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INTRODUCTION

The magnitude of novel coronavirus (COVID-19) pandemic
has led to considerable economic hardships, stress, anxiety,
and concerns about the future. Social media can provide a
place for measuring a pulse of mental health in communities.
Evaluating the changing use of language on social media can
complement traditional survey-based approaches and provide
new insights into the well-being of a country or region during
a public health crisis. Social media could also enable early
symptom discovery for diseases where the pathology is not
completely known and is evolving.1 We, therefore, created a
dashboard (https://bit.ly/penncovidmap) to monitor and ana-
lyze changes in language expressed on Twitter over the course
of the COVID-19 pandemic within the USA with a specific
focus on mental health and symptom mentions.

METHODS

We are collecting two data sets, each containing approximate-
ly 5 million tweets/day, of publicly accessible streaming data
for the dashboard: (a) a random 1% sample of daily US tweets
to infer overall mental health, fromwhich we identify English-
language tweets posted from within the USA on the previous
day; and b) tweets containing COVID-19 related keywords
obtained using a public keyword streaming API to compute
symptom mentions per state related to COVID-19.
After geolocating all the tweets by mapping posts to states

using a combination of location coordinate information and
user location descriptions, we extract the relative frequency of
single words and phrases (consisting of two or three consec-
utive words). Based on the word and phrase frequencies,
mental health estimates are computed on the random 1%
sample by applying four pre-trained data-driven machine
learning models: overall sentiment (net positive language)2,

stress3, anxiety 4, and loneliness expressions5. We calculated
estimates for these four measures from the national declaration
of emergency, on March 13, to May 6, and compared them to
the estimates from the same period in 2019, controlling for day
of the week and seasonality effects. We quantified the effect
size using Cohen’s d.
Using the second Twitter sample containing COVID-19

keywords, we calculate the frequency of Twitter posts relating
to different COVID-19 symptoms across states. The study was
considered exempt under the University of Pennsylvania In-
stitutional Review Board guidelines.

RESULTS

Comparing the mental health estimates across all the states in
the duration after the declaration of emergency fromMarch 13
to May 6, sentiment (Fig. 1a) was lower in 2020 compared
with that in 2019 (Cohen’s d = − 0.97; CI = [− 1.41, − 0.53], p
< 0.001), stress (Fig. 1b) was higher (d = 1.5; CI = [1.03, 1.97],
p < 0.001 ), anxiety (Fig. 1c) was consistently higher (d = 4.4;
CI = [3.66, 5.2], p < 0.001), and loneliness (Fig. 1d) also
showed a marked increase (d = 1.58; CI = [1.11, 2.06],
p < 0.001).
Symptommentions in the COVID-19 related tweets capture

emerging symptoms such as a change in smell/taste, body
aches, and skin lesions (Fig. 2).

DISCUSSION

Language used in tweets can provide insight into changes in
mental health of communities during public health
emergencies where widespread polling may not be available.
Stress, anxiety, and loneliness are increasingly divergent from
2019 levels. Early recognition of hotspots of declining mental
health can lead to community-level interventions, for example
through providing increased access to telepsychiatry services,
supporting local community partners, and locally employing
more paraprofessionals, such as community health workers.
Trending symptom mentions may lead to early recognition

of new symptoms, such as recently noted skin findings asso-
ciated with COVID-19.6 Several symptoms were reported in
the context of COVID-19 tweets prior to them being added to
the symptom list by the Centers of Disease Control and skin
lesions have been discussed starting March. Syndromic sur-
veillance could also enable early recognition of disease re-
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Figure 1 (a) Sentiment, (b) stress, (c) anxiety, and (d) loneliness expressions derived from data-driven machine learning models on Twitter
language from the start of January till May 6 in 2019 (green) and 2020 (orange). The measures are normalized by centering and scaling based
on January values of the respective years and calculating the mean over all states in the USA weighted by the number of Tweets in each state.
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Figure 2 Trends in symptom mentions in COVID-19 related tweets. *Smell/taste, body ache, headache, chills were added to the symptom list by
the Centers for Disease Control (CDC) on April 17. †Skin lesions are increasingly being discussed in the context of COVID-19 tweets.
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emergence or spread and more informed distribution of tests
and equipment.1

Limitations of this study include that Twitter users are not
representative of all segments of population and that the
language-based estimates are on a random 1% data stream of
tweets. Further, lack of polling data means our estimates have
not been validated during the assessment period. In future
work, we intend to validate these models against gold standard
polling data. In conclusion, real-time monitoring of location-
specific social media posts can provide insight into emerging
issues of public concern. Early recognition of local trends can
lead to an informed distribution of resources, targeted public
health interventions, and better preparedness in this and future
public health emergencies.
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