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Abs t r ac t .  This paper studies the relationship between unpredictable 
]unctions (which formalize the concept of a MAC) and pseudo-random 
functions. We show an efficient transformation of the former to the latter 
using a unique application of the Goldreich-Levin hard-core bit (t~king 
the inner-product with a random vector r): While in most applications 
of the GL-bit the random vector r may be public, in our setting this 
is not the case. The transformation is only secure when r is secret and 
treated as part of the key. In addition, we consider weaker notions of 
unpredictability and their relationship to the corresponding notions of 
pseudo-randomness. Using these weaker notions we formulate the exact 
requirements of standard protocols for private-key encryption, authenti- 
cation and identification. In particular, this implies a simple construction 
of a private-key encryption scheme from the standard challenge-response 
identification scheme. 

1 Introduct ion 

This  paper  studies several ways to weaken the definition of pseudo-random func- 
tions tha t  come up natural ly in applications such as message authentication and 
user identification. We focus on the concept of an unpredictable function and 
its relationship to a pseudo-random function. We also consider the notion of a 
random at tack vs. an adaptive attack. We show tha t  in several settings unpre- 
dictability can easily be turned into pseudo-randomness.  

Pseudo-random functions were introduced by Goldreich, Goldwasser and Mi- 
cali [12] and are a very well studied object in Foundations of Cryptography.  A 
distribution of functions is pseudo-random if: (1) This  distribution is efficient 
(i.e., it is easy to sample functions according to the distribution and to compute 
their value). (2) I t  is hard to tell apar t  a function sampled according to this 
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distribution from a uniformly distributed function given an adaptive access to 
the function as a black-box. 

Pseudo-random functions have numerous applications in practically any sce- 
nario where a large amount of randomness need to be shared or fixed (see e.g., 
[4, 7, 10, 13, 18, 19, 21]). In this paper we concentrate on the application to 
authentication (and also on the applications to identification and encryption): 
A pseudo-random function f ,  can be used as a MAC (message authentication 
code) by letting the authentication tag of a message m be f , (m)  (where the key, 
s, of f ,  is also the private key of the MAC). 

As discussed by Bellare, Canetti and Krawczyk [1] (see also [23]) the se- 
curity of this scheme does not require the full strength of a pseudo-random 
function. Breaking this MAC (under the strong attack of existential forgery 
with a chosen message) amounts to adaptively querying fa on chosen messages 
ml, m2, . . ,  mq-z and then computing a pair (m, f ,(m)) for which m is different 
from ml, m2, . . .mq-1.  As will be argued below, this might be hard even if f8 
is not pseudo-random. Such a requirement is formalized by the concept of an 
unpredictable function: 

A distribution of functions is unpredictable if: (1) This distribution is efficient. 
(2) For any efficient adversary that  is given an adaptive black-box access to a 
function (sampled according to this distribution) it is hard to compute the value 
of the function at any point that  was not queried explicitly. 

Note that  from this definition it follows that  the range of an unpredictable 
function f ,  must be large. The definition can be naturally extended to allow f ,  
with a range of arbitrary size N by requiring that  (for any unqueried z) the 
advantage of computing f ,  (z) over the 1/N probability of a successful guess is 
negligible. However, in case N is small (i.e. polynomial) this definition implies 
that  f ,  is pseudo-random. 1 As an interesting analogy, consider Shamir's "unpre- 
dictable" number sequences [26]. There, given any prefix of the sequence it is hard 
to compute the next number. As shown by Yao [28], the unpredictability of the bit 
sequences introduced by Blum and Micali [6], implies their pseudo-randomness. 
Thus unpredictability and pseudo-randomness (indistinguishability) are equiva- 
lent for bit sequences but not for number sequences in general. This interesting 
phenomena is yet another reason for making a distinction between unpredictabil- 
ity and pseudo-randomness. Such a distinction has not always been made in the 
literature so far 2 

1 A relaxation of an unpredictable function in the case of a small range N is the concept 
of an a-MAC. Informally, these are functions that their value (at any unqueried 
point) cannot be predicted with advantage over 1IN better than a (where a might 
not be non-negligible). 

2 In criticism to our approach one may suggest a different definition for unpredictable 
functions that makes them equivalent to pseudo-random functions. Such a definition 
would require bit-by-bit unpredictability of the function's output. I.e., that the bit 
string obtained by concatenating the output of the function on the queries of the 
distinguisher is unpredictable. However, we feel that the definition used in this paper 
is more ~natural" and that the distinction between unpredictability and pseudo- 
randomness is useful. 
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Between Pseudo-Random Functions and Unpredictable Functions 

Since for a random function with large enough range it is impossible to guess its 
value at any unqueried point, we have that a pseudo-random function with large 
enough range is unpredictable. Otherwise, the prediction algorithm can be used 
as a distinguisher. However, an unpredictable function need not "hide" anything 
about  the input, and in particular may reveal the input. For instance, if g, is 
unpredictable function, then the function (~, g,(x)) (x concatenated with gs(x)) 
is an unpredictable function that completely reveals the input. 

Using unpredictable functions instead of pseudo-random functions may lead 
to better  efficiency. For example, Bellare, Canetti and Krawczyk [1] suggest 
that  modeling cryptographic hash functions such as MD5 and SHA as being 
unpredictable is a realistic assumption. Nevertheless, pseudo-random functions 
are still valuable for many applications such as private-key encryption. In fact, 
pseudo-random functions are useful even in the context of authentication. Con- 
sider Wegman-Carter [27] based MACs. I.e., letting the authentication tag of 
a message m be f,(h(m)) where h is a non-cryptographic hash-function (e.g., 
almost-universal2). 3 Such MACs are a serious competitors to both CBC-MACs 
[3] and HMACs [1]. They are especially attractive for long messages since the 
cryptographic function is only applied to a much shorter string and since for 
some of the recent constructions of hash functions (e.g., [15, 25]) computing 
h(m) is relatively cheap. However, in this case it is not enough for f~ to be 
unpredictable but  it should also hide information about its input. 

Since unpredictable functions imply one-way functions [17] they also im- 
ply full-fledged pseudo-random functions [12, 16]. However, these general con- 
structions (from one-way functions to pseudo-random generators [16] and from 
pseudo-random generators to pseudo-random functions [12]) are computationally 
heavy. An obvious question at this point is whether it is possible to use unpre- 
dictable functions in order to construct a pseudo-random function at low cost. A 
natural construction is to apply the Goldreich-Levin hard-core bit [14] (GL-b i t )  
in order to obtain a single-bit pseudo-random function using the inner-product 
with a random (but fixed) vector r. In other words, i f f  : {0, 1}'* ~-, {0, 1} m is an 
unpredictable function, then consider g :  {0, 1}" ~-~ {0, 1} where g(x) -- f ( ~ ) |  r 
(and | denotes the inner product mod 2). However, it turns out that  the secu- 
rity of this construction is more delicate than may seem: 

- If  r E {0, 1} m is public, the result might not be pseudo-random. 
- If r E {0, 1} rn is kept secret (part of the key), the result is a single-bit 

pseudo-random function. 

We find this result surprising since, as far as we are aware, this is the only 
application of the GL-bit that  requires r to be secret. 

One obvious disadvantage of this transformation is that  we get a single-bit 
pseudo-random function. However, using the GL hard-core functions one can 

3 An alternative variant of the Wegman-Carter based MACs lets the authentication 
tag of a message m be (r, h(m) ~ fs(r)) for a random input r. In this case it is clear 
that the output of fs should be pseudo-random. 
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extract more than a single bit at the cost of decreasing the security of the 
functions. Extracting t bits in such a way results in an exponential (roughly 2 ~) 
decrease in security. In case the unpredictable function is very secure, such a 
reduction might still be tolerable. In general, it is unrealistic to expect to extract 
more than a logarithmic number of pseudo-random bits from an unpredictable 
function (since a pseudo-random function with any super-logarithmic number 
of output bits is unpredictable). An alternative solution is to concatenate the 
inner product of a random vector r with the output of several unpredictable 
functions, i.e., to define the pseudo-random function g81,s2,...,6~,r(x) - fs,(x) | 
r, f82(x)|  fs,(x)| Combining the two solutions might imply a sufficiently 
efficient and secure pseudo-random function with a large range. Moreover, there 
are several scenarios where a single-bit (or few-bit) pseudo-random function is 
needed. One such scenario (which also motivated this work) was considered by 
Canetti et. al. [8] for multicast authentication. In their scheme many functions 
are used for authentication, and the adversary might know a constant fraction 
of them. Therefore, letting each function be a one-bit pseudo-random function 
instead of an unpredictable function with a large range significantly reduces the 
size of the authentication tag while ensuring the security of the scheme. 

Consequences  

The main application of the transformation from unpredictability to indistin- 
guishability is obviously for using efficient constructions of MACs in scenar- 
ios that require pseudo-random functions (especially when a single-bit pseudo- 
random function is needed as in [8]). 

A recent work of Rivest [24] makes strong arguments against the validity 
of export regulations' distinction between MACs and encryption schemes. One 
may view our work as supporting such arguments since it shows that efficient 
(software or hardware) implementations of MACs can easily (and in low cost) 
be turned into implementations of encryption schemes. In fact, as shown by 
this paper, even functions that are designed for the standard challenge-response 
identification scheme can be used for encryption. 

Random Attacks 

Motivated by the requirements of standard protocols for identification and en- 
cryption, we consider two additional relaxations of unpredictable functions. The 
first is requiring that no efficient algorithm after adaptively querying the func- 
tion can compute its value on a random challenge instead of any new point of 
its choice. The second relaxation is achieved by giving the adversary the output 
of the function on (polynomial number) of random inputs (instead of allowing 
it an adaptive attack). In addition, we consider the equivalent notions of indis- 
tinguishability. We use these concepts for: 

- Identifying the exact requirements of standard schemes for authentication, 
identification and encryption. 
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- Showing that in the case of a random challenge, the transformation from 
unpredictability to indistinguishability is still secure even if the vector r 
is public. This transformation provides a simple construction of a private- 
key encryption scheme from the standard challenge-response identification 
scheme. 

- Showing a more efficient variant for one of the constructions in [22] that 
achieves some notion of unpredictability (which is sufficient for the standard 
identification scheme). 

Random attacks on function families are also natural in the context of Com- 
putational Learning-Theory [5]. In addition, it was shown in [20] how to construct 
a full-fledged pseudo-random function f from such a weak pseudo-random func- 
tions h (going through the concept of a pseudo-random synthesizer). Given that 
h has a large enough output and that f is defined on k-bit inputs, computing 
f involves O ( k / l o g k )  invocations of h. The construction of this paper com- 
pletes the transformation from weak unpredictable functions to pseudo-random 
functions. 

Since the function families that are suspected to be weak pseudo-random 
functions (e.g. those described in [5]; also see [20]) are extremely efficient, we 
consider it an important open question to improve the construction of pseudo- 
random functions from weak pseudo-random functions given in [20]. Alterna- 
tively, it would be interesting to design efficient authentication and encryption 
schemes that only use weak pseudo-random functions. We further consider these 
questions in Section 5. 

O r g a n i z a t i o n  

In Section 3 we define unpredictable functions. In Section 4 we define the trans- 
formation from unpredictable functions to pseudo-random functions and show 
that it requires the vector r to be secret. In Section 5 we consider weaker notions 
of unpredictability and pseudo-randomness. 

2 Preliminaries 

In this section we include the definitions of function-ensembles and pseudo- 
random functions almost as they appear in [11, 21]: 

2 . 1  N o t a t i o n  

- I n denotes the set of all n-bit strings, {0, 1}% 
- Un denotes the random variable uniformly distributed over I n. 

- Let x and y be two bit strings of equal length, then x @ y denotes their 
bit-by-bit exclusive-or. 

- Let x and y be two bit strings of equal length, then x | y denotes their inner 
product mod 2. 
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2.2 Func t ion -Ensembles  a n d  P s e u d o - R a n d o m  F u n c t i o n  E n s e m b l e s  

Let {An, Bn}neN be a sequence of domains. A An ~-+ Bn function ensemble is a 
sequence F = {Fn}n~N such that  Fn is a distribution over the set of An ~-* Bn 
functions. R = {Rn}ner~ is the uniform An ~-* Bn function ensemble if Rn is 
uniformly distributed over the set of An ~-* Bn functions. 

A function ensemble, F = {F,}.er~, is efficiently computable if the distri- 
bution Fn can be sampled efficiently and the functions in Fn can be computed 
efficiently. More formally, if there exist probabilistic polynomial-time Turing- 
machines, Z and 12, and a mapping from strings to functions, r such that  
r  and F ,  are identically distributed and V(i, z) = (r (i.e. Fn = 
v(z(a-), .)). 

D e f i n i t i o n l  negl ig ib le  func t i ons .  A function h : 1~ ~ ]~+ is negligible if for 
every constant c > 0 and all sufficiently large n's 

1 
h(n) < n---g 

D e f i n i t i o n 2  p s e u d o - r a n d o m  f u n c t i o n .  Let {An, Bn)neN be a sequence of 
domains. Let F = {Fn}ner~ be an efficiently computable An ~'* Bn function 
ensemble and let R = {Rn}neN be the uniform An ~'* Bn function ensemble. F 
is pseudo-random if for every efficient oracle-machine .~4, 

IPr[MF"(1 ") = 1 ] -  Pr[MR"(1 ") = 1]l 

is negligible. 

Remark. In these definitions, as well as in the other definitions of this paper, 
"efficient" is interpreted as "probabilistic polynomial-time" and "negligible" is 
interpreted as "smaller than 1/poly". In fact, the proofs in this paper include 
more quantitative statements of security. For a discussion on security preserving 
reductions see [18]. 

3 U n p r e d i c t a b l e  F u n c t i o n s  

In this section we define unpredictable functions. As described in the introduc- 
tion, the motivation of this definition is the security of MACs. As an additionM 
motivation, let us first consider an equivalent definition (that already appears in 
[12]) of pseudo-random functions through an interactive protocol. This protocol 
will Mso be used in Section 5 to define other weaker notions. For simplicity, we 
only consider I n ~-* I ~(n) function-ensembles, where g is some 1~1 ~-* 1~ function. 

D e f i n i t i o n 3  i n d i s t i n g u i s h a b i l i t y  aga in s t  an adapt ive  attack.  Let 
F = {Fn}neN be an efficient I ~ ~-+ I l(n) function-ensemble and let c E 1~ be 
some constant. We define an interactive protocol that  involves two parties, :D 
and F: 
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On the common input 1", the private input of 12 is a key s of a function f ,  
sampled from Fn and a uniformly distributed bit or. The protocol is carried out 
in q = n e rounds. At the i th round of the protocol :D sends to V a point xi and 
in return V sends to 2) the value f , ( z i ) .  At the qth round, :D sends a point xq 
which is different from Zl, ;~2,. . .Zq_ 1. In return, 1) sends fs(xq) if cr = 1 and 
y E Ul(n) otherwise. Finally, :D outputs  a bit ~' which is its guess for ~. 

F is indistinguishable against an adaptive sample and an adaptive challenge 
if for any polynomial time machine :/9 and any constant c E 1~ 

is negligible. 

The equivalence of this definition to Definition 2 was shown in [12]. For a 
recent discussion on similar reductions and their security see the work of Bellare 
et. al. [2]. 

P r o p o s i t i o n  4 ([IP]) Let F -- {Fn}neN be an efficient I n ~-~ If(n) function- 
ensemble. Then F is pseudo-random iff it is indistinguishable against an adaptive 
sample and an adaptive challenge. 

The definition of unpredictable functions is obtained from Definition 3 by 
replacing the requirement that  f , (z~)  is indistinguishable from uniform with a 
requirement tha t  f , (xq)  is hard to compute (i.e., is unpredictable): 

D e f i n i t i o n 5  u n p r e d i c t a b l e  f u n c t i o n s .  Let F = {Fn}n~N be an efficient I n ~-* 
I l(n) function-ensemble and let c E 1~ be some constant. We define an interactive 
protocol that  involves two parties, :D and Y: 

On the common input 1 n, the private input of • is a key s of a function f ,  
sampled from Fn. The protocol is carried out in q - 1 rounds for q = n e. At the 
i th round of the protocol, 7) sends to V a point zi E I n and in return ~ sends 
to :D the value f , (x i ) .  At the termination of the protocol, :D outputs  a point 
zq which is different from Xl, z 2 , . . . z q - 1  and a string y which is its guess for 

fs(xa). 
F is unpredictable against an adaptive sample and an adaptive challenge if 

for any polynomiM time machine :D and any constant c E 1~ 

Pr[y = fs(zq)] 

is negligible. 
The expression "F is an unpredictable function ensemble" is used as an 

abbreviation for "F  is unpredictable against an adaptive sample and an adaptive 
challenge". 
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4 Turning Unpredictability into Indistinguishability 

In this section we show how to apply the GL hard-core bit [14] in order to con- 
struct pseudo-random functions from unpredictable-functions. At first thought, 
one would imagine that  such an application is straightforward as is the case with 
key-exchange protocols (if two parties that  engage in a key-exchange protocol 
manage to agree on a key that  cannot be computed by a passive eavesdropper 
then they can also easily get a secret random bit using the GL hard-core bit). 
However, as demonstrated below, this is not the case in our scenario. 

Goldreich and Levin have shown that  for every one-way function, t, given 
t ( x )  (for a random input ~) and given a random vector r it is infeasible to guess 
r |  with non-negligible advantage over 1/2. In fact, their result apply in a more 
general context: If given t ( z )  it is hard to compute f ( x ) ,  then given t(x) and r 
it is also hard to guess f ( x )  | r. 

Since the GL-bit transforms hardness to compute into indistinguishability it 
is natural to apply it in our context: Given an unpredictable function f : I"  ~-~ 
I m a natural candidate for a pseudo-random function is g,,r(x) = f , (x )  | r, 
where r is a random vector. Indeed, it is rather straightforward that  for any 
unqueried input x it is hard to guess f ,  (x) | r for a random vector r chosen 
after x is fixed. However, this is not sufficient for proving that  g6,r is pseudo- 
random: The distinguisher gets gs,r(x) on inputs x of its choice. Since this choice 
might depend on r it might be easy to guess fs(x) | r and to distinguish g~,r 
from random. As shown by the following example, this is exactly the case when 
the random string r is public: 

T h e  C o u n t e r - E x a m p l e  

Let hs : 13" ~-~ I n be an unpredictable function. Let f8 be the I sn ~-* 13n 
function such that  for every input x E 13n the string y = fs(x) is defined as 
follows: 

- If at least n bits of x are zeroes, let i l ,  i 2 , . . . ,  in be the first locations of such 
bits. Then for every 1 < j < n the bit Yii equals the j th  bit of hs(~) and for 
any other location i the bit yl is set to zero. 

- If at least 2n bits of x are ones, let i t ,  i2, �9 . . ,  i2n be the first locations of such 
bits. Then for every 1 < j < n the bits Yij and Yi~+, equal to the j th  bit of 
he(x) and for any other location i the bit Yi is set to zero. 

The function f , ( x )  is unpredictable since both mappings (x, h,(z)) ~-~ (x, f ,(~)) 
and (x, f , (x))  ~-* (x, h,(x)) are easy to compute (therefore a prediction-attack 
on fa easily translates to a prediction-attack on he). However, for every r E I an 
and every s we have that  fs (r) | r = 0. Therefore, when r is public, the func- 
tion gs,r can easily be distinguished from random. A distinguisher with access 
to a function P simply query for P(r) .  If P(r)  = 0 the distinguisher outputs 
"pseudo-random "~ and otherwise it outputs "random". In case P = gs,r (for any 
value ~of s) the distinguisher will output  "pseudo-random" with probability 1 
and in case P is truly random the distinguisher will output  "pseudo-random" 
with probability 1/2. 
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A S e c r e t  r W o r k s  

As shown by the example above, the fs (z) (D r construction does not work in 
case r is public. We now show that  this construction does work when r is secret. 
This fact is rather surprising since, as far as we are aware of, there is no other 
application of the GL-bit that  requires r to be kept a secret. 

C o n s t r u c t i o n  4.1 Let F = {Fn}nEr~ be an efficient I n ~-+ I t(n) function- 
ensemble. We define an efficient I n ~ I 1 function-ensemble G = {Gn}neN 
as follows: 

A key of a function sampled from Gn is a pair (s, r}, where s is a key of a 
fnnction fs sampled from Fn and r E Ue(n). For every input z E I n the value of 
gs,r on z is defined by 

= fs(Z) (D r 

We still need to handle the fact that  the distinguisher gets gs,r(z) on inputs 
z of its choice and that  this choice might depend on r. However, in this case the 
dependence on r is only through values gs,r(y) that were previously queried by 
the distinguisher. It turns out that  such a dependence is not as fatal. 

T h e o r e m 6 .  Let F = {Fn}neN be an efficient I n ~ I l(n) function-ensemble. 
Define G = {Gn},eN as in Construction 4.1. I f  F is an unpredictable function 
ensemble then G is a pseudo-random function ensemble. 

Proof. (Sketch) Assume that  there is an efficient oracle-machine A4 that  distin- 
guishes G from random with non-negligible advantage ~ = e(n) (as in Defini- 
t ion 2). Let q = q(n) be a polynomial bound on the number of queries made by 
.A4. Assume wlog that  A4 always makes exactly q different queries. 

In order to prove the theorem it is sufficient to construct an efficient oracle 
machine ,4 that  operates as follows: on input r E Ul(n) and access to a function 
f8 sampled from Fn .4 first chooses an input z E I n which only depends on its 
internal coin-tosses. I.e., z is independent o f t .  After making at most q queries to 
fs which are all different from x it outputs a guess for fs (z) (D r which is correct 
with probability at least 1/2 + e/q. 

To see that  such a machine .4 is indeed sufficient, note that  for at least e/2q 
fraction of the choices for the internal coin-tosses of .4 the probability tha t  it 
succeeds in guessing fs(m) | r is at least 1/2 + e/2q. Therefore, we can now 
apply the Goldreich-Levin-Rackoff reconstruction algorithm 4 to get an efficient 
oracle machine 7) such that  on input 1 n and access to a function fs sampled 
from Fn operates as follows: 79 first chooses an input z E I n. After making 
O(s �9 (q/e) 2 �9 q) queries to f~ which are all different from z it outputs a 
guess for f s (z)  which is correct with probability :2((e/q)2). This contradicts 

4 The Goldreich-Levin Theorem is a constructive one that enables reconstruction of x 
given an algorithm for guessing x | r. See [11] for details; the algorithm there is due 
to Rackoff. 
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the assumption that  F is an unpredictable function-ensemble and completes the 
proof of the theorem. 

It remains to define .4 that  has the required properties: 
T h e  de f in i t i on  o f  .4: We assume that  A knows whether or not Pr[.A4F"(1 n) = 
1] > Pr[.A~fR"(1 n) = 1]. This information can be given to `4 as part of the input 
(by ~ that  can afford to try both possibilities). Another standard way that  ,4 
can learn this information is by sampling. Assume wlog that  indeed 

Pr[c~4F"(1 ") = 1] > Pr[A~fR~(1 ") = 1] + e(n) 

The algorithm `4 executes the following algorithm: 

1. Sample 1 < J < q uniformly at random. 
2. Invoke )k4 on input ln. 
3. Answer each one of the first J queries of ,hal with a uniformly chosen bit. 

Denote by x the j t h  query and by a the answer given to it. 
4. Let x i be the i *h query for i > d, answer this query with f , ( x i ) |  r (by 

querying fs on xi). 
5. If M outputs 1 then output ~. Otherwise output  b. 

It is immediate that  the choice of x is indeed independent of r. Proving the 
success probability of .4 (claimed above) is done by a standard hybrid argument. 

For any unpredictable function f , ,  Construction 4.1 gives a single-bit pseudo- 
random function g,,r. Extracting more bits is possible in two (complementary) 
ways: 

1. Taking the inner product of the unpredictable function fs with a f ew  ran- 
dom vectors. I.e., using the function g,,rl,r2 ..... r,(x) = f , (x )  | r t , f , ( x )  | 
r 2 , . . . ,  f , ( x )  | r~. 

2. Taking the inner product of any polynomial  number  of (independent) unpre- 
dictable functions f , ,  with the same random vector. I.e., using the function 
gsl,s~ ..... s t ,r(x) m fsz(X)  6) r, fs2(a;) | r, . . ., fst(a:) | r. 

While the first method is more efficient (the function f ,  is only computed 
once) it decreases security more rapidly. More precisely, assume that  there is 
an efficient oracle-machine .A//that distinguishes ~,,,~,,2 ..... , ,  from random with 
advantage e using q queries then it is possible to define an oracle machine .4 as 
in the proof  of  Theorem 6 that  outputs a guess for f s ( z ) |  which is correct with 
probability at least 1/2 + e/(q  �9 2t). Therefore it is possible to define a machine 

that  breaks the unpredictable function f with O ( e ( n ) .  (q/e)  2.  22t.  q) queries 
and success probability f2((e/q)  2. 2-2*). However, in case f ,  is sufficiently secure 
and t is not too large (say, t = 20) this method can still be used. For the second 
method, it is not hard to show a much more moderate reduction in security. 
I.e., a reduction by 1/t 2 factor (getting a factor of 1/t is possible by using t 
different strings ri instead of a single string r). The two methods can naturally 
be combined to give a reasonably efficient and secure pseudo-random function 
with a large output. 
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5 Weaker Not ions  

In this section we consider weaker notions of indistinguishability and unpre- 
dictability then those of Definitions 3 and 5. We show how to relax either one 
of these definitions by allowing the adversary a random attack rather than an 
adaptive attack. As will be described below, such random attacks come up nat- 
urally in applications such as identification and encryption. Two meanings in 
which an attack can be random are: 

1. A R a n d o m  Cha l l enge .  The adversary is required to compute the value of 
f ,  on a random point. This is formalized by letting Y send ~q E Un to 2) 
after the first q - 1 rounds. 

2. A R a n d o m  Sample .  The adversary gets the value of f ,  on polynomial num- 
ber of random inputs instead of adaptively choosing the inputs itself. This 
is formalized by removing the first q - 1 rounds of the protocol and adding 
to the common input the values Ixi, f ,(xi),  z2,f,(x2),. . .Xq-l,f ,(Xq-1)), 
where each one of the zi 's is an independent instance of Un. 

Remark. An alternative to an adaptive attack and a random attack is a static 
attack. In this case, 79 has to choose and send z i ,  z2 , . . . zq  at the first round. 
Such an attack seems less natural in the applications we consider here and we 
therefore ignore it. For some intuition on the difference between adaptive and 
static attacks see [21]. 

The total number the definitions we obtain by considering all combinations 
(i.e., indistinguishability vs. unpredictability, adaptive samples vs. random sam- 
ples and adaptive challenges vs. random challenges) is eight. The observation 
that  no two of these definitions are equivalent (as long as one-way functions 
exist) easily follows from the separations we sketch below. Furthermore, there 
are no implications except for the obvious ones: 

- Let fs be a pseudo-random function and define the function g~(z) = (z, fs(z)) 
(z concatenated with fs(z)). Then g8 is an unpredictable function but is not 
indistinguishable even against a random sample and a random challenge. 

- Let fs be a pseudo-random function and define the function gs such that  
gs(z) = f~(z) for every x 5s 0 and g,(0) = 0. Then g, is indistinguishable 
against an adaptive sample and a random challenge but is not even unpre- 
dictable against a random sample and an adaptive challenge. 

- Let f~ be a pseudo-random function and define the function g8 such that  
g,(z) = f ,  (z) for every z 5s f ,(0) and (unless the rare condition f ,(0)  = 0 
holds) g,(fs(O)) = s. Then g, is indistinguishable against a random sample 
and an adaptive challenge but is not even unpredictable against an adaptive 
samples and a random challenge. 

More "natural" examples for functions that  are suspected to be secure (in- 
distinguishable) against a random attack but are completely insecure against an 
adaptive attack come up in the context of Computational Learning-Theory (see 
[5, 20] for details). Consider for example the following distribution on functions 
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with parameters k and n. Each function is defined by two, uniformly distributed, 
disjoint sets A, B C {1, . . . ,  n} each of size k. Given an n-bit input, the output 
of the function is the exclusive-or of two values: the parity of the bits indexed 
by A and the majority of the bits indexed by B. Restating [5] in the terminol- 
ogy of this paper, it is estimated there that distinguishing these functions (for 
k = log n) from a random function using a random sample and a random chal- 
lenge requires "profoundly" new ideas. However, the key of such a function (for 
any k) can easily be recovered using an adaptive attack. 

The extreme efficiency of function families that are suspected to be weak 
pseudo-random functions (i.e., indistinguishable against a random sample and a 
random challenge) raises the following questions: 

1. Can the construction in [20] of a full-fledged pseudo-random function from 
weak pseudo-random functions be improved? 

2. Can weak pseudo-random functions be directly used in private-key encryp- 
tion and authentication schemes? 

We further consider the second question in Section 5.1. 

5.1 The  R e q u i r e m e n t s  of  P r i va t e -Key  Tasks 

Identifying the exact requirements for function families used in any given proto- 
col can imply more efficient implementations of this protocol. We therefore con- 
sider in this section the actual requirements for standard private-key schemes. 
The three most common tasks in private-key cryptography are user identifica- 
tion, message authentication and encryption. Consider the following schemes for 
the above tasks. A group of parties that share a pseudo-random function f,  may 
perform: 

A u t h e n t i c a t i o n  The authentication tag of a message m is defined to be fs (m). 
Here the requirement is unpredictability against an adaptive sample and an 
adaptive challenge (in case we want existential unforgeability against a cho- 
sen message attack). 

Ident i f ica t ion  A member of the group, 12, determines if .4 is also a member by 
issuing a random challenge r and verifying that the respond of.4 is f8 (r). 
Assuming that the adversary can perform an active attack (i.e., can partic- 
ipate in executions of the protocol as the verifier), we need unpredictability 
against an adaptive sample and a random challenge. If the adversary is lim- 
ited to a passive attack (i.e., can only eavesdrop to previous executions of 
the protocol), then we only need unpredictability against a random sample 
and a random challenge. 

E n c r y p t i o n  The encryption of a message m is defined to be (r, f , (r)  ~ ml, 
where r is a uniformly chosen input. 
We are using the terminology of [9] for attacks (chosen plaintext, chosen ci- 
phertext in the preprocessing and postprocessing modes) and notions secu- 
rity (semantic and non-malleability). Assuming that the adversary is limited 
to a chosen plaintext attack, we need indistinguishability against a random 
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sample and a random challenge (in case we are interested in semantic secu- 
rity). If the adversary can perform a chosen ciphertext attack in the prepro- 
cessing mode, then we need indistinguishability against an adaptive sample 
and a random challenge to get semantic security. For any implementation 
of f this scheme is malleable and hence not secure against a chosen cipher- 
text attack in the postprocessing mode. I.e., when the adversary queries the 
function after getting the challenge. 

The functions used in all the schemes considered above should be secure 
against an adaptive sample (when we consider the stronger attack in each case). 
The following encryption scheme (that can also be used for authentication and 
identification) proposed in the full version of [9] eliminates this requirement. The 
encryption of a message m under this scheme is defined to be 

(r, f(r) ~ m, g(r, f(r) ~ m)), 

where r is a uniformly chosen input. To get non-malleable security against a 
chosen ciphertext attack in the postprocessing mode it is enough for f and g to 
be indistinguishable against a random sample and an adaptive challenge. The role 
of g is to "authenticate" the first part of the encryption and make it infeasible for 
an adversary to generate valid ciphertexts it did not explicitly receive (i.e. the 
encryption scheme is self-validating). An interesting open question is whether 
there exist an efficient authentication or encryption scheme which can be based 
on functions secure against a random sample and a random challenge. 

5.2 I m p r o v i n g  Eff ic iency  for  W e a k e r  Def in i t i ons  

In this section we give another demonstration that  weaker definitions may imply 
better efficiency. We do so by showing a more efficient variant for one of the 
constructions of [22] that  is sufficient for the standard identification scheme. 

In [22], two related constructions of pseudo-random functions are presented. 
The construction that  is based on factoring gives a single-bit (or few-bits) pseudo- 
random function. We show that  if we are only interested in unpredictability 
against an adaptive sample and a random challenge this construction can be 
improved. 

InformMly, the construction of pseudo-random functions that  are at least 
as secure as factoring is as follows: Let N be distributed over Blum-integers 
(N - P �9 Q, where P and Q are primes and P -- Q = 3 mod4)  and assume 
that  (under this distribution) it is hard to factor N. Let g be a uniformly dis- 
tributed quadratic residue in ~v ,  let a - (al,0, al,1, a~,0, a2,1,.. ,  an,0, an,l) be a 

d e f  
uniformly distributed sequence of 2n elements in [N] = {1, 2 , . . . ,  N} and let r 
be a uniformly distributed bit-string of the same length as N. Then the Binary- 
function, fN,a,a,r, is pseudo-random. Where the value of fN,g,a,r on any n-bit 
input, z = x l z 2 . .  "zn, is defined by: 
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Using similar techniques to the proof in [22], it can be shown that if factor- 
ing Blum-integers is hard then the function fg,9,a, is unpredictable against an 
adaptive sample and a random challenge. Where the value of ]g,g,a on any n-bit 
input, z = ZlX2.. .zn, is defined by: 

/g,g,a(X) ~ f  grI=, a,.x, mod g 

As described in Section 5.1, such a function can be used for the standard 
challenge-response identification scheme. 

5.3 Add i t iona l  Trans format ions  of  Unpred ic tab i l i ty  to  
Ind i s t ingu ishab i l i ty  

In Section 4, we considered the gs,r(x) = f s (x) |  r construction (Construc- 
tion 4.1) as a transformation of unpredictable functions to pseudo-random func- 
tions. As discussed there, the problem in using a public r in this construction 
is that it enables the distinguisher to choose inputs for gs,r(x) that directly de- 
pend on r. For such an input z, the value gs,r(z) might be distinguishable from 
random. However, when we consider weaker definitions of unpredictability and 
indistinguishability where the challenge is random such a problem does not oc- 
cur. In this case a rather simple application of the GL-bit gives the following 
theorem: 

T h e o r e m 7 .  Let F = {Fn}nel~ be an efficient I n ~ I l(n) function-ensemble. 
Define G = {Gn}n~N as in Construction 4.1. It follows that: 

1. I f  F is unpredictable against an adaptive sample and a random challenge, 
then G is indistinguishable against an adaptive sample and a random chal- 
lenge. 

P. I f  F is unpredictable against a random sample and a random challenge, then 
G is indistinguishable against a random sample and a random challenge. 

Both (1) and (2) hold even if for each function gs,r E Gn we let r be public 

As discussed in Section 5.1, indistinguishability against an adaptive sam- 
ple and a random challenge is sufficient for the standard private-key encryp- 
tion scheme whereas unpredictability against an adaptive sample and a random 
challenge is sufficient for the standard challenge-response identification scheme. 
Therefore, any function that is designed for the identification scheme can be 
transformed into a private-key encryption scheme (using the methods described 
in Section 4 for getting a larger output length). 

6 C o n c l u s i o n  a n d  F u r t h e r  R e s e a r c h  

We have considered several notions of unpredictability and their relationship 
with the corresponding notions of indistinguishability. For three of these notions 
we have shown that the Goldreich-Levin hard-core bit can simply turn unpre- 
dictability into indistinguishability. By this construction efficient implementa- 
tions of MACs can be used to obtain efficient implementations of pseudo-random 
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functions. An interesting open problem is to prove or disprove the validity of the 
construction in a fourth setting: Can the GL-bit be used to turn unpredictabil- 
ity against a random sample and an adaptive challenge into indistinguishability 
against a random sample and an adaptive challenge? 

The second part of Theorem 7 and the construction in [20] of full-fledged 
pseudo-random functions from weak pseudo-random functions give a relatively 
efficient transformation (compared with the transformation obtained by [12, 
16, 17]) from the weakest notion considered in this paper (i.e. unpredictabil- 
ity against a random sample and a random challenge) to the stronger notion 
(i.e. indistinguishability against an adaptive sample and an adaptive challenge). 
An interesting task should be to achieve a more efficient transformation. 

Section 5.1 considers the exact requirements for function families used in 
standard private-key schemes. An interesting line for further research discussed 
there is to design efficient private-key encryption and authentication schemes 
that only use weak pseudo-random functions. Implementations of such schemes 
may be very efficient given the extreme efficiency of candidates for weak pseudo- 
random functions. 
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