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Abs t rac t .  The notion of a Secretly Embedded Trapdoor with Universal 
Protection (SETUP) and its variations on attacking black-box cryptosys- 
terns has been recently introduced. The basic definitions, issues, and ex- 
amples of various setup attacks (called Kleptographic attacks) have also 
been presented. The goal of this work is to describe a methodological 
way of attacking cryptosystems which exploits certain relations between 
cryptosystem instances which exist within cryptosystems. We call such 
relations "kleptograms'. The identified kleptogram is used as the base 
for searching for a setup. 

In particular, we employ as a discrete log based kleptogram a basic setup 
that was presented for the Diffie-I-Iellman key exchange. We show how it 
can be embedded in a large number of systems: the E1Gamal encryption 
algorithm, the EIGamal signature algorithm, DSA, the Schnorr signature 
algorithm, and the Menezes-Vanstone PKCS. These embeddings can be 
extended directly to the MTI two-pass protocol, the Girault key agree- 
ment protocol, and many other cryptographic systems. These attacks 
demonstrate a systematic way to mount kleptographic attacks. They also 
show the vulnerability of systems based on the difficulty of computing 
discrete logs. 

The setup attack on DSA exhibits a large bandwidth channel capable 
of leaking information which hardware black-box implementations (e.g., 
the Capstone chip) can use. We also show how to employ such channels 
for what we call "device marking". 

Finally, note that it has been perceived that the DSA signature scheme 
was originally designed to be robust against its abuse as a public-key 
channel- to distinguish it from RSA signatures (where the signing func- 
tion is actually a decryption function). In this paper we refute this "per- 
ceived advantage" and show how the DSA system (in hardware or soft- 
ware) can be easily modified to securely leak private keys and secure 
messages between two cooperating parties. 
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1 I n t r o d u c t i o n  

Recently, it has been shown that Black-Box cryptosystems can be designed so as 
to conform to public specifications and be polynomially indistinguishable from 
the known public specifications, and at the same time securely and sublimi- 
nally leak secret key information to the implementor (either through keys at key 
generation or during run-time). 

Young and Yung laid the foundation for these attacks, defined the basic 
notions, and demonstrated them [YY96, YY97]. These attacks imply that Black- 
Box systems (whose internals cannot be scrutinized) should not be automatically 
trusted (e.g., trust should be based on cryptosystems coming from a trustworthy 
source and not from the technology of tamper-resistant black-boxes, say). 

Typically a cryptosystem produces a ciphertext for a given message or a 
signature for a given message. However, a cryptosystem with a setup produces a 
ciphertext/signature for a given message that also contains an internal ciphertext 
for a totally different message. We call such an output of a cryptosystem (with 
an inner ciphertext) a kleptogram. Kleptograms are undetectable in poly-time by 
the user, they are strong encryptions, and they coexist in the same ciphertext 
bits as normal public key encryptions. 

In this paper a methodology for finding setup attacks is given. The method- 
ology has two steps: 

1. First we find a relation within a cryptographic function between its applica- 
tion and another inner encryption (this relation is called a kleptogram). 

2. Then, given a cryptosystem and its workings, we identify how the kleptogram 
of the underlying function is embeddable in the system (and what leakage 
level is possible), which gives us a setup. 

One of the setup attacks we present which is perhaps the main result of this 
work, is a (1,2)-leakage bandwidth setup for DSA. That is, we present a setup 
mechanism for DSA that is capable of leaking the user's private key through two 
(wlog) consecutive digital signatures. We then extend the attack to allow the 
user to send 160 subliminal bits of his choosing in addition to the private key. 
Furthermore, the user is free to re-key at any time and the attack will still work. 
The kleptographic attack therefore effectively leaks 80 key bits and 80 chosen 
bits per signature. This contrasts with the channel described by Simmons which 
leaks approximately 14 chosen bits per signature [Sim93]. Also, in the context 
of tamper-proof devices we show how the SETUP can be employed for "device 
marking", where the mark is added subliminally to the signature. 

The above setup can be used to easily turn DSA into an effective public 
key (key exchange or message exchange) system. This spoofing, motivated by 
the potential of protocol abuse via kleptographic methods, shows that the claim 
that DSA is inherently different from RSA in this respect (the RSA signing 
function can obviously be used as a decryption function) is a myth! We refer the 
reader to the NIST response on DSA which alluded to this fact [SB92]. 
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In this paper we show that these kinds of setup attacks are possible in other 
discrete log based cryptosystems such as the EIGamal encryption algorithm, E1- 
Gamal and Schnorr digital signatures, and various authenticated key exchange 
algorithms. Also, systems based on Elliptic Curves (Menezes-Vanstone) can be 
attacked. The attack methodology based on the discrete log kleptogram is there- 
fore widely applicable to discrete log based cryptosystems. 

2 D e f i n i t i o n s  a n d  B a c k g r o u n d  

A setup (Secretly Embedded Trapdoor with Universal Protection) is a mech- 
anism that allows the secure leakage of private information within the output 
of a cryptosystem. The notion of a setup is due to Young and Yung [YY96]. 
The definitions of weak, regular, and strong setups and (m,n)-leakage are from 
IVY971. 

Def in i t ion  1. Assume that C is a black-box cryptosystem with a publicly known 
specification. A (regular) SETUP mechanism is an algorithmic modification 
made to C to get C' such that: 

1. The input of C ~ agrees with the public specifications of the input of C. 
2. C ~ computes efficiently using the attacker's public encryption function E 

(and possibly other functions as well), contained within C ~. 
3. The attacker's private decryption function D is not contained within C ~ and 

is known only by the attacker. 
4. The output of C ~ agrees with the public specifications of the output of C. 

At the same time, it contains published bits (of the user's secret key) which 
are easily derivable by the attacker (the output can be generated during 
key-generation or during system operation like message sending). 

5. ~r thermore,  the output of C and C' are polynomially indistinguishable (as 
in [GM84]) to everyone except the attacker. 

6. After the discovery of the specifics of the setup algorithm and after discover- 
ing its presence in the implementation (e.g. reverse-engineering of hardware 
tamper-proof device), users (except the attacker) cannot determine past (or 
future) keys. 

Def in i t ion2 .  A weak setup is a regular setup except that the output of C and 
C ' are polynomially indistinguishable to everyone except the attacker and the 
owner of the device who is in control (knowledge) of his or her own private key 
(i.e., requirement 5 above is changed). 

Def in i t ion3.  A strong setup is a regular setup, but in addition we assume that 
the users are able to hold and fully reverse-engineer the device after its past usage 
and before its future usage. They are able to analyze the actual implementation 
of C' and deploy the device. However, the users still cannot steal previously 
generated/future generated keys, and if the setup is not always applied to future 
keys, then setup-free keys and setup keys remain polynomially indistinguishable. 
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Another important  notion is that  of (m,n)-leakage bandwidth. A setup that  
has (m,n)-leakage bandwidth leaks m secret messages over the course of n mes- 
sages that  are output  by the cryptographic device (or n of its executions). 

Let us define a relation between a hidden encrypted value and another en- 
c rypt ion/s ignature .  

D e f i n i t i o n 4 .  A kleptogram is an encryption of a value (hidden value) that  is 
displayed within the bits of an encryption/signature of a plaintext value (outer 
value). 

Note that  we say that  a kleptogram is an encryption of a value, not a plain- 
text message. It is often the case in kleptography that  the device is not free 
to choose this value. The device may calculate this hidden value, and then use 
it (for the 'randomness')  in a subsequent computation,  thus compromising that  
computation.  

Related W o r k  

The notion of a subliminal channel is due to Gus Simmons [Sim85, Sim93]. 
SETUPs exploiting such channels and a SETUP in the RSA public keys (as well 
as in other systems) were given in [YY96]. In [YY97] a SETUP was presented 
for Diffie-Hellman that  does not make use of explicit subliminal channels, but  
rather exploits a number of executions of the system to "create a channel". This 
paper makes extensive use of this SETUP, which is a basic relation based on an 
underlying cryptographic problem. Due to its extensive applications as a relation 
between encrypted values, we call it the "discrete log kleptogram". The following 
section describes this relation in detail. 

2.1 Discrete Log Kleptogram 

Suppose that  the only information that  we are allowed to display is gr rood p for 
some c < p -  1. The following is a way to leak a value c2, over the single message 
m l  = g~l rood p, such that  the subsequent message m2 = gO2 mod  p is compro- 
mised. In this attack we assume that  the device is free to choose the exponents 
used. Let the attacker's E1Gamal private key be X,  and let the corresponding 
public key be Y. Let W be a fixed odd integer, and let H be a cryptographi- 
cally strong pseudorandom function with a hidden seed. WLOG, assume that  H 
outputs values less than r The following algorithm is based on the operation 
of a Diffie-Hellman device that  is used two times in succession. Let a and b be 
fixed constants. 

1. For the first usage, Cl E Zp-1 is chosen uniformly at random 
2. The device outputs  rnl = g~1 rnod p. 

3. cl is stored in non-volatile memory  for the next t ime the device is used. 
4. For the second usage, t E {0, 1} is chosen uniformly at random. 
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5. z = g C ~ - W t y - a c l - b  rood p. 

6. c2 = H ( z )  
7. The device outputs m2 = gO2 rood p. 

The attacker need only passively tap the communications line, and obtain 
rnl and rn2, in order to calculate c~. We call z a hidden field element. The value 
for c2 is found as follows. 

1. r = m l a g  b rood p 
2. zl = m l / r  X rood p 
3. if m2 = gH(zl) rood p then output  H ( z l )  
4. z2 = z l / g  W 
5. if m2 = gH(z2) rood p then output  H(z2 )  

The value c2 can be used by the attacker to determine the key from the second 
DH key exchange. Note that  only the attacker can perform these computations 
since only the attacker knows X.  In order for c2 to be able to take on any value 
less p - 1  we assume that  gl = g - X b - w ,  g2 = g-Xb,  and g3 = g l - a x  are genera- 
tors mod p. This secure disclosure of an encrypted value inside the 'encryption'  
of another value will be exploited to attack a number of cryptosystems. As a 
side remark, note that  technically nothing is encrypted in a DH key exchange. 
However, we may regard the resulting shared key as having been conceptually 
encrypted by both  parties. 

3 S e t u p s  i n  E 1 G a m a l  S y s t e m s  

Indeed, we are now ready to take the second step of our methodology, whereby 
we apply the above discrete log kleptogram mechanism to discrete log based 
cryptosystems. We start  with applications to E1Gamal, and then explain the 
more complicated setup attack on DSA in the next section. 

3.1 S t r o n g  S e t u p  in  t h e  E 1 G a m a l  E n c r y p t i o n  S c h e m e  

In E1Gamal [EIG85], the first part  of the ciphertext of a message is a = gk m o d p .  
Note that  a from the ciphertext (a, b) displays an exponentiation mod p. We 
can use this to implement a strong setup in E1Gamal. In fact, the discrete log 
kleptogram is the strong setup for E1Gamal encryption. It is straightforward to 
implement a (1,2)-leakage bandwidth scheme by leaking a hidden field element 
in the a of the first encryption (a, b), and using the hash of this element as the k 
for the second encryption. Note however that  we are leaking messages m instead 
of private keys in this case. There is no known way to efficiently recover k from 
an E1Gamal encryption, even if the user's private key x is known. So, it can be 
shown that  this is a strong setup. 

T h e o r e m  1 ElGamal  encryption has a strong setup version. 
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Typically, when public key cryptography is needed to encrypt bulk data, 
hybrid cryptosystems are used. Thus, in this mode of usage, the setup can leak 
keys. It can leak the randomly generated symmetric keys used to encrypt the 
data. We can implement a (1,1)-leakage scheme in an E1Gamal based hybrid 
system as follows. We use the discrete log attack to setup up the gk mod p 
portion of the ciphertext. We then choose the one way hash of the hidden field 
element as all or part of the symmetric encryption key. It is therefore imperative 
to verify the source code of hybrid systems based on E1Gamal. 

3.2 R e g u l a r  Se t up  in E I G a m a l  S i g n a t u r e  Scheme  

In [YY96] an attack on the E1Gamal signature scheme was proposed. This attack 
is novel in that it allows Alice to securely give her private key to Bob through 
signatures alone. However, the presence of the setup can be readily detected 
without knowledge of the attacker's E1Gamal public key, and hence constitutes 
a weak setup. 

The problem is that a user can always recover the choices of k of his own 
device using his own private key [SimS5]. Given the (wlog consecutive) ith and 

( i+l) th  signatures, the user can compute Y = (k~l )  1/k' rood p. After a few 
such coincidences, the user will conclude that Y is in fact the public key of 
the attacker. Note that the attack would still be very effective in hiding the 
key exchange from a warden (overseeing the communication) as in the original 
scenario of Gus Simmons. We can modify the attack to be a regular setup by 
using the fixed private parameters a, b, and W in conjunction with Y in the 
usual way, rather than simply setting k~-+11 = yk. .  

This setup attack can also be carried out using the discrete log attack. For 
concreteness, we will simply point out that the first E1Gamal signature value 
g~ rood p is a exponentiation mod p. Thus we leak a hidden field element as 
before, and this mechanism is a (1,2)-leakage setup. This kleptographic attack 
constitutes a regular setup. The fact that the value k2 can't be compromised was 
shown in [YY97]. This assumes that the DH problem is hard. There is also the 
issue of detectability by the signer who knows kl and k2. It can be shown that 
if H is a pseudorandom function whose seed is kept private by the implementor 
and hidden in the black-box device, the signer can't even detect the presence of 
the setup. The private values a and b are thus used as an extra precaution. This 
is not a strong setup, since a user knowing his own private key can recover the 
choices of k and detect the presence of the setup mechanism, given the seed, a, 
and b. The existence of a strong setup for the E1Gamal digital signature scheme 
is left as an open problem. 

T h e o r e m  2 The ElGamal digital signature algorithm has a regular setup ver- 
sion. 
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4 SETUPing and Spoofing DSA 

It  has been assumed that  the DSA [DSS91] system was designed as a signature 
system that  is hard to "abuse". Namely, that  it was designed so that  it would 
not be used directly as public-key system, a key exchange system, or any system 
providing for confidential information exchange (see [SB92]). Therefore, it was 
quite interesting that  a low bandwidth (14-bit) subliminal channel was found 
in it [Sim93]. Here we show a much larger leakage potential  for black-box im- 
plementations of the DSA; we note that  such implementations exist (i.e., the 
Capstone technology). 

We will now briefly review DSA. q is a 160 bit prime which divides p - 1. p 
is a prime that  is at least 512 bits and at most 1024 bits in length, g is a qth 
root of 1 mod p. All three of these parameters are public. Alice's private key is 
x, where z < q. Alice's public key is y, where y = g= rood p. Let H denote the 
Secure Hash Algorithm. To compute the signature (r, s) of a message m, Alice 
does the following. 

1. chooses a value k at random such that  k < q. 
2. computes r = (gk rood p) mod q. 
3. computes s = k - l ( H ( m )  + xr)  rood q. 
4. outputs  the signature (r, s). 

To verify that  the signature is valid, Bob checks to make sure that  r is equal 
to (gs-lH(m)y s-lr  mod p) rood q. 

It is clear from the discrete log kleptogram that  we need only find a modular  
exponentiation (mod p) that  is displayed in DSA to find a setup. Note that  a 
modular  exponentiation mod q won't  suffice since q is too small. We could setup 
DSA keys, since y = g~: mod p, but this indicates that  the user must generate new 
keys (or a new signature) to be an effective setup attack for the attacker. The 
existence of the modular exponentiation that  constitutes the (1,2)-leakage setup 
for signatures is indeed a bit more subtle. But, it turns out that  the quanti ty 
g~-~H(,~)yS-% rood p is in fact simply gk rood p, and can thus be used as a 
kleptogram. It follows that  over the course of two (wlog) consecutive signatures, 
a DSA device can securely leak the second choice of k. The attacker, given the 
value for k, can readily recover the user's private key x. This setup attack is 
rather odd since the kleptogram is not overtly displayed. Instead, it is recovered 
during the signature verification process. 

The presence of the mechanism cannot be detected in a tamper-resistant 
black-box implementation (i.e., Capstone which is a key escrow technology which 
also employs the DSA system), for the same reasons as in the E1Gamal digital 
signature setup. Note that  this kleptographic attack assumes that  the device was 
implemented with a priori knowledge of the values for g, p, and q that  the user 
will use. One can envision a scenario in which the NIST invites several corpora- 
tions to agree on a choice of parameters using the NIST designed prime number 
generation method reiterated in [Schneier]. With this setup attack, "trapdoor 
primes" (originally suspected in DSA) are not needed, any primes will do. 
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Theor e m 3 DSA has a regular setup version. 

If we trust that  the device is indeed tamper-proof,  we can leak a private key 
over two signatures while at the same t ime letting the user choose his own values 
for p, q, and g. This can be done by including the attacker's private key X (say, 
511 bits in length) within the device. The attack is clearly not a setup attack (it 
includes the attacker's private key!), but  leaks keys at a very high bandwidth, 
and is very flexible. This attack obviously relies heavily on the tamper-proof  
nature of the device in question. 

4.1 General ized Information Leakage in D S A  

We have shown how the private key x can be leaked over two DSA signatures. 
Clearly, we can then use the Simmons channel and leak a message mod q in a 
third signature by setting k equal to that  message. But,  we can do better. In 
this section we will show how to leak a message mod q of our choosing over two 
signatures, in addition to the private key x. But, before doing so we will point 
out two weaknesses in the Simmons channel. Suppose Alice wants to send Bob 
the subliminal message "160 bit long string." on two separate occasions. Since 
the string is 160 bits long, it will occupy the entire value k (assuming we send 
ASCII text).  Hence, the two values for r, where r = (gk rood p) mod q will be 
identical, and are easily noticed by the warden. Thus, we are forced to break 
down the message in order to introduce randomness. But then we need more 
bandwidth to send the message. Also note that  without introducing randomness, 
the warden can mount  guessed plaintext attacks. The warden simply guesses 
that  Alice will send the string k = "160 bit long string." and then verifies that  
r = (gk rood p) rood q. 

The method we will now describe accomplishes this generalized (1,2)-leakage 
and avoids these drawbacks. The method for accomplishing this is subtle, and 
uses a 'Teed-back" like algorithm. Suppose that  Alice is in prison and wants 
to send a 160 bit message m < q to Bob, who is on the outside. To do so, 
Alice takes the first message/141 to be signed, and computes gl based on M1 
where gt is an element in Zp with order q. To compute gl, Alice finds the 
smallest value w > 0 such that  H~(M1) rood p generates Zp. Alice then sets 

gl = HW(M1) (v-1)/q mod p. Alice computes the signatures ( r l ,  sl)  and (r2, s2) 
using her private key x as follows: 

1. kl = ((gl = rood p) rood q)rn mod q 
2. rl = (gkl rood p) rood q 
3. sl k l - I ( H ( M 1 )  + xr l )  rood q 
4. Calculate k2 using the regular setup in DSA 
5. r2 = (gk2 mod p) rood q 
6. s2 k2-1(H(M2) + xr2) rood q 

Upon receiving the two signatures, Bob can recover m as follows: 

1. Bob recovers x using the regular setup in DSA 
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2. kl = s l - I ( H ( M I )  + xrl)  mod q 
3. Bob computes gl using M1 in the same way that  Alice did 
4. m -- kl((gl= rood p) rood q)-I  rood q 

In the above algorithm, Alice sends the subliminal message m and a klep- 
togram in the first signature. The kleptogram is then used to securely compro- 
mise the second signature. Bob then recovers k2, and thus x from the second 
signature. Bob then takes z and goes back to the first signature, and recovers kl. 
Using kl Bob recovers the message m. So, Bob takes z from the second signature 
and "feeds it back" into the first signature to reveal the subliminal message. 

Note that  x is a shared secret between Alice and Bob. Thus (gl = modp) mod q 
is a shared secret between Alice and Bob. It is this secret tha t  is used to blind the 
subliminal message m. The attack is therefore not subject to guessed plaintext 
attacks, since the warden must guess (gl x mod p) mod q, in addition to m. Also, 
since there is a one-to-one mapping between the shared secrets (gl ~ rood p) rood q 
and the messages M1 being signed, and since there is no need to sign the same 
message twice, Alice can send the same subliminal message twice and the values 
for r will be different. 

This whole attack has the drawback that  the device will always choose the 
same k for a given message M being signed. So, when designing black-box devices 
like Capstone, we might want to randomize some of the upper order bits of m 
so that  it will look like the device is really choosing k randomly (joke). So, not 
only is it possible to leak DSA private keys over two DSA signatures, but it is 
also possible for devices to leak 160 bits of the devices own choosing at the same 
time. This channel is ideal for leaking symmetric keys chosen by the user. 

4.2 R o g u e  Use  of  D S A  Eas i ly  Imp l i e s  a " P u b l i c  K e y  C r y p t o s y s t e m "  

Recall that  gk rood p can be recovered from (r, s) by computing the expression 
gs-lH(M)y 8-% mod p. So, Alice can send a DSA signed message to Bob that  is 
effectively public key encrypted as follows. Alice chooses k randomly and raises 
Bob's DSA public key y to this k, thereby yielding a secret Diffie-Hellman key 
z rood p. Alice then encrypts this message using z in a symmetric cipher. Alice 
signs the resulting ciphertext file using her DSA private key and k. Using (r, s), 
Bob can recover g~ mod p. By raising g~ rood p to his private key, Bob recovers 
z. The only information that  is sent is the encrypted file (which is 'plaintext') 
and the signature (r, s). Note that  z will be different each time a message is sent, 
because k will be different. 

In [NR94] it was shown "How to Securely Integrate the DSA to Key Distri- 
bution" by sending the pair (r, s) with H ( M )  = 1. Here we are not fixing H ( M )  
which would have been quite noticeable. We are in fact spoofing normal DSA 
signed messages to send (effectively) public key encrypted signed messages at 
the same time. Thus we have shown that: 

T h e o r e m  4 A DSA message/signature pair (m, (r, s)) signed by Alice and sent 
to Bob can be abused to be a pair consisting of a probabilistic public key encrypted 
message m ~ encrypted for Bob and signed by Alice. 
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Note that  Alice and Bob can establish the secret key z, thus: 

T h e o r e m  5 A DSA message signature pair (rn, (r, s)) signed by Alice and sent 
to Bob can be abused to be a key exchange message establishing a secret key 
between Alice and Bob. 

Let us recall that  one of the criticisms of the DSA was that  DSA does not 
provide for secret key distribution. In response, [SB92] stated "The DSA does 
not provide for secret key distribution because DSA is not intended for secret key 
distribution". Yet we have shown that  DSA can be used essentially and quite 
directly as a PKCS. 

4.3 Device Marking 

Note that  the DSA setup requires that  only 160 bits of the hidden field element 
(which is at least 512 bits) be used for k in the subsequent signature. The 
remaining 352 bits can be used to compromise other algorithms in a black-box 
implementation. Furthermore, note that  since the user's private key x can be 
securely derived, the device can also leak information securely using k. This 
makes for the following rather inviting facility. 

Each device could have a unique 26-bit serial number. The device could take 
160 bits of the hidden field element, and use 134 of them as the lower order bits of 
the subsequent k. The other 26 bits can be XORed with the serial number. The 
result can be used to form the upper order bits of the subsequent k. Note that  
the attacker must now try 226 possibilities to derive the correct k. However, once 
the user's private key is recovered, along with the 26 bit pad, the attacker knows 
exactly which device was used to compute the signature. This allows the device 
to securely and subliminally mark signatures that  it outputs. This marking is 
essentially the signature of the device embedded within the signature of the user. 
If users primarily use their own devices to sign their own documents, then this 
mechanism can both help detect forgeries if x becomes known to an adversary 
and can be used to, for example, find thieves (who steal the device itself). 

5 R e g u l a r  S e t u p  i n  t h e  S c h n o r r  D i g i t a l  S i g n a t u r e  S c h e m e  

The following is a quick overview of Schnorr [Sc91]. Let p and q be primes such 
that  q divides p -  1. Let g be a number such that  gq = 1 mod p. Let s < q be 
the randomly chosen private key. The public key is v = g-8 rood p. 

1. Alice picks r < q randomly and computes x = gr rnod p 
2. Alice computes e = H ( m ,  x) and sets y = r + se mod q 
3. the signature of m is (e, y) 

Here H is a one-way hash function. To verify the signature, Bob computes 
z = gYv e mod p and then makes sure that  e = H ( m , z ) .  Note that  z = x = 
gr mod p. Thus, for a valid signature, z can be used to leak a hidden field 
element. In this respect, the (1,2)-leakage setup in Schnorr is very similar to the 
setup in DSA. 
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T h e o r e m  6 The Schnorr signature algorithm has a regular setup version. 

6 S e t u p  A t t a c k s  o n  E l l i p t i c  C u r v e  C r y p t o s y s t e m s  

The discrete log setup extends directly to elliptic curve cryptosystems. Let E 
be an elliptic curve defined over Fq and let B be a publicly known point on 
E.  The attacker chooses a random integer x of order of magnitude q, which he 
keeps private. The attacker includes in the cryptosystem the point x B  E E. 
B is analogous to g and xB is analogous to y in the discrete log attack. The 
attack proceeds in exactly the same way as described before, except that  we 
calculate a pseudo-random point c on E as opposed to a pseudo-random hidden 
field element in Fp. This point is hashed in order to determine the subsequent 
value k to be used. 

Note that  a complication arises in trying to calculate the subsequent value 
k to be used in the cryptosystem. Let # E  denote the number of points on E.  
We need a value k uniformly distributed in [ 0 . . # E -  1]. Hasse's theorem asserts 
tha t  q + 1 - 2v/~ < # E  < q + 1 + 2V~. Even if say, q = # E ,  we could not simply 
set k to be the left coordinate of c since there could be many pairs (x, y) not on 
the curve with x < q. We cannot simply set k to be the right coordinate of c 
since there could be points (x, y) and (x', y) where x # x'  and y < q. It is well 
known that  there is no convenient method known to deterministically generate 
points on E.  Hence, finding a function that  calculates an unbiased k given c is 
a difficult problem. One possible solution is to use a hash function as a random 
oracle to hash c to a value between 0 and # E  - 1. An elegant solution to the 
bias problem in elliptic curve setups is left as an open problem. We close this 
section by noting that  the Menezes-Vanstone PKCS [MV93] can have a setup 
using this method.  

T h e o r e m  7 Menezes-Vanstone PKCS  has a regular setup version. 

7 S E T U P s  i n  k e y  e x c h a n g e s  

We now describe how to employ the methodology in the authenticated key ex- 
change protocols given in [Stin95]. The following is a review of MTI. Let g 
be a primitive element modulo the prime p. Each user U has an ID string, 
ID(U), a secret exponent a~ (0 < au < p - 2), and a corresponding public value 
b= = ga, mod p. The TA has a signature scheme with a verification algorithm 
VTA and a secret signing algorithm STA. Each user U will have a certificate 
C(U)  = ( ID(U) ,  b=, STA( ID(U) ,  b=)). To exchange keys, users U and Y do the 
following. 

1. U chooses ru at random, 0 < r~ < p - 2 and computes s= = gr, rood p 
2. U sends (C(V) ,  s=) to V 
3. V chooses r~ at random, 0 < r~ < p - 2 and computes s,  = gr" mod p 
4. V sends (C(V) ,  s~) to V 
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5. U computes K = s~a'b~ ~" rood p, where b~ is obtained f rom C(V) .  V com- 
putes K = s~,a'bu ~" rood p, where bu is obtained f rom C(U).  

Note tha t  in the first exchange, r~ and r~ for the second exchange can be 
leaked if the devices belonging to both U and V have a setup. The attacker then 
knows the K of the second round since K = b~r'b~ r" mod p. Finding the setup 
in the Girault  Key Agreement Protocol is left as an exercise for the reader. 

8 C o n c l u s i o n  

We have demonstra ted the prevalence of kleptographic at tacks and the applica- 
bility of the kleptographic point of view. We presented a direct methodology for 
the systematic  search for at tacks based on kleptographic relations. The discrete 
log k leptogram was used in part icular  to implement  setups in numerous systems, 
and influenced potentiM abuses of the DSA signature scheme. 
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