signature. This allows the device
to securely and subliminally mark signatures that it outputs. This marking is
essentially the signature of the device embedded within the signature of the user.
If users primarily use their own devices to sign their own documents, then this
mechanism can both help detect forgeries if x becomes known to an adversary
and can be used to, for example, find thieves (who steal the device itself).

5 R e g u l a r S e t u p i n t h e S c h n o r r D i g i t a l S i g n a t u r e S c h e m e

The following is a quick overview of Schnorr [Sc91]. Let p and q be primes such
that q divides p - 1. Let g be a number such that gq = 1 mod p. Let s < q be
the randomly chosen private key. The public key is v = g-8 rood p.

1. Alice picks r < q randomly and computes x = gr rnod p
2. Alice computes e = H (m , x) and sets y = r + se mod q
3. the signature of m is (e, y)

Here H is a one-way hash function. To verify the signature, Bob computes
z = gYv e mod p and then makes sure that e = H (m , z) . Note that z = x =
gr mod p. Thus, for a valid signature, z can be used to leak a hidden field
element. In this respect, the (1,2)-leakage setup in Schnorr is very similar to the
setup in DSA.

274

T h e o r e m 6 The Schnorr signature algorithm has a regular setup version.

6 S e t u p A t t a c k s o n E l l i p t i c C u r v e C r y p t o s y s t e m s

The discrete log setup extends directly to elliptic curve cryptosystems. Let E
be an elliptic curve defined over Fq and let B be a publicly known point on
E. The attacker chooses a random integer x of order of magnitude q, which he
keeps private. The attacker includes in the cryptosystem the point x B E E.
B is analogous to g and xB is analogous to y in the discrete log attack. The
attack proceeds in exactly the same way as described before, except that we
calculate a pseudo-random point c on E as opposed to a pseudo-random hidden
field element in Fp. This point is hashed in order to determine the subsequent
value k to be used.

Note that a complication arises in trying to calculate the subsequent value
k to be used in the cryptosystem. Let # E denote the number of points on E.
We need a value k uniformly distributed in [0 . . # E - 1]. Hasse's theorem asserts
tha t q + 1 - 2v/~ < # E < q + 1 + 2V~. Even if say, q = # E , we could not simply
set k to be the left coordinate of c since there could be many pairs (x, y) not on
the curve with x < q. We cannot simply set k to be the right coordinate of c
since there could be points (x, y) and (x', y) where x # x' and y < q. It is well
known that there is no convenient method known to deterministically generate
points on E. Hence, finding a function that calculates an unbiased k given c is
a difficult problem. One possible solution is to use a hash function as a random
oracle to hash c to a value between 0 and # E - 1. An elegant solution to the
bias problem in elliptic curve setups is left as an open problem. We close this
section by noting that the Menezes-Vanstone PKCS [MV93] can have a setup
using this method.

T h e o r e m 7 Menezes-Vanstone PKCS has a regular setup version.

7 S E T U P s i n k e y e x c h a n g e s

We now describe how to employ the methodology in the authenticated key ex-
change protocols given in [Stin95]. The following is a review of MTI. Let g
be a primitive element modulo the prime p. Each user U has an ID string,
ID(U), a secret exponent a~ (0 < au < p - 2), and a corresponding public value
b= = ga, mod p. The TA has a signature scheme with a verification algorithm
VTA and a secret signing algorithm STA. Each user U will have a certificate
C(U) = (ID(U) , b=, STA(ID(U) , b=)). To exchange keys, users U and Y do the
following.

1. U chooses ru at random, 0 < r~ < p - 2 and computes s= = gr, rood p
2. U sends (C(V) , s=) to V
3. V chooses r~ at random, 0 < r~ < p - 2 and computes s, = gr" mod p
4. V sends (C(V) , s~) to V

275

5. U computes K = s~a'b~ ~" rood p, where b~ is obtained f rom C(V) . V com-
putes K = s~,a'bu ~" rood p, where bu is obtained f rom C(U).

Note tha t in the first exchange, r~ and r~ for the second exchange can be
leaked if the devices belonging to both U and V have a setup. The attacker then
knows the K of the second round since K = b~r'b~ r" mod p. Finding the setup
in the Girault Key Agreement Protocol is left as an exercise for the reader.

8 C o n c l u s i o n

We have demonstra ted the prevalence of kleptographic at tacks and the applica-
bility of the kleptographic point of view. We presented a direct methodology for
the systematic search for at tacks based on kleptographic relations. The discrete
log k leptogram was used in part icular to implement setups in numerous systems,
and influenced potentiM abuses of the DSA signature scheme.

R e f e r e n c e s

[DSS911 Proposed Federal Information Processing Standard for Digital Signature
Standard (DSS). In v. 56, n. 169 of Federal Register, pages 42980-42982,
1991.

[ElG85] T. E1Gamal. A Pubhc-Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In Advances in Cryptology--CRYPTO '8~, pages 10-18,
1985. Springer-Verlag.

[GM84] S. Goldwasser, S. Micali. Probabilistic Encryption. J. Comp. Sys. Sci. 28, pp
270-299, 1984.

[MV93] A. Menezes, S. Vanstone. Elliptic curve cryptosystems and their implementa-
tion. In Journal o] Cryptology, volume 6, pages 209-224, 1993.

[NR94] K. Nyberg, R. Rueppel. Message Recovery for Signature Schemes Based on
the Discrete Logarithm Problem. In Advances in Cryptology--EUROCRYPT
'95, pages 182-193, 1994. Springer-Verlag.

[RSA78] R. Rivest, A. Shamir, L. Adleman. A method for obtaining Digital Signatures
and Public-Key Cryptosystems. In Communications o] the ACM, volume 21,
n. 2, pages 120-126, 1978.

[SB92] M. Smid, D. Branstad. Response to Comments on the NIST Proposed Digital
Signature Standard. In Advances in Cryptology--CRYPTO '9P, pages 76-88,
1992. Springer-Verlag.

[Sc91] C. Schnorr. Efficient signature generation by smart cards. In Journal of
Cryptology, volume 4, pages 161-174, 1991.

[Schneier] B. Schneier. Applied Cryptography, pages 309-310, 1994. John Wiley and
Sons, Inc.

[Sim85] G. J. Simmons. The Subhminal Channel and Digital Signatures. In Advances
in Cryptology--EUROCRYPT '8~, pages 51-57, 1985. Springer-Verlag.

[Sim93] G. J. Simmons. Subliminal Communication Is Easy Using the DSA. In Ad-
vances in Cryptology--EUROCRYPT '93, 1993. Springer-Verlag.

[Stin95] D. R. Stinson. Cryptography: theory and applications, 1995, CRC Press.

276

[YY96] A. Young, M. Yung. The Dark Side of Bla~k-Box Cryptography. In Advances
in Cryptology--CRYPTO '96, pages 89-103, Springer-Verlag.

[YY97] A. Young, M. Yung. Kleptography: Using Cryptography against Cryptog-
raphy. In Advances in Cryptology--EUROCRYPT '97, pages 62-74, 1997.
Springer-Verlag.

